DE102006025683A1 - Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) - Google Patents
Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) Download PDFInfo
- Publication number
- DE102006025683A1 DE102006025683A1 DE102006025683A DE102006025683A DE102006025683A1 DE 102006025683 A1 DE102006025683 A1 DE 102006025683A1 DE 102006025683 A DE102006025683 A DE 102006025683A DE 102006025683 A DE102006025683 A DE 102006025683A DE 102006025683 A1 DE102006025683 A1 DE 102006025683A1
- Authority
- DE
- Germany
- Prior art keywords
- heat exchanger
- deposition
- catalytically active
- elp
- cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0225—Coating of metal substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0209—Pretreatment of the material to be coated by heating
- C23C16/0218—Pretreatment of the material to be coated by heating in a reactive atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1658—Process features with two steps starting with metal deposition followed by addition of reducing agent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
- C23C18/1827—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
- C23C18/1834—Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2461—Heat exchange aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2477—Construction materials of the catalysts
- B01J2219/2479—Catalysts coated on the surface of plates or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2476—Construction materials
- B01J2219/2483—Construction materials of the plates
- B01J2219/2485—Metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Aufbringung von katalytisch aktivem Material, insbesondere von Elementen der 10. und 11. Gruppe (VIIIA, IB), auf die inneren Oberflächen von Wärmetauschern.The The invention relates to a method for the application of catalytic active material, in particular elements of the 10th and 11th group (VIIIA, IB), on the inner surfaces of heat exchangers.
Als Reaktoren zur Durchführung endo- oder exothermer Reaktionen im industriellen Maßstab können rekuperativ arbeitende Wärmetauscher eingesetzt werden. Die umzusetzenden Stoffe werden durch Kanäle dieser Rekuperatoren geleitet, wobei diese Kanäle als Reaktionsräume fungieren. Auf der anderen Seite der die Reaktionsräume bildenden Wände strömt ein Medium mit geeigneter Wärmekapazität, durch welches die Reaktionswärme zu- oder abgeführt wird. Reaktoren dieser Art sind somit in Reaktionsräume und Wärmetransporträume unterteilt. Häufig befinden sich in einem Reaktor mehrere Reaktionsräume, die durch Wärmetransporträume voneinander getrennt sind und von den umzusetzenden Stoffen parallel durchströmt werden.When Reactors to carry Endo- or exothermic reactions on an industrial scale can be recuperative working heat exchangers be used. The substances to be transposed through channels of these Directed recuperators, these channels act as reaction spaces. On the other side of the walls forming the reaction spaces flows a medium with suitable heat capacity, through which the heat of reaction added or removed becomes. Reactors of this type are thus in reaction chambers and Subdivided heat transport spaces. Often located in a reactor several reaction spaces, which through heat transport spaces from each other are separated and flowed through by the substances to be reacted in parallel.
Unzureichende Wärmeabfuhr bei exothermen Reaktionen und unzureichende Wärmezufuhr bei endothermen Reaktionen resultieren in einer heterogenen Temperaturverteilung innerhalb der Reaktionsräume. Werden die Reaktionen katalytisch unterstützt, führen bereits kleine Temperaturunterschiede zu beträchtlichen Verschiebungen der Reaktionsgeschwindigkeiten und zu einer Veränderung der Selektivitätsleistung. Es ist daher nach Möglichkeit eine gleichmäßige Temperaturverteilung erstrebenswert. Auf diese Weise können die Reaktionen kontrolliert und die Bildung von Nebenprodukten unterdrückt werden. Schon eine Selektivitätssteigerung der Reaktion im Bereich von einigen zehntel Prozent ist im Regelfall bei industriellen Prozessen mit erheblichen ökonomischen Vorteilen verbunden.inadequate heat dissipation in exothermic reactions and insufficient heat in endothermic reactions result in a heterogeneous temperature distribution within the reaction spaces. If the reactions are supported catalytically, already small temperature differences lead to considerable Shifts in reaction rates and change the selectivity performance. It is therefore possible a uniform temperature distribution desirable. In this way, the reactions can be controlled and the formation of by-products are suppressed. Already an increase in selectivity The response in the range of a few tenths of a percent is usually associated with significant economic benefits in industrial processes.
Reaktoren (z.B. für heterogene katalytische Gasphasenreaktionen), die nach dem Prinzip des Plattenwärmetauschers aufgebaut sind, werden heute mit sehr geringen Plattenabständen gefertigt, um eine möglichst hohe Leistungsdichte (katalytische wirksame Fläche bezogen auf das Reaktorvolumen) zu erhalten. Das katalytisch wirkende Material (beispielsweise Palladium oder Silber) ist auf den Seiten der Platten aufgebracht, die den Reaktionsräumen zugewandt sind. Um für eine homogenes Temperaturprofil senkrecht zu den Platten zu sorgen und um den Wärmeübergang von und zu den Platten zu verbessern, können zusätzlich sog. Fins in die Reaktionsräume eingebaut werden. Diese Fins sind häufig ebenfalls mit einem katalytisch wirkenden Material überzogen und vergrößern dadurch die chemisch aktive Fläche in den Reaktionsräumen.reactors (e.g., for heterogeneous catalytic gas phase reactions), which are based on the principle of the plate heat exchanger are built today are manufactured with very small plate intervals, one as possible high power density (catalytic effective area based on the reactor volume) too receive. The catalytically active material (for example palladium or silver) is applied to the sides of the plates containing the Facing reaction chambers are. Order for to provide a homogeneous temperature profile perpendicular to the plates and the heat transfer To improve from and to the plates, so-called fins can additionally be incorporated into the reaction spaces become. These fins are common as well coated with a catalytically active material and thereby enlarge the chemically active surface in the reaction chambers.
Nach dem Stand der Technik wird auf die inneren Oberflächen von Plattenwärmetauschern durch Tauchung (Nassimprägnierung) eine poröse Schicht aus einem oxidkeramischen Werkstoff (z. B. Al2O3) als spätere Trägersubstanz für die katalytisch aktiven Materialien aufgebracht und durch verschiedene Behandlungen fixiert. Diese Trägerschicht kann vielfältige Aufgaben erfüllen, wie beispielsweise die Vergrößerung der zu beschichtenden Oberflächen. Nach der Aufbringung der Trägerschicht erfolgt die eigentliche Beschichtung mit den katalytischen aktiven Materialien durch konventionelle Tränk- bzw. Imprägnierverfahren. Ein Schwachpunkt dieser Methode ist die oft begrenzte Haftung der oxidkeramischen Trägerschicht auf der Wärmetauscheroberfläche, wodurch es häufig zu Schichtablösungen kommt, die verbunden sind mit einem Nachlassen der katalytischen Aktivität sowie erheblichen Betriebsproblemen durch die Blockierung der engen Wärmetauscherkanäle durch abgeplatzte Bruchstücke. Darüber hinaus ist es sehr schwer eine homogene Schichtdickenverteilung der Trägerschicht während der Tauchung in den engen Wärmetauscherkanälen zu erreichen.According to the prior art, a porous layer of an oxide ceramic material (eg Al 2 O 3 ) as a later carrier substance for the catalytically active materials is applied to the inner surfaces of plate heat exchangers by immersion (wet impregnation) and fixed by various treatments. This support layer can fulfill a variety of tasks, such as the enlargement of the surfaces to be coated. After the carrier layer has been applied, the actual coating with the catalytic active materials is carried out by conventional impregnation or impregnation methods. A weak point of this method is the often limited adhesion of the oxide ceramic support layer on the heat exchanger surface, which often leads to delamination associated with a loss of catalytic activity and significant operational problems due to the blockage of the narrow heat exchanger channels by chipped fragments. In addition, it is very difficult to achieve a homogeneous layer thickness distribution of the carrier layer during the immersion in the narrow heat exchanger channels.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der oben genannten Art so auszugestalten, dass eine kontrollierte Beschichtung der inneren Oberflächen von Wärmetauschern mit katalytisch aktiven Materialien auf wirtschaftliche Weise und ohne die Nachteile des Standes der Technik ermöglicht.Of the The present invention is therefore based on the object, a method of the above type so that a controlled Coating the inner surfaces of heat exchangers with catalytically active materials in an economical way and without the disadvantages of the prior art allows.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass ohne die Auftragung einer Trägerschicht die katalytisch aktiven Materialien durch stromloses Abscheiden (ELP) oder chemische Gasphasenabscheidung (CVD) direkt auf die Wärmetauscheroberflächen aufgebracht werden.These Task is inventively characterized solved, that without the application of a carrier layer, the catalytic active materials by electroless plating (ELP) or chemical Gas phase deposition (CVD) applied directly to the heat exchanger surfaces become.
Die oben genannten Beschichtungsverfahren werden normalerweise verwendet, um Materialschichten auf einer außen liegenden Oberfläche eines Objektes (Substrat) zu erzeugen. Hierzu wird die zu beschichtende Substratoberfläche in Kontakt mit flüssigen Lösungen (ELP) oder mit einer Gasatmosphäre (CVD) gebracht, in denen die abzuscheidenden Materialien enthalten sind. Eine Voraussetzung zur Erzeugung von homogenen Schichten ist die homogene Zusammensetzung dieser Lösungen (ELP) bzw. der Gasatmosphäre (CVD) über der gesamten zu beschichtenden Substratoberfläche.The The above-mentioned coating methods are normally used around layers of material on an outer surface of a Object (substrate) to produce. For this purpose, the to be coated substrate surface in contact with liquid solutions (ELP) or with a gas atmosphere (CVD), in which contain the materials to be deposited are. A prerequisite for the production of homogeneous layers is the homogeneous composition of these solutions (ELP) or the gas atmosphere (CVD) over the entire substrate surface to be coated.
Durch stromloses Abscheiden (ELP) werden Materialien auf der Oberfläche eines Substrats aufgrund einer autokatalytischen Reaktion abgeschieden. Hierzu wird die zu beschichtende Substratoberfläche in einem ersten Schritt durch das Aufbringen von Metallpartikeln, deren Größen im Nanometerbereich liegen, aktiviert. Anschließend wird die Substratoberfläche in Kontakt mit einer Lösung gebracht, in der die Ionen der abzuscheidenden Materialien gelöst sind. Durch Zugabe eines Reduktionsmittels (z. B. Hydrazin (N2H4)) werden die gelösten Ionen an der zuvor aktivierten Substratoberfläche reduziert, wodurch bei geeigneten Beschichtungsbedingungen (Substrataktivierung, Zusammensetzung und Temperatur der Lösung, Einwirkungszeit) eine Schicht aufwächst. Die Geometrie des Objekts hat bei der Beschichtung mittels ELP keinen Einfluss auf die Dicke und die Qualität der abgeschiedenen Schicht. Maßgebend für den Schichtaufbau sind in erster Linie die Zusammensetzung der die Ionen enthaltenden Lösung, die mit der Substratoberfläche in Kontakt steht, sowie die Aktivierung der Substratoberfläche. Wenn dafür gesorgt wird, dass diese Zusammensetzung der Lösung überall gleich und die Aktivierung über die gesamte zu beschichtende Substratoberfläche homogen ist, wird das Metall auch auf unregelmäßig geformten Objekten, entlang von Kanten und auch in Hohlräumen gleichmäßig abgeschieden.Electroless plating (ELP) deposits materials on the surface of a substrate due to an autocatalytic reaction. For this purpose, the substrate to be coated upper surface in a first step by the application of metal particles whose sizes are in the nanometer range activated. Subsequently, the substrate surface is brought into contact with a solution in which the ions of the materials to be deposited are dissolved. By addition of a reducing agent (eg hydrazine (N 2 H 4 )), the dissolved ions are reduced at the previously activated substrate surface, whereby a layer grows under suitable coating conditions (substrate activation, composition and temperature of the solution, exposure time). The geometry of the object does not affect the thickness and quality of the deposited layer when coated by ELP. Decisive for the layer structure are primarily the composition of the solution containing the ions, which is in contact with the substrate surface, as well as the activation of the substrate surface. By making sure that this composition is the same throughout the solution and the activation is homogeneous throughout the substrate surface to be coated, the metal is deposited evenly on irregularly shaped objects, along edges, and even in cavities.
Eine weitere Technik zum Aufbringen von Materialschichten auf Oberflächen stellt die chemische Gasphasenabscheidung (CVD) dar. Dabei werden gasförmige bzw. durch Sublimation oder Verdampfung in die Gasphase übergeführte Verbindungen, welche die für die Schicht benötigten Materialien enthalten (Precursor), mit einem Trägergas über die heiße zu beschichtende Oberfläche (Substratoberfläche) geleitet. Die Temperatur der Substratoberfläche wird so gewählt, dass unter den herrschenden Bedingungen eine Zersetzung der Precursoren an der Substratoberfläche erfolgt und sich die metallischen Elemente auf der Oberfläche abscheiden.A provides further technique for applying layers of material to surfaces chemical vapor deposition (CVD). by sublimation or evaporation in the gas phase transferred compounds, which for the needed the layer Materials contain (precursor), with a carrier gas over the hot surface to be coated (substrate surface) passed. The temperature of the substrate surface is chosen so that under the prevailing conditions decomposition of the precursors at the substrate surface takes place and the metallic elements are deposited on the surface.
Erfindungsgemäß wird vorgeschlagen, dass fluide Medien, die im Zuge des gewählten Beschichtungsverfahrens in Kontakt mit den zu beschichtenden inneren Oberflächen eines Wärmetauschers gebracht werden müssen und aus denen sich Stoffe auf diesen Oberflächen abscheiden (Lösungen), durch die Wärmetauscherkanäle geleitet werden. Durch eine geeignete Kombination aus Strömungsgeschwindigkeit und Abscheiderate, werden an allen Stellen der zu beschichtenden inneren Oberflächen des Wärmetauschers annähernd gleiche Abscheidebedingungen erzeugt.According to the invention, it is proposed that fluid media, in the course of the chosen coating process in contact with the inner surfaces to be coated heat exchanger need to be brought and from which substances are deposited on these surfaces (solutions), passed through the heat exchanger channels become. By a suitable combination of flow rate and deposition rate, be in all places of the inner surfaces to be coated heat exchanger nearly same deposition conditions generated.
Zur Durchführung des erfindungsgemäßen Verfahrens wird bevorzugt eine CVD-Technik angewendet, wie sie in einer nicht vorveröffentlichten Patentanmeldung beschrieben wird, die unter dem Aktenzeichen 10309359.1 beim Deutschen Patent- und Markenamt eingereicht wurde, und deren Offenbarungsgehalt hiermit vollständig in den Offenbarungsgehalt der vorliegenden Patentanmeldung aufgenommen wird. Mit dieser Technik ist es möglich, große Oberflächen auch dann gleichmäßig zu beschichten, wenn sie nicht flach sind. Die Steuerung der Abscheidung erfolgt überwiegend durch die Menge eines organischen Lösungsvermittlers, der auf die zu beschichtende Substratoberfläche in einem Vorbehandlungsschritt aufgetragen wird.to execution the method according to the invention is preferably a CVD technique applied, as in a non-prepublished patent application described under the file number 10309359.1 at the German Patent and Trademark Office and the disclosure of which is hereby incorporated by reference the disclosure of the present patent application included becomes. With this technique it is possible to evenly coat large surfaces, if they are not flat. The control of the deposition is predominantly by the amount of an organic solubilizer that is on the to be coated substrate surface is applied in a pretreatment step.
Um die Haftung der katalytisch aktiven Materialien zu erhöhen, sieht das erfindungsgemäße Verfahren vor, dass die inneren Oberflächen der Wärmetauscher vorbehandelt werden. Bevorzugt erfolgt diese Vorbehandlung durch chemische Aufrauung (Säurebehandlung) und/oder Oxidierung.Around to increase the adhesion of the catalytically active materials sees the inventive method before that the inner surfaces the heat exchanger pretreated. Preferably, this pretreatment is carried out by chemical roughening (acid treatment) and / or oxidation.
Das vorgeschlagene Verfahren wird erfindungsgemäß bevorzugt zur Beschichtung der inneren Oberflächen von Aluminium-Plattenwärmetauschern mit katalytisch aktiven Materialien eingesetzt.The proposed method is preferred according to the invention for coating the inner surfaces of aluminum plate heat exchangers used with catalytically active materials.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006025683A DE102006025683A1 (en) | 2005-07-08 | 2006-06-01 | Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005032024.4 | 2005-07-08 | ||
DE102005032024 | 2005-07-08 | ||
DE102006025683A DE102006025683A1 (en) | 2005-07-08 | 2006-06-01 | Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102006025683A1 true DE102006025683A1 (en) | 2007-01-18 |
Family
ID=37563628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102006025683A Withdrawn DE102006025683A1 (en) | 2005-07-08 | 2006-06-01 | Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102006025683A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008050433A1 (en) * | 2008-10-08 | 2010-04-15 | Behr Gmbh & Co. Kg | Semi-finished product for producing heat exchanger, comprises a substrate made of aluminum alloy with coating applied on the substrate, where a material-consistent connection of the substrate is producible by partial melting of the coating |
-
2006
- 2006-06-01 DE DE102006025683A patent/DE102006025683A1/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008050433A1 (en) * | 2008-10-08 | 2010-04-15 | Behr Gmbh & Co. Kg | Semi-finished product for producing heat exchanger, comprises a substrate made of aluminum alloy with coating applied on the substrate, where a material-consistent connection of the substrate is producible by partial melting of the coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3046412A1 (en) | METHOD FOR HIGH TEMPERATURE TREATMENT OF HYDROCARBON MATERIALS | |
CN101356002B (en) | Process for manufacturing a microreactor and its use as reformer | |
DE60005925T2 (en) | METHOD FOR SELECTIVE HYDRATION AND CATALYST FOR USE THEREOF | |
DE112011103503T5 (en) | Microchannel processor | |
DE102013209918B4 (en) | Process for depositing a permanent thin gold coating on fuel cell bipolar plates | |
DE2552646A1 (en) | PROCESS FOR MANUFACTURING CATALYTIC PIPES WITH A FIXED CATALYST, IN PARTICULAR FOR THE REFORMING OF HYDROCARBONS AND FOR METHOD EXTRACTION | |
DE1521493A1 (en) | Process for applying a protective layer to metal parts | |
EP1889681A1 (en) | Process of joining workpieces made of stainless, Nickel or Nickel alloys using a joining layer made from a Nickel-Phosphor alloy ; Process of manufacturing a micro workpiece using such a process ; micro workpiece with a joining layer achieved through such a process | |
EP3817852A1 (en) | Catalytic reactor | |
DE102009006190A1 (en) | Zinc diffusion coating process | |
EP1198344A1 (en) | Method for producing microcomponents | |
US20100261600A1 (en) | Metal structure, catalyst-supported metal structure, catalyst-supported metal structure module and preparation methods thereof | |
DE69821373T2 (en) | SKELETAL, STEM-SHAPED COATINGS | |
DE102006025683A1 (en) | Method of applying catalytically active material, directly to heat exchanger internal surfaces without use of a carrier layer uses streamless deposition (ELP) or chemical gas phase deposition (CVD) | |
EP1346424B1 (en) | Method for producing electrodes, components, half cells and cells for electrochemical energy converters | |
DE69416800T2 (en) | Corrosion-resistant lining made of interdiffused chrome and nickel layers for the holes in a glass fiber spinner | |
EP1243334A1 (en) | Preparation of a water-repellent catalyst layer on a ceramic or metal carrier | |
EP1599613B1 (en) | Method for coating a substrate | |
EP1266701B1 (en) | Catalytic coating of structured heat exchangers | |
DE102016207500A1 (en) | Method for producing a distributor plate for an electrochemical system and distributor plate for an electrochemical system | |
EP1965907A2 (en) | Layer composite and production thereof | |
US3158567A (en) | Hydrogenation process | |
DE1941494C3 (en) | Three-dimensional cellular metal structure made from an alloy and method for its manufacture | |
DE19920161A1 (en) | Process for the production of micro components with flow channels | |
DE867686C (en) | Process for the production of hydrocyanic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: LINDE AG, 80807 MUENCHEN, DE |
|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20130101 |