DE102008049459A1 - Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer - Google Patents

Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer Download PDF

Info

Publication number
DE102008049459A1
DE102008049459A1 DE102008049459A DE102008049459A DE102008049459A1 DE 102008049459 A1 DE102008049459 A1 DE 102008049459A1 DE 102008049459 A DE102008049459 A DE 102008049459A DE 102008049459 A DE102008049459 A DE 102008049459A DE 102008049459 A1 DE102008049459 A1 DE 102008049459A1
Authority
DE
Germany
Prior art keywords
electrode layer
photodetector
organic
layer
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102008049459A
Other languages
German (de)
Inventor
Jens Dr. Fürst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102008049459A priority Critical patent/DE102008049459A1/en
Publication of DE102008049459A1 publication Critical patent/DE102008049459A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/058Flat flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0628Organic LED [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Light Receiving Elements (AREA)

Abstract

The smartcard has a micro-fluidic channel for filling a cavity. A photodetector is provided, which comprises a semi-transparent electrode layer, an organic-based optically active layer and a counter electrode layer. The counter electrode layer is arranged on the lower side of the micro-fluidic channel, such that the photodetector detects a radiation falling in the microfluidic channel from above. The photodetector comprises an organic-based auxiliary layer.

Description

Die Erfindung betrifft eine Chipkarte, wie beispielsweise die geplante Lap-on-Chip Carte, wobei die Strömung innerhalb der Mikrokanäle oder Mikrofluidikkanäle des Lab-on-Chip beobachtbar ist.The The invention relates to a smart card, such as the planned Lap-on-chip Carte, with the flow within the microchannels or microfluidic channels the lab-on-chip is observable.

So genannte Lab-On-Chip Technologien gewinnen zunehmend an Bedeutung für die medizinische Diagnostik und andere Untersuchungen. Mit dieser Technologie lassen sich mit sehr geringen Mengen an Ausgangssubstanzen und Reagenzien (Piko- bis Milliliter) vollautomatisierte und integrierte Analysen auf einem einzigen Chip realisieren. Flüssigkeiten lassen sich gezielt durch Ausnutzung der Kapillarkraft sowie durch die Kontrolle der Benetzungseigenschaften der Chipoberfläche bewegen. Die anwendungsspezifischen biologischen, chemischen und physikalischen Prozesse finden in Reaktionskammern (Kavitäten) statt, die über Mikrokanäle definiert befüllt werden.So These lab-on-chip technologies are becoming increasingly important for the medical diagnostics and other examinations. With this technology can be treated with very small amounts of starting substances and reagents (pico to milliliters) fully automated and integrated analyzes realize a single chip. Liquids can be targeted by exploiting the capillary force and by controlling the Move wetting properties of the chip surface. The application-specific biological, chemical and physical processes take place in reaction chambers (Cavities) instead, over Defined microchannels filled become.

Auf einem Glassubstrat von einigen cm2 Größe befinden sich kleine Flüssigkeitskanäle mit einer Breite von 10 µm bis etwa 200 µm und einer Höhe von 10–800 µm. Durch diese kleinen Kanäle wird die Fluidik in die Reaktionskammern (einige mm2 groß) transportiert. In der Anwendung als Zellchip werden einige Zellen in die Reaktionskammer transportiert.On a glass substrate of a few cm 2 size are small liquid channels with a width of 10 microns to about 200 microns and a height of 10-800 microns. Through these small channels, the fluid is transported into the reaction chambers (a few mm 2 large). When used as a cell chip, some cells are transported into the reaction chamber.

Bisher werden die Befüllungen der Kavitäten durch externe Mikroskop-Kamerasysteme überprüft. Diese Systeme sind groß und teuer.So far become the fillings the cavities through external microscope camera systems checked. These Systems are big and expensive.

Aufgabe der vorliegenden Erfindung ist es deshalb, eine Vorrichtung zur Beobachtung der Strömungen in Mikrofluidiksystemen zur Verfügung zu stellen, die als one-way-product mit der Chipkarte hergestellt werden kann.task It is therefore an object of the present invention to provide a device for Observation of the currents in microfluidic systems to make that produced as a one-way product with the smart card can be.

Lösung der Aufgabe und Gegenstand der Erfindung ist daher eine Chipkarte mit zumindest einem Mikrofluidikkanal zur Befüllung einer Kavität, wobei auf der Unterseite des Mikrofluidikkanals eine zumindest semitransparente Elektrodenschicht, darauf eine organisch basierte optisch aktive Schicht und darüber schließlich eine Gegenelektrodenschicht so angeordnet wird, dass der Photodetektor eine von oben in den Mikrofluidikkanal fallende Strahlung detektiert.Solution of Object and subject of the invention is therefore a smart card with at least one microfluidic channel for filling a cavity, wherein on the bottom of the microfluidic channel an at least semitransparent Electrode layer, then an organic based optically active Layer and above after all a counter electrode layer is arranged so that the photodetector detects a falling from above into the microfluidic channel radiation.

Nach einer vorteilhaften Ausführungsform umfasst der Aufbau des Photodetektors zusätzlich noch eine Lochleitschicht zwischen der transparenten Elektrode und der optisch aktiven Schicht.To an advantageous embodiment the structure of the photodetector additionally a Lochleitschicht between the transparent electrode and the optically active layer.

Nach einer vorteilhaften Ausführungsform sind die optisch aktive Schicht und gegebenenfalls die Lochtransportschicht des Photodetektors aus Lösung prozessierbar, so dass der Photodetektor als One-way-Produkt herstellbar ist.To an advantageous embodiment the optically active layer and optionally the hole transport layer of the photodetector from solution Processable, making the photodetector as a one-way product is.

In der Regel fungieren Lochtransportkomponenten als Elektronendonatoren und Elektronentransportkomponenten als Elektronenakzeptoren.In As a rule, hole transport components act as electron donors and electron transport components as electron acceptors.

Nach einer bevorzugten Ausführungsform werden zwei oder mehrere Lochtransportkomponenten kombiniert, da in der Regel diese das Absorptionsverhalten des Elends dominieren.To a preferred embodiment two or more hole transport components combined because in the Usually these dominate the absorption behavior of the misery.

Soll ein Bild mit dem Flachbilddetektor durch den Mikrofluidikkanal hindurch aufgenommen werden, so durchdringt die dem Bild zugeordnete Lichtverteilung die der Lichtverteilung zugewandte Elektrode, die daher aus einem zumindest semitransparentem Material gefertigt ist. Des Weiteren wandelt die Halbleiterschicht in Verbindung mit den beiden Elektroden die Lichtverteilung in elektrische Signale um, die an den einzelnen Teilelektroden der strukturierten Elektrode anliegen.Should a picture with the flat panel detector through the microfluidic channel are received, so penetrates the light distribution associated with the image the light distribution electrode facing, therefore, from a made at least semi-transparent material. Furthermore converts the semiconductor layer in conjunction with the two electrodes the light distribution into electrical signals to those at the individual Abut partial electrodes of the structured electrode.

In dieser Halbleiterschicht befindet sich beispielsweise ein Elend aus den beiden Komponenten P3HT (Absorber-, Elektronen donator und Lochtransportkomponente) und PCBM (Elektronenakzeptor und -transportkomponente), die als Bulk-Heterojunction wirkt, das heißt die Trennung der Ladungsträger erfolgt an den Grenzflächen der beiden Materialien, die sich innerhalb des gesamten Schichtvolumens ausbilden. Ebenso gut kann die Halbleiterschicht als eine mehrere Einzelschichten umfassende Schicht aufgebaut sein, in der Lochtransportkomponente und Elektronentransportkomponente in separaten Schichten vorliegen.In This semiconductor layer is, for example, a misery from the two components P3HT (absorber, electron donor and Hole transport component) and PCBM (electron acceptor and transport component), which acts as a bulk heterojunction, that is, the separation of the charge carriers takes place at the interfaces the two materials that form within the entire layer volume. Equally well, the semiconductor layer can be as a multiple individual layers comprehensive layer be constructed in the hole transport component and electron transport component in separate layers.

Die Erfindung betrifft nicht nur Photodioden auf polymerer Basis, sondern kann auch auf photoaktive Schichten, die auf so genannten small molecules oder auf Nanopartikel basieren, angewendet werden.The The invention relates not only to photodiodes on a polymeric basis, but also can also apply to photoactive layers, which are so-called small molecules or based on nanoparticles.

Bei der Herstellung des Photodetektors nach der Erfindung wird beispielsweise wie folgt vorgegangen: Auf eine zumindest semitransparente Bottomelektrode (z. B. ITO) wird eine Blendschicht aufgeschleudert. Dazu werden die Blendkomponenten in einem geeigneten Lösungsmittel (z. B. Chloroform oder Xylol) gelöst. Auf die Blendschicht wird eine semitransparente Topelektrode (z. B. ein dünnes Schichtsysteme aus Ca und Ag) aufgebracht (z. B. durch thermisches Aufdampfen).at the production of the photodetector according to the invention is, for example proceeded as follows: on an at least semitransparent bottom electrode (eg ITO) a glare layer is spin coated. To do this the blend components in a suitable solvent (eg, chloroform or Xylene). On the blend layer is a semi-transparent top electrode (z. B. a thin layer systems from Ca and Ag) (eg by thermal vapor deposition).

Organisch basierte Photodetektoren können relativ einfach hergestellt werden, indem die organische Halbleiterschicht mit drucktechnischen Methoden aus der Lösung aufgebracht wird. Beispielsweise kann die organische Halbleiterschicht auch durch sein coating, Rakeln oder Siebdrucken aufgebracht werden. Außerdem weisen organische Photodetektoren eine relativ hohe Kompatibilität zu verschiedenen elektronischen Ansteuerungstechnologien auf.Organic-based photodetectors can be produced relatively simply by applying the organic semiconductor layer from the solution by means of printing technology. For example, the organic semiconductor layer can also be applied by coating, knife coating or screen printing. In addition, organic photodetectors have a relatively high compatibility with various NEN electronic control technologies on.

Ein organischer Photodetektor kann zusätzlich zur photoaktiven Schicht, die beispielsweise P3HT/PCBM, CuPc/PTCBI, ZNPC/C60, konjugierte Polymer-Komponenten oder Fulleren-Komponenten umfasst, eine Elektron/Loch blockierende Schicht, so genannte Hilfsschichten, umfassen. Elektron/Loch blockierende Schichten sind aus der Technologie für organische LEDs bekannt. Ein geeignetes organisches Material für die Elektron blockierende Schicht ist zum Beispiel TFB.One organic photodetector can be used in addition to the photoactive layer, For example, P3HT / PCBM, CuPc / PTCBI, ZNPC / C60, conjugated polymer components or fullerene components, an electron / hole blocking layer, called auxiliary layers, include. Electron / hole blocking layers are from technology for organic LEDs known. A suitable organic material for the electron blocking layer is for example TFB.

Im Folgenden wird die Erfindung noch einer Figur, die eine Ausführungsform der Erfindung zeigt, näher erläutert:
Die Figur zeigt ein Beispiel für einen Schichtaufbau eines Photodetektors Ein Ausführungsbeispiel für den Aufbau der organischen Photodioden ist aus der Figur ersichtlich. Der Aufbau ist in Form eines Stacks dargestellt, bestehend aus Topelektrode 5, Bottomelektrode 3, dem Trägersubstrat 1 sowie der organischen Photodiodenschicht 4.
In the following, the invention will be explained in more detail with reference to a figure which shows an embodiment of the invention:
The figure shows an example of a layer structure of a photodetector. An exemplary embodiment of the structure of the organic photodiodes can be seen from the figure. The structure is shown in the form of a stack, consisting of top electrode 5 , Bottom electrode 3 , the carrier substrate 1 and the organic photodiode layer 4 ,

Es ist ein Beispiel für den Aufbau eines organischen Photodetektors im Schichtaufbau (Stack) mit zwei aktiven organischen Schichten 4 und 6 zu sehen. Die Schicht 6 zeigt einen Lochtransporter, der vorhanden sein kann, aber nicht unbedingt vorhanden sein muss. Die eigentliche photoleitfähige Schicht ist mit der Bezugsziffer 4 bezeichnet. Zusätzlich zu den gezeigten Schichten 5, 3, 1, 4 und ggf. 6 ist noch der Schutz des Photodetektors mittels einer Verkapselung zweckmäßig. Die photoleitfähige organische Schicht 4 kann eine so genannte „Bulk Heterojunction” sein, z. B. realisiert als Blend aus einem lochtransportierenden Polythiophen und einem Elektronen transportierenden Fulleren-Derivat.It is an example of the construction of an organic photodetector in the stack with two active organic layers 4 and 6 to see. The layer 6 shows a hole transporter, which may be present, but not necessarily exist. The actual photoconductive layer is indicated by the reference numeral 4 designated. In addition to the layers shown 5 . 3 . 1 . 4 and possibly 6 is still the protection of the photodetector by means of an encapsulation appropriate. The photoconductive organic layer 4 may be a so-called "bulk heterojunction", e.g. B. realized as a blend of a hole-transporting polythiophene and an electron-transporting fullerene derivative.

Die Bottomelektrode 3 (Anode) kann aus Indium-Zinn-Oxid bestehen (ITO) oder aus einem anderen Metall. Die Topelektrode 5 (Kathode) kann aus Aluminium (Al) bestehen oder beispielsweise auch aus einem Ca/Ag-Schichtsystem oder auch aus LiF/Al.The bottom electrode 3 (Anode) may consist of indium tin oxide (ITO) or of another metal. The top electrode 5 (Cathode) may consist of aluminum (Al) or, for example, from a Ca / Ag layer system or LiF / Al.

Nach einer bevorzugten Ausführungsform der Erfindung wird die zumindest semitransparente Bottomelektrode oder untere Elektrode strukturiert aufgebracht, so dass ein Photodetektorarray resultiert. Die darauffolgende Halbleiterschicht mit eventuellen Hilfsschichten kann sowohl strukturiert als auch vollflächig aufgebracht werden. Die zweite Elektrode wird bevorzugt aus Kostengründen vollflächig aufgebracht. Damit resultiert eine Vorrichtung zur bildlichen Messung der Strömung in einem Mikrofluidikkanal, deren Auflösung dem Durchmesser der Photodetektoren entspricht.To a preferred embodiment of Invention is the at least semitransparent bottom electrode or structured lower electrode so that a photodetector array results. The subsequent semiconductor layer with possible auxiliary layers can be applied both structured and full-surface. The second electrode is preferably applied over the entire surface for cost reasons. This results a device for the visual measurement of the flow in a microfluidic channel, their resolution corresponds to the diameter of the photodetectors.

Das einfallende Licht zur Beleuchtung des Kanals von oben kann beispielsweise eine organische Leuchtdiode (OLED) sein. Sowohl die OLED als auch der organische Photodetektor haben eine Dicke von kleiner 1 µm und können somit einfach in den Chip integriert werden.The incident light to illuminate the channel from above, for example an organic light emitting diode (OLED). Both the OLED and the organic photodetector have a thickness of less than 1 micron and thus can easy to be integrated into the chip.

Claims (4)

Chipkarte mit zumindest einem Mikrofluidikkanal zur Befüllung einer Kavität, wobei auf der Unterseite des Mikrofluidikkanals zumindest ein Photodetektor, eine zumindest semitransparente Elektrodenschicht, darauf eine organisch basierte optisch aktive Schicht und darüber schließlich eine Gegenelektrodenschicht umfassend so angeordnet wird, dass der Photodetektor eine von oben in den Mikrofluidikkanal fallende Strahlung detektiert.Chip card with at least one microfluidic channel for filling a cavity, wherein on the underside of the microfluidic channel at least one photodetector, an at least semitransparent electrode layer, then an organic one based optically active layer and finally a counter electrode layer is arranged so arranged that the photodetector one from above detected in the microfluidic channel falling radiation. Chipkarte nach Anspruch 1, wobei der Photodetektor zumindest eine organisch basierte Hilfsschicht umfasst.The smart card of claim 1, wherein the photodetector comprises at least one organic based auxiliary layer. Chipkarte nach einem der Ansprüche 1 oder 2, wobei auf der dem Photodetektor gegenüber liegenden Seite des Mikrofluidikkanals eine Leuchtquelle integriert ist.Chip card according to one of claims 1 or 2, wherein on the opposite the photodetector lying side of the microfluidic channel integrated a light source is. Chipkarte nach Anspruch 3, wobei die Leuchtquelle eine OLED ist.Smart card according to claim 3, wherein the light source an OLED is.
DE102008049459A 2008-09-29 2008-09-29 Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer Withdrawn DE102008049459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102008049459A DE102008049459A1 (en) 2008-09-29 2008-09-29 Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008049459A DE102008049459A1 (en) 2008-09-29 2008-09-29 Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer

Publications (1)

Publication Number Publication Date
DE102008049459A1 true DE102008049459A1 (en) 2010-04-01

Family

ID=41719850

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008049459A Withdrawn DE102008049459A1 (en) 2008-09-29 2008-09-29 Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer

Country Status (1)

Country Link
DE (1) DE102008049459A1 (en)

Similar Documents

Publication Publication Date Title
EP2188855B1 (en) Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof
DE102005055278B4 (en) Organic pixelated flat detector with increased sensitivity
Yang et al. Light-emitting coaxial nanofibers
WO2017029223A1 (en) Method for detecting and converting infrared electromagnetic radiation
WO2010130425A1 (en) Detector for the detection of ionizing radiation
WO2011161108A1 (en) Photoactive component having a plurality of transport layer systems
WO2007017470A1 (en) Flat screen detector
EP1830177A1 (en) Integrated test element
DE102006046210B4 (en) Process for the preparation of an organic photodetector
Temperton et al. On the suitability of high vacuum electrospray deposition for the fabrication of molecular electronic devices
DE102008049459A1 (en) Smartcard for medical diagnostics, has micro-fluidic channel for filling cavity, and photodetector is provided, which comprises semi-transparent electrode layer, organic-based optically active layer and counter electrode layer
WO2015110423A1 (en) Light-emitting component and method for producing a light-emitting component
DE102007038905A1 (en) Optical position sensor on an organic basis
WO2003079016A1 (en) sIOSENSOR FOR DETECTING MACROMOLECULAR BIOPOLYMERS AND METHOD FOR THE PRODUCTION THEREOF
EP2929576B1 (en) Electronic device with oxygen ion pump
Geng et al. Electrogenerated chemiluminescence and interfacial charge transfer dynamics of poly (3-hexylthiophene-2, 5-diyl)(P3HT)–TiO 2 nanoparticle thin film
DE102012205413B4 (en) ORGANIC LIGHT EMITTING COMPONENT
WO2016150929A1 (en) Electronic component and method for producing an electronic component
WO2016146439A1 (en) Organic optoelectronic component and method for producing an organic optoelectronic component
DE102008030845A1 (en) Organic electronic element e.g. organic LED, has organic electrically conducting layer arranged on metal layer of conducting substrate, and electrically conducting and light reflecting layer arranged on organic electrically conducting layer
DE102009017481B4 (en) A method of inverse construction of a flexible, alternative dye-sensitized organic solar cell
EP1914765A2 (en) Solar cell
DE102007046502A1 (en) Organic opto-electronic component with reduced dark current
DE19727686C1 (en) Gas and vapour sensor avoiding need for costly electronic amplification and conversion for display
DE102015108826A1 (en) Organic light-emitting component and method for producing an organic light-emitting component

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20110401