DE102006002767A1 - Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe - Google Patents

Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe Download PDF

Info

Publication number
DE102006002767A1
DE102006002767A1 DE200610002767 DE102006002767A DE102006002767A1 DE 102006002767 A1 DE102006002767 A1 DE 102006002767A1 DE 200610002767 DE200610002767 DE 200610002767 DE 102006002767 A DE102006002767 A DE 102006002767A DE 102006002767 A1 DE102006002767 A1 DE 102006002767A1
Authority
DE
Germany
Prior art keywords
acid
und
hair
preferred
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200610002767
Other languages
English (en)
Inventor
Jens Delowsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE200610002767 priority Critical patent/DE102006002767A1/de
Priority to PCT/EP2006/011898 priority patent/WO2007087860A1/de
Publication of DE102006002767A1 publication Critical patent/DE102006002767A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/892Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a hydroxy group, e.g. dimethiconol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Die Erfindung beschreibt eine kosmetische Wirkstoffkombination, enthaltend DOLLAR A a) mindestens eine Polysiloxan-Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und DOLLAR A b) mindestens ein Esteröl, welches aus einer C6- bis C30-Fettsäure und einem C2- bis C30-Alkohol aufgebaut ist.

Description

  • Die Erfindung betrifft kosmetische Mittel enthaltend mindestens eine Polysiloxanverbindung und mindestens ein weiteres synergistisch wirkendes Esteröl sowie die Verwendung dieser Mittel zur Reinigung und/oder Pflege von Haut und Haar.
  • So werden beispielsweise durch das intensive Nutzen von Sonnenstudios Haut und Haar in ihrer Struktur stärker durch UV-Licht nachhaltig beeinträchtigt. Diese Beeinträchtigungen zeigen sich auf der Haut wie dem Haar beispielsweise durch einen Verlust der Elastizität.
  • Weiterhin führt die ausgiebige körperliche Betätigung in der Freizeit zu einer häufigen intensiven Reinigung von Haut und Haar. Dadurch kann der Schutzfilm aus Talg, welcher kontinuierlich von den zahlreichen Talgdrüsen produziert wird, oder aber die Sebumproduktion der Talgdrüsen selbst stark beeinträchtigt werden. Als Folge stellen sich eine fettige Haut und fettiges Haar ein.
  • Modetrends mit aktuellen Farben für „make-up", Lippenstifte zum Färben der Lippen und Maskara sowie Haarfärbe- und Wellmittel tragen bei beanspruchter Haut und vorbelastetem Haar ein übriges zur Beeinträchtigung des natürlichen Zustandes von Haut und Haar bei. Es ist daher nicht erstaunlich, wenn der Anteil der Verbraucher mit empfindlicher, wenig elastischer, spröder und gereizt reagierender Haut sowie einem in der Kämmbarkeit, dem Glanz, der Elastizität, der Sprödigkeit und der Höchstreißkraft beeinträchtigtem Haar stark zunimmt.
  • Die kosmetische Behandlung von Haut und Haaren ist daher ein wichtiger Bestandteil der menschlichen Körperpflege. Es hat daher nicht an Versuchen gefehlt, diese Mißstände zu beheben. Dabei wurden in der Hautpflege u.a. Emulsionen zur Pflege bezüglich ihres Reizpotentiales durch die Auswahl geeigneter Emulgatoren weiter optimiert. Zur Reinigung von Haut und Haar werden milde Tenside eingesetzt, um Haut und Haar nicht zusätzlich zu belasten. Mit rückfettenden Substanzen wird versucht, die Anregung der Sebumproduktion bei der Reinigung zu vermeiden. UV-Schutzmittel und Vitamine wie beispielsweise Vitamin E sollen die nachteiligen Auswirkungen des UV-Lichtes mindern. Proteinhydrolysate werden zum Ausgleich der inneren Struktur von Haut und Haar eingesetzt. Mit Pflanzen- und Algenextrakten kann beispielsweise der Feuchtehaushalt von Haut- und Haar beeinflußt werden.
  • Weiterhin wird menschliches Haar heute in vielfältiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Regeneration mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Stylingpräparaten. Dabei spielen Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares eine herausragende Rolle. Sieht man von den Blondiermitteln, die eine oxidative Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfärbung im wesentlichen drei Typen von Haarfärbemitteln von Bedeutung:
    Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoffvorprodukte, sogenannte Entwicklerkomponenten und Kupplerkomponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus. Die Oxidationsfärbemittel zeichnen sich durch hervorragende, lang anhaltende Färbeergebnisse aus. Für natürlich wirkende Färbungen muß aber üblicherweise eine Mischung aus einer größeren Zahl von Oxidationsfarbstoffvorprodukten eingesetzt werden; in vielen Fällen werden weiterhin direktziehende Farbstoffe zur Nuancierung verwendet. Weisen die im Verlauf der Farbausbildung gebildeten bzw. direkt eingesetzten Farbstoffe deutlich unterschiedliche Echtheiten (z. B. UV-Stabilität, Schweißechtheit, Waschechtheit etc.) auf, so kann es mit der Zeit zu einer erkennbaren und daher unerwünschten Farbverschiebung kommen. Dieses Phänomen tritt verstärkt auf, wenn die Frisur Haare oder Haarzonen unterschiedlichen Schädigungsgrades aufweist. Ein Beispiel dafür sind lange Haare, bei denen die lange Zeit allen möglichen Umwelteinflüssen ausgesetzten Haarspitzen in der Regel deutlich stärker geschädigt sind als die relativ frisch nachgewachsenen Haarzonen.
  • Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbungen, so daß dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare "Entfärbung" eintritt.
  • Schließlich hat in jüngster Zeit ein neuartiges Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. In solchen Verfahren wird beispielsweise 5,6-Dihydroxyindolin als Farbstoffvorprodukt eingesetzt. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6-Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die natürliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzigem Oxidationsmittel erfolgen, so daß auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden. Für die Anwendung bei Personen mit ursprünglich roter und insbesondere dunkler bis schwarzer Haarfarbe können dagegen befriedigende Ergebnisse häufig nur durch Mitverwendung weiterer Farbstoffkomponenten, insbesondere spezieller Oxidationsfarbstoffvorprodukte, erzielt werden.
  • Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Umweltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhaltender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor erhöhtem Spliß geschützt sein.
  • Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.
  • Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.
  • Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Verpackungsaufwand verringert, da ein Produkt weniger gebraucht wird.
  • Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an, der Haaroberfläche. So sind Wirkstoffe bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naβ- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen. Genauso bedeutend wie das äußere Erscheinungsbild der Haare ist jedoch der innere strukturelle Zusammenhalt der Haarfasern, der insbesondere bei oxidativen und reduktiven Prozessen wie Färbung und Dauerwellen stark beeinflußt werden kann.
  • Die bekannten Wirkstoffe können jedoch nicht alle Bedürfnisse in ausreichendem Maße abdecken. Es besteht daher weiterhin ein Bedarf nach Wirkstoffen bzw. Wirkstoffkombinationen für kosmetische Mittel mit guten pflegenden Eigenschaften und guter biologischer Abbaubarkeit. Insbesondere in farbstoff- und/oder elektrolythaltigen Formulierungen besteht Bedarf an zusätzlichen pflegenden Wirkstoffen, die sich problemlos in bekannte Formulierungen einarbeiten lassen.
  • Die Aufgabe der vorliegenden Erfindung bestand nun darin, die zuvor geschilderten Nachteile des Standes der Technik zu beheben.
  • In kosmetischen Mitteln werden unter anderem in jüngerer Zeit Silikone eingesetzt. Unter den Silikonen haben sich die aminofunktionellen Silikone als geeignete Vertreter mit guten Eigenschaften etabliert. Diese zeigen jedoch in Bezug auf den Griff und das Gefühl von nasser Haut und nassem Haar sowie dem Griff und das Gefühl der nach dem Waschen wieder getrockneten Haut oder dem Haar ein oft als unangenehm stumpf beurteiltes Gefühl, welches auch als „quietschend" hörbar empfunden wird. Die einerseits erwünschte Substantivität auf der Haut und dem Haar kann sich andererseits störend bei Folgebehandlungen bemerkbar machen. Beispielsweise kann ihre Entfernung von Haut und Haar beim nächsten Reinigen ein großes Problem sein. Weiterhin kann die Haut nach mehreren Behandlungscyclen einen unerwünscht großen Glanz aufweisen. Schließlich kann es sogar vorkommen, dass Make-up und/oder Lippenstift nicht mehr auf der Haut haften. Auf dem Haar kann es zu Beeinträchtigungen von Well- oder Färbebehandlungen kommen. Auch der Halt, die Fülle und das Volumen der Frisur können dadurch nachteilig beeinflusst werden.
  • Erst seit kurzem sind völlig neuartige Polyammmonium-Polysiloxan Verbindungen bekannt, in welchen die Siloxansubstrukturen gegebenenfalls über Ammoniumsubstrukturen miteinander verbunden sind. Derartige Verbindungen und deren Verwendung in kosmetischen Mitteln werden beispielsweise in der Offenlegungsschrift WO 02/10257 beschrieben. Außer der prinzipiellen Verwendung dieser neuen aminofunktionellen Silikone und ganz allgemeinen Beispielen, in welchen allgemein die wichtigsten Vertreter der in kosmetischen Mitteln verwendeten Rohstoffen listenartig aufgeführt sind, findet sich nicht der geringste Hinweis auf die synergistischen Effekte der vorliegenden Erfindung, insbesondere der synergistischen Wirkung mit Esterölen.
  • Es hat sich nun jedoch völlig überraschend gezeigt, dass eine Wirkstoffkombination aus mindestens einem Silikon und mindestens einem weiteren Esteröl die geschilderten Nachteile des Standes der Technik in hervorragender Weise behebt und ganz besonders vorteilhafte Effekte erzielt. Hierbei kann die Wirkung der erfindungsgemäßen Wirkstoffkombination noch wesentlich gesteigert werden, wenn weiterhin ein Rohstoff ausgewählt aus der Gruppen der Polymere, der Naturstoffe sowie der naturanalogen Stoffe, der Fettstoffe oder der oberflächenaktiven Substanzen, insbesondere der milden oberflächenaktiven Substanzen, verwendet wird. Bei der Verwendung dieser Kombination kommt es zu überraschend guten Eigenschaften der behandelten Haut und des Haares, insbesondere zu verbesserten Kämmbarkeiten des nassen und trockenen Haares, zu verbessertem Glanz von Haut und Haar, zu einer verbesserten Elastizität von Haut und Haar, zu einer deutlich gesteigerten Waschbeständigkeit gefärbten Haares, sowie zu einer längeren Haltbarkeit der Frisuren bei einer gleichzeitigen besseren Umformleistung bei Wellvorgängen wie Wasserwelle und Dauerwelle, zu einer langanhaltenden Steigerung des Volumens von behandelten Haaren, zu einer deutlich besseren Abscheidung von Polymeren, insbesondere kationischen und amphoteren Polymeren auf der Haut und dem Haar, zu einer deutlich erhöhten Abscheidung von Wirkstoffen wie beispielsweise Antischuppenmitteln, Metall-Aminosäurekomplexen und UV-Filtern auf der Haut und dem Haar, zu einer erhöhten Abscheidung und gleichzeitig verlängerten Wirkung von Parfümölen auf der Haut und dem Haar, zu einer Glättung der äußeren Struktur von Haut und Haar, zu einer verbesserten und langanhaltenden Regulation des Feuchtigkeitsgehaltes von Haut und Haar, zu einer erhöhten Penetration von Wirkstoffen mit einem Molekulargewicht kleiner als 1000 D in Haut und Haar, zu einer gesteigerten Verträglichkeit von kosmetischen Formulierungen, zu einer Beeinflussung der Schaumstruktur, der Schaumdichte, des Schaumvolumens und des Schaumgefühles von schäumenden kosmetischen Zubereitungen. Dies ist umso überraschender als alle zuvor genannten Pflegestoffe, wie UV-Schutzmittel, Polymere, Tenside usw. das Haar beschweren und belasten. Es entsteht so trotz einer guten Pflege bereits nach kurzer Zeit der Eindruck das Haar sei belastet, schwer, fettig, strähnig und ohne Volumen und Elastizität. Gerade hier zeichnet sich die erfindungsgemäße Wirkstoffkombination ganz besonders aus. Wirkstoffe wie UV-Schutzfilter usw. werden gut auf dem Haar oder der Haut abgeschieden, jedoch kommt es nicht zu dem zuvor geschilderten Effekt des belastet wirkenden Haares. Vielmehr werden keine fettig aussehenden, überpflegt wirkenden Haare erhalten.
  • Ein erster Gegenstand der vorliegenden Erfindung ist daher ein kosmetisches Mittel, enthaltend eine Wirkstoffkombination aus
    • a) mindestens einer Polysiloxan Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und
    • b)mindestens einem Esteröl, welches aus einer C6 bis C30 Fettsäure und einem C2 bis C30 Alkohol aufgebaut ist.
  • Ein weiterer herausragender Effekt der erfindungsgemäßen Wirkstoffkombination zeigt sich darin, dass insbesondere UV-Schutzfilter besonders gleichmäßig auf dem Haar oder der Haut aufziehen, ohne dass es zu einer Belastung von Haut oder Haar kommt. Die Wirkung der UV-Schutzfilter wird dabei erhöht, so dass unter Beibehaltung des UV-Schutzeffektes eine geringere Konzentration an UV- Schutzfilter verwendet werden kann. Gleichzeitig wird insbesondere das Haar deutlich besser gepflegt ohne beschwert zu wirken. Das Haar wirkt keinesfalls fettig oder ölig, und dies obwohl beide Wirksubstanzen eindeutig einen fetten, öligen Charakter aufweisen. Gerade deshalb wurden in der Vergangenheit derartige Kombinationen vermieden. Gleichzeitig bleibt das damit behandelte Haar trotz der aufgebrachten UV-Filterstoffe sowohl im trockenen als auch im nassen Haar leicht kämmbar und gut frisierbar mit einem langanhaltenden Volumen und Elastizität ohne ein sprödes Aussehen.
  • Ein zweiter Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer Wirkstoffkombination enthaltend
    • a) mindestens einer Polysiloxan Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und
    • b) mindestens einem Esteröl, welches aus einer C6 bis C30 Fettsäure und einem C2 bis C30 Alkohol aufgebaut ist,
    zur Erhöhung der Wirkung von UV-Schutzfiltern auf Haaren.
  • Die Inhaltsstoffe a) und b) werden nachfolgend detailliert beschrieben. Soweit nachstehend vom Wirkstoffkomplex (A) gesprochen wird, bezieht sich diese Aussage auf die beiden in den erfindungsgemäßen Mitteln zwingend enthaltenen Inhaltsstoffe aus a) und b).
  • Als Inhaltstoff a) enthalten die erfindungsgemäßen Mittel mindestens eine Polysiloxan Verbindung, die wie im folgenden beschrieben, aufgebaut ist.
  • Als erste Stoffklasse, welche in der beschriebenen erfindungsgemäßen synergistischen Wirkstoffkombination (A) als Wirkstoff a) enthalten ist, sind Polysiloxanverbindungen, oder vereinfacht auch Silikonöle (S). Silikonöle bewirken die unterschiedlichsten Effekte. So beeinflussen sie beispielsweise gleichzeitig die Trocken- und Naßkämmbarkeiten, den Griff des trockenen und nassen Haares sowie den Glanz. Unter dem Begriff Silikonöle versteht der Fachmann mehrere Strukturen siliciumorganischer Verbindungen. Zunächst werden hierunter die Dimethiconole (S1) verstanden. Dimethiconole bilden die erste Gruppe der Silikone, welche erfindungsgemäß besonders bevorzugt sind. Die erfindungsgemäßen Dimethiconole können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethiconole können durch die folgende Strukturformel (S1-I) dargestellt werden: (SiOHR1 2)-O-(SiR2 2-O-)x-(SiOHR1 2) (S1-I)
  • Verzweigte Dimethiconole können durch die Strukturformel (S1-II) dargestellt werden:
    Figure 00090001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3 CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein. Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cSt gemessen bei 25 °C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 0,1 und 5000 cSt, ganz besonders bevorzugte Viskositäten liegen zwischen 0,1 und 3000 cSt. Der bevorzugteste Bereich liegt zwischen 0,5 und 200 cSt. Der höchst bevorzugteste Bereich liegt zwischen 1 cSt und 50 cSt.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethiconole bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethiconole sowohl nach der Herstellung der entsprechenden Dimethiconole aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethiconole auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethiconole als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethiconole verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconolen zu verstehen, dass der Verzweigungsgrad größer als 0,01 % ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1 % und ganz besonders bevorzugt von größer als 0,5 %. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethiconole ganz besonders bevorzugt sein.
  • Als Beispiele für derartige Produkte werden die folgenden Handelsprodukte genannt: Botanisil NU-150M (Botanigenics), Dow Corning 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2-9026 Fluid, Ultrapure Dimethiconol (Ultra Chemical), Unisil SF-R (Universal Preserve), X-21-5619 (Shin-Etsu Chemical Co.), Abil OSW 5 (Degussa Care Specialties), ACC DL-9430 Emulsion (Taylor Chemical Company), AEC Dimethiconol & Sodium Dodecylbenzenesulfonate (A & E Connock (Perfumery & Cosmetics) Ltd.), B C Dimethiconol Emulsion 95 (Basildon Chemical Company, Ltd.), Cosmetic Fluid 1401, Cosmetic Fluid 1403, Cosmetic Fluid 1501, Cosmetic Fluid 1401DC (alle zuvor genannten Chemsil Silicones, Inc.), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF Emulsion, Dow Corning 9546 Silicone Elastomer Blend (alle zuvor genannten Dow Corning Corporation), Dub Gel SI 1400 (Stearinerie Dubois Fils), HVM 4852 Emulsion (Crompton Corporation), Jeesilc 6056 (Jeen International Corporation), Lubrasil, Lubrasil DS (beide Guardian Laboratories), Nonychosine E, Nonychosine V (beide Exsymol), SanSurf Petrolatum-25, Satin Finish (beide Collaborative Laboratories, Inc.), Silatex-D30 (Cosmetic Ingredient Resources), Silsoft 148, Silsoft E-50, Silsoft E-623 (alle zuvor genannten Crompton Corporation), SM555, SM2725, SM2765, SM2785 (alle zuvor genannten GE Silicones), Taylor T-Sil CD-1, Taylor TME-4050E (alle Taylor Chemical Company), TH V 148 (Crompton Corporation), Tixogel CYD-1429 (Sud-Chemie Performance Additives), Wacker-Belsil CM 1000, Wacker-Belsil CM 3092, Wacker-Belsil CM 5040, Wacker-Belsil DM 3096, Wacker-Belsil DM 3112 VP, Wacker-Belsil DM 8005 VP, Wacker-Belsil DM 60081 VP (alle zuvor genannten Wacker-Chemie GmbH).
  • Die Dimethiconole (S1) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Dimethiconol bezogen auf die Zusammensetzung.
  • Erfindungsgemäß ist es auch möglich, dass die Dimethiconole eine eigene Phase in den erfindungsgemäßen Zusammensetzungen bilden. In diesem Fall kann es angebracht sein, wenn die Zusammensetzung unmittelbar vor der Anwendung durch Schütteln kurzfristig homogenisiert wird. In diesem Falle kann die Menge an Dimethiconol bis zu 40 Gew.%, bevorzugt in Mengen von bis zu 25 Gew.% bezogen auf die Gesamtzusammensetzung betragen.
  • Dimethicone (S2) bilden die zweite Gruppe der Silikone, welche erfindungsgemäß besonders bevorzugt sind. Die erfindungsgemäßen Dimethicone können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethicone können durch die folgende Strukturformel (S2-I) dargestellt werden: (SiR1 3)-O-(SiR2 2-O-)x-(SiR1 3) (S2-I)
  • Verzweigte Dimethicone können durch die Strukturformel (S2-II) dargestellt werden:
    Figure 00120001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3 CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein. Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 0,1 und 500 cSt gemessen bei 25 °C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 0,1 und 5000 cSt, ganz besonders bevorzugte Viskositäten liegen zwischen 0,1 und 3000 cSt. Der bevorzugteste Bereich liegt zwischen 0,5 und 200 cSt. Der höchst bevorzugteste Bereich liegt zwischen 1 cSt und 50 cSt.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethicone bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethicone sowohl nach der Herstellung der entsprechenden Dimethicone aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethicone auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethicone als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethicone verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconen zu verstehen, dass der Verzweigungsgrad größer als 0,01 % ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1 % und ganz besonders bevorzugt von größer als 0,5 %. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethicone ganz besonders bevorzugt sein.
  • Die Dimethicone (S2) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Dimethiconon bezogen auf die Zusammensetzung.
  • Erfindungsgemäß ist es auch möglich, dass die Dimethicone eine eigene Phase in den erfindungsgemäßen Zusammensetzungen bilden. In diesem Fall kann es angebracht sein, wenn die Zusammensetzung unmittelbar vor der Anwendung durch Schütteln kurzfristig homogenisiert wird. In diesem Falle kann die Menge an Dimethicon bis zu 40 Gew.%, bevorzugt in Mengen von bis zu 25 Gew.% bezogen auf die Gesamtzusammensetzung betragen.
  • Dimethiconcopolyole (S3) bilden eine weitere Gruppe bevorzugter Silikone. Dimethiconcopolyole können durch die folgende Strukturformeln dargestellt werden: (SiR1 3)-O-(SiR2 2-O-)x-(SiRPE-O-)y(SiR1 3) (S3-I)oder durch die nachfolgende Strukturformel: PE-(SiR1 2)-O-(SiR2 2-O-)x-(SiR1 2)-PE (S3-II)
  • Verzweigte Dimethiconcopolyole können durch die Strukturformel (S3-III) dargestellt werden:
    Figure 00150001
    oder durch die Strukturformel (S3-IV):
    Figure 00160001
  • Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder eine Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R1 und R2 Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3 CC(O)OCH2CH2-, -C6Ha4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein. Bevorzugt als R1 und R2 sind Methyl, Phenyl und C2 bis C22-Alkylreste. Bei den C2 bis C22 Alkylresten sind ganz besonders Lauryl-, Stearyl-, und Behenylreste bevorzugt. PE steht für einen Polyoxyalkylenrest. Bevorzugte Polyoxyalkylenreste leiten sich ab von Ethylenoxid, Propylenoxid und Glycerin. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cSt gemessen bei 25 °C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 0,1 und 5000 cSt, ganz besonders bevorzugte Viskositäten liegen zwischen 0,1 und 3000 cSt. Der bevorzugteste Bereich liegt zwischen 0,5 und 200 cSt. Der höchst bevorzugteste Bereich liegt zwischen 1 cSt und 50 cSt.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethiconcopolymere bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethiconcopolyole sowohl nach der Herstellung der entsprechenden Dimethiconcopolyole aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethiconcopolyole auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
  • Wenn die erfindungsgemäßen Dimethiconcopolyole als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 μm bis 10000 μm, bevorzugt 0,01 bis 100 μm, ganz besonders bevorzugt 0,01 bis 20 μm und am bevorzugtesten 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt.
  • Werden verzweigte Dimethiconcopolyole verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Verbindung ist daher unter verzweigten Dimethiconcopolyolen zu verstehen, dass der Verzweigungsgrad größer als 0,01 % ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1 % und ganz besonders bevorzugt von größer als 0,5 %. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren, das heißt der Menge des monofunktionalen Siloxanes, zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethiconcopolyole ganz besonders bevorzugt sein.
  • Die Dimethiconcopolyole (S3) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Dimethiconcopolyol bezogen auf die Zusammensetzung.
  • Erfindungsgemäß ist es auch möglich, dass die Dimethiconcopolyole eine eigene Phase in den erfindungsgemäßen Zusammensetzungen bilden. In diesem Fall kann es angebracht sein, wenn die Zusammensetzung unmittelbar vor der Anwendung durch Schütteln kurzfristig homogenisiert wird. In diesem Falle kann die Menge an Dimethiconcopolyol bis zu 40 Gew.%, bevorzugt in Mengen von bis zu 25 Gew.% bezogen auf die Gesamtzusammensetzung betragen.
  • Aminofunktionelle Silikone oder auch Amodimethicone (S4) genannt, sind Silicone, welche mindestens eine (gegebenenfalls substituierte) Aminogruppe aufweisen.
  • Solche Silicone können z. B. durch die Formel (S4-I) M(RaQbSiO(4-a-a)/2x(RcSiO(4-c)/2)yM (S4-I)
  • Beschreiben werden, wobei in der obigen Formel R ein Kohlenwasserstoff oder ein Kohlenwasserstoffrest mit 1 bis etwa 6 Kohlenstoffatomen ist, Q ein polarer Rest der allgemeinen Formel -R1HZ ist, worin R1 eine zweiwertige, verbindende Gruppe ist, die an Wasserstoff und den Rest Z gebunden ist, zusammengesetzt aus Kohlenstoff- und Wasserstoffatomen, Kohlenstoff-, Wasserstoff- und Sauerstoffatomen oder Kohlenstoff-, Wasserstoff- und Stickstoffatomen, und Z ein organischer, aminofunktioneller Rest ist, der mindestens eine aminofunktionelle Gruppe enthält; "a" Werte im Bereich von etwa 0 bis etwa 2 annimmt, "b" Werte im Bereich von etwa 1 bis etwa 3 annimmt, "a" + "b" kleiner als oder gleich 3 ist, und "c" eine Zahl im Bereich von etwa 1 bis etwa 3 ist, und x eine Zahl im Bereich von 1 bis etwa 2.000, vorzugsweise von etwa 3 bis etwa 50 und am bevorzugtesten von etwa 3 bis etwa 25 ist, und y eine Zahl im Bereich von etwa 20 bis etwa 10.000, vorzugsweise von etwa 125 bis etwa 10.000 und am bevorzugtesten von etwa 150 bis etwa 1.000 ist, und M eine geeignete Silicon-Endgruppe ist, wie sie im Stande der Technik bekannt ist, vorzugsweise Trimethylsiloxy. Nicht einschränkende Beispiele der durch R repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Isopropyl, Butyl, Isobutyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, Allyl, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4-Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH2-, -CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3CC(O)OCH2CH2-, -C6H4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein.
  • Z ist ein organischer, aminofunktioneller Rest, enthaltend mindestens eine funktionelle Aminogruppe. Eine mögliche Formel für Z ist NH(CH2)zNH2, worin z 1 oder mehr ist. Eine andere mögliche Formel für Z ist -NH(CH2)z(CH2)zzNH, worin sowohl z als auch zz unabhängig 1 oder mehr sind, wobei diese Struktur Diamino-Ringstrukturen umfaßt, wie Piperazinyl. Z ist am bevorzugtesten ein -NHCH2CH 2NH2-Rest. Eine andere mögliche Formel für Z ist -N(CH2)z(CH2)zzNX2 oder -NX2, worin jedes X von X2 unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff und Alkylgruppen mit 1 bis 12 Kohlenstoffatomen, und zz 0 ist.
  • Q ist am bevorzugtesten ein polarer, aminofunktioneller Rest der Formel -CH2CH2CH2NHCH2CH2NH2. In den Formeln nimmt "a" Werte im Bereich von etwa 0 bis etwa 2 an, "b" nimmt Werte im Bereich von etwa 2 bis etwa 3 an, "a" + "b" ist kleiner als oder gleich 3, und "c" ist eine Zahl im Bereich von etwa 1 bis etwa 3.
  • Das molare Verhältnis der RaQbSiO(4-a-b)/2-Einheiten zu den RcSiO(4-c)/2-Einheiten liegt im Bereich von etwa 1 : 2 bis 1 : 65, vorzugsweise von etwa 1 : 5 bis etwa 1 65 und am bevorzugtesten von etwa 1 : 15 bis etwa 1 : 20. Werden ein oder mehrere Silicone der obigen Formel eingesetzt, dann können die verschiedenen variablen Substituenten in der obigen Formel bei den verschiedenen Siliconkomponenten, die in der Siliconmischung vorhanden sind, verschieden sein.
  • Bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß sie ein aminofunktionelles Silikon der Formel (S4-II) R'aG3-a-Si(OSiG2)n-(OSiGbR'2-b)m-O-SiG3-a-R'a (S4-II),enthalten, worin bedeutet:
    • – G ist -H, eine Phenylgruppe, -OH, -O-CH3, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2H3, -CH2CH(CH3)2, CH(CH3)CH2CH3, -C(CH3)3;
    • – a steht für eine Zahl zwischen 0 und 3, insbesondere 0;
    • – b steht für eine Zahl zwischen 0 und 1, insbesondere 1,
    • – m und n sind Zahlen, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt,
    • – R' ist ein monovalenter Rest ausgewählt aus – -N(R'')-CH2-CH2-N(R'')2 – -N(R'')2 – -N+(R'')3A- – -N+H(R'')2A- – -N+H2(R'')A- – -N(R'')-CH2-CH2-N+R''H2A-, wobei jedes R'' für gleiche oder verschiedene Reste aus der Gruppe-H, -Phenyl, -Benzyl, der C1-20-Alkylreste, vorzugsweise -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2H3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3, steht und A ein Anion repräsentiert, welches vorzugsweise ausgewählt ist aus Chlorid, Bromid, Iodid oder Methosulfat.
  • Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß sie ein aminofunktionelles Silikon der Formel (S4-III)
    Figure 00210001
    enthalten, worin m und n Zahlen sind, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silicone werden nach der INCI-Deklaration als Trimethylsilylamodimethicone bezeichnet.
  • Besonders bevorzugt sind auch erfindungsgemäße Mittel, die dadurch gekennzeichnet sind, daß sie ein aminofunktionelles Silikon der Formel (S4-IV)
    Figure 00210002
    enthalten, worin R für -OH, -O-CH3 oder eine -CH3-Gruppe steht und m, n1 und n2 Zahlen sind, deren Summe (m + n1 + n2) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei die Summe (n1 + n2) vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
  • Diese Silicone werden nach der INCI-Deklaration als Amodimethicone bezeichnet.
  • Unabhängig davon, welche aminofunktionellen Silicone eingesetzt werden, sind erfindungsgemäße Mittel bevorzugt, bei denen das aminofunktionelle Silikon eine Aminzahl oberhalb von 0,25 meq/g, vorzugsweise oberhalb von 0,3 meq/g und insbesondere oberhalb von 0,4 meq/g aufweist. Die Aminzahl steht dabei für die Milli-Äquivalente Amin pro Gramm des aminofunktionellen Silicons. Sie kann durch Titration ermittelt und auch in der Einheit mg KOH/g angegeben werden.
  • Die Amodimethicone (S4) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Amodimethicon bezogen auf die Zusammensetzung.
  • Erfindungsgemäß ist es auch möglich, dass die Amodimethicone eine eigene Phase in den erfindungsgemäßen Zusammensetzungen bilden. In diesem Fall kann es angebracht sein, wenn die Zusammensetzung unmittelbar vor der Anwendung durch Schütteln kurzfristig homogenisiert wird. In diesem Falle kann die Menge an Amodimethicon bis zu 40 Gew.%, bevorzugt in Mengen von bis zu 25 Gew.% bezogen auf die Gesamtzusammensetzung betragen.
  • Die Erfindung umfasst selbstverständlich auch die Erkenntnis, dass in den erfindungsgemäßen Zusammensetzungen eine Mischung aus mindestens 2 unterschiedlichen Silikonen verwendet werden kann. Bevorzugte Mischungen verschiedener Silikone sind beispielsweise Dimethicone und Dimethiconole, lineare Dimethicone und cylische Dimethiconole. Eine ganz besonders bevorzugte Mischung von Silikonen besteht aus mindestens einem cyclischen Dimethiconol und/oder Dimethicon, mindestens einem weiteren nicht cylischen Dimethicon und/oder Dimethiconol sowie mindestens einem aminofunktionellem Silikon. Werden unterschiedliche Silikone als Mischung verwendet, so ist das Mischungsverhältnis weitgehend variabel. Bevorzugt werden jedoch alle zur Mischung verwendeten Silikone in einem Verhältnis von 5 : 1 bis 1 : 5 im Falle einer binären Mischung verwendet. Ein Verhältnis von 3 : 1 bis 1 : 3 ist besonders bevorzugt. Ganz besonders bevorzugte Mischungen enthalten alle in der Mischung enthaltenen Silikone weitestgehend in einem Verhältnis von etwa 1 : 1, jeweils bezogen auf die eingesetzten Mengen in Gew.%.
  • Wenn eine Mischung aus mindestens zwei Silikonen verwendet wird, so ist diese Mischung in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 8 Gew.%, besonders bevorzugt 0,1 bis 7,5 Gew.% und insbesondere 0,1 bis 5 Gew.% an Silikonmischung bezogen auf die Zusammensetzung enthalten.
  • Erfindungsgemäß ist es auch möglich, dass die Mischung der Silikone eine eigene Phase in den erfindungsgemäßen Zusammensetzungen bilden. In diesem Fall kann es angebracht sein, wenn die Zusammensetzung unmittelbar vor der Anwendung durch Schütteln kurzfristig homogenisiert wird. In diesem Falle kann die Menge an Silikonmischung bis zu 40 Gew.%, bevorzugt in Mengen von bis zu 25 Gew.% bezogen auf die Gesamtzusammensetzung betragen.
  • Unter Polysiloxan wird erfindungsgemäß auch eine Polyammonium-Polysiloxan-Verbindung verstanden.
  • Die Polyammonium-Polysiloxan Verbindungen enthalten:
    • a1) mindestens eine Polyalkylenoxid-Struktureinheit der allgemeinen Formeln: -A-E-, -E-A-, -A-E-A'- und/oder -A'-E-A-, worin: A steht für eine der Gruppen: -CH2C(O)O-, -CH2CH2C(O)O-, -CH2CH2CH2C(O)O-, -OC(O)CH2-, -OC(O)CH2CH2- und/oder -OC(O)CH2CH2CH2-, A' bedeutet: -CH2C(O)-, -CH2CH2C(O)-, -CH2CH2CH2C(O)-, -C(O)CH2-, -C(O)CH2CH2- und/oder -C(O)CH2CH2CH2- und E steht für eine Polyalkylenoxidgruppe der allgemeinen Formeln: -[CH2CH2O]q-[CH2CH(CH3)O]r- und/oder -[OCH(CH3)CH2]r,-[OCH2CH2]q-, mit q = 1 bis 200 und r = 0 bis 200, wobei das endständige Sauerstoffatom der Gruppe A an die endständige -CH2-Gruppe der Gruppe E, und das endständige Carbonylkohlenstoffatom der Gruppe A' an das endständige Sauerstoffatom Gruppe E jeweils unter Ausbildung von Estergruppen binden, und/oder mindestens eine endständige Polyalkylenoxid-Struktureinheit der Formel -A-E-R2, worin A und E die oben genannte Bedeutung aufweisen, und R2 steht für H, geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, oder -C(O)unterbrochen und mit -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann,
    • a2) mindestens ein zweiwertiger oder dreiwertiger organischer Rest, der mindestens eine Ammoniumgruppe enthält,
    • a3) mindestens eine Polysiloxan-Struktureinheit der allgemeinen Formel: -K-S-K-, worin S steht für -Si(R1)2-O[-Si(R1)2-O]n-Si(R1)2- und worin R1 steht für C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl, n steht für 0 bis 1000, und wenn mehrere Gruppen S in der Polysiloxanverbindung vorliegen, diese gleich oder verschieden sein können, worin K ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C2-C40-Kohlenwasserstoffrest, der durch -O-, -N-, -NR1-, -C(O)-, -C(S)-, -N+(R3)- und -N+(R1)(R3)- unterbrochen und mit -OH substituiert sein kann, worin R1 wie oben definiert ist, oder gegebenenfalls eine Bindung zu einem zweiwertigen Rest R3 darstellt, und worin R3 einen einwertigen oder zweiwertigen geradkettigen, cyclischen oder verzweigten C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, oder -A-E-R2 darstellt, worin A, E und R wie oben definiert ist, wobei die Reste K gleich oder verschieden voneinander sein können, und im Falle, dass K einen dreiwertigen Rest darstellt, die Absättigung der dritten Valenz über eine Bindung an den vorstehend genannten organischen Rest, der mindestens eine Ammoniumgruppe enthält, erfolgt,
    • a4) einen organischen oder anorganischen Säurerest zur Neutralisation der aus der(n) Ammoniumgruppe(n) resultierenden Ladungen.
  • Die erfindungsgemäßen Polysiloxanverbindungen sind dadurch gekennzeichnet, dass sie die vorstehend definierten Komponenten a1) bis a4) aufweisen. Die Polysiloxanverbindungen werden dabei durch Bindung der genannten Struktureinheiten bzw. Reste a1) bis a3) aneinander gebildet. Die Komponente a4) dient der Neutralisation der aus der Komponente a2) resultierenden positiven Ladungen.
  • Die erfindungsgemäßen Polysiloxanverbindungen können Oligomere oder polymere Verbindungen sein. Oligomere Verbindungen schließen dabei auch den unten beschriebenen Fall ein, worin die Polysiloxanverbindung lediglich eine Wiederholungseinheit aufweist.
  • Polymere erfindungsgemäße Polysiloxanverbindungen entstehen dabei naturgemäß durch alternierende Verknüpfung von zweiwertigen Resten.
  • Im Falle der polymeren erfindungsgemäßen Polysiloxanverbindungen resultieren die endständigen Atomgruppierungen aus den endständigen Atomgruppierungen der eingesetzten Ausgangsmaterialien. Dies ist dem Fachmann an sich bekannt.
  • In einer bevorzugten Ausführungsform sind die polymeren erfindungsgemäßen Polysiloxanverbindungen lineare Polyammonium-Polysiloxanverbindungen, die sich aus den Struktur-Komponenten a1) bis a3) zusammensetzen. So können die linearen polymeren erfindungsgemäßen Polysiloxanverbindungen, insbesondere deren aus den Wiederholungseinheiten gebildete lineare polymere Hauptkette, durch alternierende Aneinanderreihung von Polyalkylenoxid-Struktureinheiten a1), organischen Resten, die mindestens eine, vorzugsweise quartäre Ammoniumgruppe enthalten a2) und Polysiloxan-Struktureinheiten a3) aufgebaut werden. Das heißt, die darüber hinaus gegebenenfalls in den Strukturkomponenten vorhandenen freien Valenzen (wie sie bei dreiwertigen Resten als Komponente a2) oder bei dreiwertigen Resten K auftreten können) dienen bevorzugt nicht dem Aufbau polymerer Seitenketten bzw. polymerer Verzweigungen.
  • In einer weiteren Ausführungsform kann die Hauptkette der linearen polymeren erfindungsgemäßen Polysiloxanverbindungen von den organischen Resten, die mindestens eine Ammoniumgruppe enthalten a2) und den Polysiloxan-Struktureinheiten a3) aufgebaut werden, und die Polyalkylenoxid-Struktureinheiten a1) binden als Seitenketten an den dreiwertigen organischen Ammoniumgruppenrest.
  • So können beispielsweise folgende Aufbauten resultieren:
    -(Polyalkylenoxidstruktureinheit-Polysiloxanstruktureinheit-Polyalkylenoxidstruktureinheit- bevorzugt quartärer Ammnoniumgruppenrest)x-
    -(Polysiloxanstruktureinheit - bevorzugt quartärer Ammoniumgruppenrest)x-Polyalkylenoxidstruktureinheit)x-
    Figure 00260001
  • Je nach molarem Verhältnis der monomeren Ausgangsverbindungen können erfindungsgemäße Polysiloxanverbindungen resultieren, die lediglich eine Wiederholungseinheit aufweisen. Dies ist dem Fachmann an sich bekannt. Dieser Fall führt beispielsweise zu erfindungsgemäßen Polysiloxanverbindungen des Aufbaus:
    (endständige Polyalkylenoxidstruktureinheit-quartärer Ammoniumgruppenrest-Polysiloxanstruktureinheit-quartärer Ammoniumgruppenrest- endständige Polyalkylenoxidstruktureinheit).
  • Die erfindungsgemäße Polysiloxanverbindungen bestehen bevorzugt im wesentlichen aus den Komponenten a1) bis a4), wobei die polymeren erfindungsgemäßen Polysiloxanverbindungen naturgemäß die aus der Umsetzung der monomeren Ausgangsmaterialien resultierenden terminalen Gruppen aufweisen. Es können aber auch monofunktionelle Kettenabbruchsmittel eingesetzt werden.
  • Bei den Polyalkylenoxid-Struktureinheiten a) kann es sich um zweiwertige Reste der allgemeinen Formeln: -A-E-, -E-A-, -A-E-A'- und/oder -A'-E-A- handeln.
  • Der Rest A bedeutet dabei:
    -CH2C(O)O-, -CH2CH2C(O)O-, -CH2CH2CH2C(O)O-, -OC(O)CH2-, -OC(O)CH2CH2- und/oder -OC(O)CH2CH2CH2-
  • Der Rest A' bedeutet dabei:
    -CH2C(O)-, -CH2CH2C(O)-, -CH2CH2CH2C(O)-, -C(O)CH2-, -C(O)CH2CH2- und/oder -C(O)CH2CH2CH2-.
  • Die Polyalkylenoxidgruppe E der allgemeinen Formeln: -[CH2CH2O]q-[CH2CH(CH3)O]r und/oder -[OCH(CH3)CH2]r-[OCH2CH2]q mit q = 1 oder 2 bis 200 und r = 0 bis 200, schließen dabei alle möglichen Ethylenoxid/Propylenoxid-Gruppierungen ein. So kann es sich um statistische Ethylenoxid/Propylenoxid-Copolymergruppen oder Ethylenoxid/Propylenoxid-Block Copolymergruppen mit beliebiger Anordnung von einem oder mehreren Ethylenoxid-, oder Propylenoxid-Blöcken handeln.
  • Die Anbindung der Reste A bzw. A' an die Gruppe E erfolgt dabei so, dass das endständige Sauerstoffatom der Gruppe A an die endständige -CH2-Gruppe der Gruppe E, und das endständige Carbonyl-Kohlenstoffatom der Gruppe A' an das endständige Sauerstoffatom der Gruppe E jeweils unter Ausbildung von Estergruppen binden.
  • Bei den Polyalkylenoxid-Struktureinheiten a1) kann es sich weiterhin um einwertige, d. h. endständige Polyalkylenoxid-Struktureinheit der Formel -A-E-R2 handeln, worin A und E die oben genannte Bedeutung aufweisen, und R2 für H, geradkettiger, cyclischer oder verzweigter C1-C20- Kohlenwasserstoffrest steht, der durch -O-, oder -C(O)- unterbrochen und mit -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann.
  • Die Komponente a2) aus der sich die erfindungsgemäßen Polysiloxanverbindungen zusammensetzen, ist mindestens ein zweiwertiger oder dreiwertiger organischer Rest, der mindestens eine Ammoniumgruppe enthält. Die Bindung des Restes an die übrigen Komponenten der erfindungsgemäßen Polysiloxanverbindungen erfolgt bevorzugt über das Stickstoffatom einer oder mehrerer Ammoniumgruppen in dem organischen Rest. Der Begriff "zweiwertig" bzw. "dreiwertig" bedeutet, dass der organische Ammonium-Rest zur Ausbildung von Bindungen insbesondere zu den übrigen Komponenten der erfindungsgemäßen Polysiloxanverbindungen zwei oder drei freie Valenzen aufweist. Der Ammoniumrest wird zweckmäßig durch eine NH4 +- Gruppe dargestellt, in der mindestens zwei Wasserstoffatome durch organische Gruppen substituiert sind. Vorzugsweise handelt es sich um eine sekundäre oder quartäre, besonders bevorzugt um eine quartäre Ammoniumgruppe. Eine quartäre Ammoniumgruppe ist nach allgemeiner Definition (s. z. B. Römpp-Chemie-Lexikon) eine Gruppe bei der alle vier Wasserstoffatome einer NH4 +-Gruppe durch organische Reste ersetzt sind.
  • Die Komponente a2) der erfindungsgemäßen Polysiloxanverbindungen ist mindestens eine Polysiloxan-Struktureinheit der allgemeinen Formel: -K-S-K-,
  • S ist darin eine Polysiloxangruppe der allgemeinen Formel -Si(R1)2-O[-Si(R1)2-O]n-Si(R1)2-, worin R1 bedeutet C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl, vorzugsweise Phenyl, n = 0 bis 1000, und wenn mehrere Gruppen S in der Polysiloxanverbindung vorliegen, diese gleich oder verschieden sein können.
  • R1 ist bevorzugt C1-C18-Alkyl, C1-C18-Fluoralkyl und Aryl. Weiterhin ist R1 bevorzugt C1-C18-Alkyl, C1-C6-Fluoralkyl und Aryl. Weiterhin ist R1 bevorzugt C1- C6-Alkyl, C1-C6-Fluoralkyl, bevorzugter C1-C4-Fluoralkyl, und Phenyl. Noch bevorzugter ist R1 Methyl, Ethyl, Trifluorpropyl und Phenyl.
  • Der Begriff "C1-C22-Alkyl" bedeutet im Rahmen der vorliegenden Erfindung, daß die aliphatische Kohlenstoffwasserstoffgruppen 1 bis 22 Kohlenstoffatome besitzen, die geradkettig oder verzweigt sein können. Beispielhaft seien Methyl, Ethyl, Propyl, n-Butyl, Pentyl, Hexyl, Heptyl, Nonyl, Decyl, Undecyl, iso-Propyl, Neopentyl, und 1,2,3 Trimethylhexyl aufgeführt.
  • Der Begriff „C1-C22-Fluoralkyl" bedeutet im Rahmen der vorliegenden Erfindung aliphatische Kohlenstoffwasserstoffverbindungen mit 1 bis 22 Kohlenstoffatomen die geradkettig oder verzweigt sein können und mit mindestens einem Fluoratom substituiert sind. Beispielhaft seien Monofluormethyl, Monofluorethyl, 1,1,1-Trifluorethyl, Perflourethyl, 1,1,1-Trifluorpropyl, 1,2,2-Triflourbutyl aufgeführt.
  • Der Begriff "Aryl" bedeutet im Rahmen der vorliegenden Erfindung unsubstituierte oder ein oder mehrfach mit OH, F, Cl, CF3 C1-C6-Alkyl, C1-C6-Alkoxy, C3-C7-Cycloalkyl C2-C6-Alkenyl oder Phenyl substituiertes Phenyl. Der Ausdruck kann gegebenenfalls auch Naphthyl bedeuten.
  • K stellt einen zweiwertigen oder dreiwertigen geradkettigen, cyclischen oder verzweigten C2-C40-Kohlenwasserstoffrest dar, der durch -O-, -NH-, -N-, C(O)-, -C(S)-, -N+(R3)-, -NR1-, und -N+(R1)(R3)- unterbrochen und mit -OH substituiert sein kann.
  • "Unterbrochen" bedeutet dabei, das im Falle der zweiwertigen Reste eine -CH2-Gruppierung im Falle der dreiwertigen Reste eine -CH-Gruppierung des Kohlenwasserstoffrestes durch die genannten Gruppen ersetzt sind. Dies gilt auch für den übrigen Teil der Beschreibung, wenn diese Bezeichnung verwendet wird.
  • Die Gruppe K bindet über ein Kohlenstoffatom an das Siliziumatom der Gruppe S.
  • Die Gruppe K kann, wie oben zu sehen, ebenfalls bevorzugt quartäre Ammoniumgruppen aufweisen, so dass Ammoniumgruppen zusätzlich zu den Ammoniumgruppen in der genannten Komponente a2) in den erfindungsgemäßen Polysiloxanverbindungen resultieren.
  • Die erfindungsgemäßen Polysiloxanverbindungen können, wie zum Beispiel in dem. Rest K, Aminogruppen aufweisen. Die Umsetzung der erfindungsgemäßen Polysiloxanverbindungen mit Säuren führt zu deren Protonierung. Solche protonierte Aminogruppen aufweisende Polysiloxanverbindungen sind im Umfang der vorliegenden Erfindung enthalten.
  • Die Bindung der Komponente a3), der Polysiloxan-Struktureinheit -K-S-K-, zu den übrigen Aufbaukomponenten über den Rest K erfolgt bevorzugt nicht über ein Stickstoffatom des Restes K.
  • R1 ist wie oben definiert oder stellt gegebenenfalls eine Bindung zu einem zweiwertigen Rest R3 dar, so dass ein Cyclus resultiert.
  • R3 stellt einen einwertigen oder zweiwertigen geradkettigen, cyclischen oder verzweigten C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, oder -A-E-R2 dar, worin A, E und R2 wie oben definiert ist.
  • Die Reste K können gleich oder verschieden voneinander sein, und im Falle, dass K einen dreiwertigen Rest darstellt, erfolgt die Absättigung der dritten Valenz über eine Bindung an den - vorstehend genannten organischen Rest, der mindestens eine Ammoniumgruppe enthält.
  • Die erfindungsgemäßen Polysiloxanverbindungen enthalten weiterhin die Komponente a4), mindestens einen organischen oder anorganischen anionischen Säurerest zur Neutralisation der aus der(n) Ammoniumgruppe(n) resultierenden Ladungen. Organische oder anorganische Säurereste sind Reste, die formal aus der Abspaltung von eines oder mehrerer Protonen aus organischen oder anorganischen Säuren resultieren und schließen beispielsweise ein Halogenide, wie Fluorid, Chlorid, Bromid, Sulfate, Nitrate, Phosphate, Carboxylate, wie Formiat, Acetat, Propionat etc., Sulfonate, Sulfate, Polyethercarboxylate und Polyethersulfate etc. Bevorzugt ist Chlorid. Die organischen oder anorganischen anionischen Säurereste als Komponente a4) der erfindungsgemäßen Polysiloxanverbindungen können gleich oder verschieden voneinander sein. So resultieren aus der Umsetzung der Amine mit Alkylhalogeniden bevorzugt Halogenidionen, während zum Beispiel Carboxylate aus den Carbonsäuren, die bei der Umsetzung von Bisepoxiden mit Aminen zugesetzt werden können, resultieren.
  • In einer bevorzugten Ausführungsform der erfindungsgemäßen Polysiloxanverbindungen stellt K einen zweiwertigen oder dreiwertigen geradkettigen, cyclischen oder verzweigten C2-C40- Kohlenwasserstoffrest dar, der -durch -O-, -NH-, -N-, -NR1-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, worin R1 wie oben definiert ist, -und wobei die Reste K gleich oder verschieden voneinander sein können.
  • Der zuvor genannte organische Rest, der mindestens eine, bevorzugt quartäre Ammoniumgruppe enthält, ist bevorzugt ein Rest der allgemeinen Formel: -N1-F-N1-, worin N1 eine quartäre Ammoniumgruppe der allgemeinen Formel -(R4)N+(R5)- ist, worin R4 einen einwertigen oder zweiwertigen geradkettigen, cyclischen oder verzweigten C1-C20-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, und R5 ist ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, oder eine Einfachbindung zu einem zweiwertigen Rest R4 oder einem vierwertigen Rest F, und die Reste R4 und R5 innerhalb der Gruppe -N1-F-N1- sowie in der Polysiloxanverbindung gleich oder verschieden voneinander sein können,
    F ist ein zweiwertiger oder vierwertiger geradkettiger, cyclischer oder verzweigter C2-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -N-, -C(O)-, -C(S)-, eine Siloxankette S, wobei für S die oben genannten Bezüge gelten, unterbrochen und mit -OH substituiert sein kann.
  • Bezüglich weiterer Einzelheiten der Definitionen der quartären Ammoniumgruppe der Formel -N1-F-N1- (bevorzugte Ausführungsformen etc.) sei auf die Erläuterungen der ersten Ausführungsform der vorliegenden Erfindung zur Komponente a, den Polyammonium-Polysiloxan Verbindungen, in der diese Gruppe realisiert ist, verwiesen, und die auch in diesem allgemeineren Kontext Gültigkeit besitzen.
  • Der zuvor genannte organische Rest, der mindestens eine, bevorzugt quartäre Ammoniumgruppe enthält, kann weiterhin bevorzugt ein Rest der allgemeinen Formel -(R6)N+(R7)- sein, worin R6 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C30-Kohlenwasserstoffrest ist, der durch -O-, -NH-,
    -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, oder R6 stellt eine Einfachbindung zu einem dreiwertigen Rest K dar.
  • R7 ist ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH- -C(O)-, -C(S)- unterbrochen und mit- OH substituiert sein kann, oder -A-E-R2, worin -A-E-R2 die oben genannte Bedeutung aufweist, oder eine Einfachbindung zu einem zweiwertigen Rest R6 oder zu einem dreiwertigen Rest K.
  • Die Reste R6 und R7 können gleich oder verschieden voneinander sein.
  • Bezüglich weiterer Einzelheiten der Definitionen der quartären Ammoniumgruppe der Formel -(R6)N+(R7)- (bevorzugte Ausführungsformen) sei auf die Erläuterungen der zweiten, dritten und vierten Ausführungsform zu den Polyammonium-Polysiloxan Verbindungen, dem Bestandteil a), des vorliegenden erfindungsgemäßen Wirkstoffkomplexes verwiesen, in der diese Gruppe realisiert ist, und die auch in diesem allgemeineren Kontext Gültigkeit besitzen.
  • Der zuvor genannte organische Rest, der mindestens eine Ammoniumgruppe enthält, kann weiterhin bevorzugt ein Rest der allgemeinen Formel: -N5-F1-N5- sein, worin N5 eine Ammoniumgruppe der allgemeinen Formel -(R25)N+(R24)- ist, worin R23 Wasserstoff, ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20- Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R24 Wasserstoff, ein einwertiger geradkettiger, cyclischer oder verzweigter C1- C20-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -C(S) unterbrochen und mit -OH substituiert sein kann, oder eine Einfachbindung zu einem zweiwertigen Rest R23 darstellt, und die Reste R23 Und R24 innerhalb der Gruppe -N5-F1-N5- sowie in der Polysiloxanverbindung gleich oder verschieden voneinander sein können,
    F1 bedeutet ein zweiwertiger geradkettiger, cyclischer oder verzweigter -N Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -N-, -C(S)- oder durch eine Gruppe -E- unterbrochen sein kann,
    und worin eine Mehrzahl der Gruppen N5 und F1 jeweils gleich oder verschieden voneinander sein können.
  • Bezüglich weiterer Einzelheiten der Definitionen der Ammoniumgruppe der Formel -N5-F1-N5- (bevorzugte Ausführungsformen) sei auf die Erläuterungen der fünften Ausführungsform zur Komponente a, den Polyammonium-Polysiloxan Verbindungen der vorliegenden Erfindung verwiesen, in der diese Gruppe beispielhaft realisiert ist, und die auch in diesem allgemeineren Kontext Gültigkeit besitzen.
  • Im folgenden werden die Komponenten a) des erfindungsgemäßen Wirkstoffkomplexes, die Polyammonium-Polysiloxan Verbindungen, anhand von fünf bevorzugten Ausführungsformen dieser Verbindungen näher beschrieben.
  • Eine besondere Ausführungsform der Polyammonium-Polysiloxan Verbindungen (die im folgenden als erste Ausführungsform der Komponente a) des Wirkstoffkomplexes bezeichnet wird), worin der zuvor genannte organische Rest, der mindestens eine, bevorzugt quartäre Ammoniumgruppe enthält, als Komponente a2) der erfindungsgemäßen Polysiloxanverbindungen einen Rest der allgemeinen Formel: -N1-F-N1 darstellt, wird durch die Polysiloxan-Verbindungen der folgenden allgemeinen Formel (I) dargestellt: -[B-N1-F-N1]m- (I)worin m = 2 bis 500,
    B bedeutet -A-E-K-S-K-E-A- und zusätzlich gegebenenfalls -A-E-A'- bzw. -A'-E-A- ist,
    worin S, K, -A-E-, -E-A-, -A-E-A'- bzw. -A'-E-A- und -N1-F-N1- wie oben definiert sind, und der Anteil der Gruppe -A-E-A'- bzw. -A'-E-A- in der Gruppe B so gewählt sein kann, dass die Masse von -A-E-A'- bzw. -A'-E-A- von 0 bis 90 %, bevorzugt 0 % oder 0,1 bis 50 % der Masse des Polysiloxananteils S im Polymer beträgt.
  • Die erste Ausführungsform der Polyammonium-Polysiloxan Verbindungen betrifft bevorzugt lineare alkylenoxidmodifizierte polyquartemäre Polysiloxane der allgemeinen Formel (I'), -[B-N1-F-N1],- (I)worin m 2 bis 500,
    B -A-E-K-S-K-E-A-,
    S -Si(R1)2-O[Si(R1)2-O]n-Si(R1)2-
    R1 C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl,
    n 0 bis 1000,
    K ein zweiwertiger geradkettiger, cyclischer oder verzweigter C2-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -C(O)-, -C(S) unterbrochen und mit -OH substituiert sein kann,
    E eine Polyalkylenoxideinheit der Struktur -[CH2CH2O]q-[CH2CH(CH3)O]r- mit,
    q 1 bis 200,
    r 0 bis 200 und
    A -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O-,
    N1 eine quarternäre Ammoniumstruktur -(R4)N+(R5)-
    R4 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest darstellt, der durch O-, -NH, -C(O)-, -C(S)- unterbrochen und. mit -OH substituiert sein kann,
    R5 R4 oder eine Einfachbindung zu R4 oder F darstellt,
    F ein zweiwertiger oder vierwertiger geradkettiger, cyclischer oder verzweigter C2-C30- Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -N-, -C(O)-, -C(S)-, eine Siloxankette S, wobei für S die oben genannten Bezüge gelten, unterbrochen und mit -OH substituiert sein
    kann.
  • Die Möglichkeit einer vierwertigen Substruktur für F bedeutet, daß F ein verzweigtes oder Ringsystem mit den begrenzenden N1 bilden kann, so daß F dann mit jeweils zwei Bindungen an der Quartärnierung von beiden begrenzenden N1 beteiligt ist. Zur näheren Illustration sei auf die Offenlegungsschrift WO 02/10257, insbesondere dort das Beispiel 1, verwiesen.
  • In einer weiteren Ausführungsform der Polyammonium-Polysiloxan Verbindungen bedeutet die Möglichkeit einer zweiwertigen Substruktur für R4, daß es sich in diesen Fällen um eine cyclische Systeme bildende Struktur handelt, worin R5 in diesem Fall eine Einfachbindung zu R4 ist. Beispiele sind Morpholinyl- und Piperidinylstrukturen.
  • Bevorzugtere Ausführungsformen dieser sogenannten ersten Ausführungsform der Erfindung sowie Verfahren zur Herstellung der genannten Polysiloxanverbindungen der Formel (I) bzw. (I') werden nachfolgend beschrieben.
  • R4 ist bevorzugt -CH3, -CH2CH3, -(CH2)2CH3, -(CH2)3CH3, -(CH2)5CH3, -CH2CH2OH, -CH2CH2NHCO-R14 oder -CH2CH2CH2NHCO-R14, worin worin R14 einen geradkettigen, cyclischen oder verzweigten C1-C18-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, ist.
  • R4 und R5 können wie vorstehend erwähnt auch gemeinsam eine cyclische Struktur der Formeln
    Figure 00360001
    bilden.
  • Zu den bevorzugten Bedeutungen von R1 in der sogenannten ersten Ausführungsform der Polysiloxanverbindungen kann zu den vorstehenden Ausführungen verwiesen werden.
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen ist R4 bevorzugt ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C16-, bevorzugter C3-C16- Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, bevorzugter ein C3- C16-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, worin R1 die obengenannte Bedeutung besitzt.
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen ist F bevorzugt ein zweiwertiger oder vierwertiger geradkettiger, cyclischer oder verzweigter C2-C20- Kohlenwasserstoffrest, der durch -O-, -NH-, -N-, -C(O)-, -C(S), eine Siloxankette S, wobei für S die oben genannten Bezüge gelten, unterbrochen und mit -OH substituiert sein kann.
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen ist K bevorzugt -CH2CH2CH2-, -(CH2)4-, -(CH2)6-, -CH2CH2CH2OCH2CH(OH)CH2-, und -CH=CHCH2-.
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen stellt R14 bevorzugt unsubstituierte C5-C17-Kohlenwasserstoffreste dar, die sich von den entsprechenden Fettsäuren ableiten oder aber hydroxylierte C3-C17-Reste, die auf hydroxylierte Carbonsäuren, bevorzugt Saccharidcarbonsäuren zurückgeführt werden können.
  • In der sogenannten ersten Ausführungsform der Polyammonium-Polysiloxanverbindungen, welche in der vorliegenden Erfindung als Wirkstoffe a) des erfindungegemäßen Wirkstoffkomplexes verwendet werden, stellt R14 weiterhin bevorzugt hydroxylierte Reste aus der Gruppe bestehend aus
    Figure 00370001
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen ist m 2 bis 100, bevorzugt 2 bis 50.
  • In der sogenannten ersten Ausführungsform der Polysiloxanverbindungen ist n 0 bis 1000, bevorzugt 0 bis 100, bevorzugter 0 bis 80 und besonders bevorzugt 10 bis 80.
  • In der sogenannten ersten Ausführungsform der Erfindung ist q 1 bis 200, bevorzugt 1 bis 50, bevorzugter 2 bis 20 und besonders bevorzugt 2 bis 10.
  • In der sogenannten ersten Ausführungsform der Erfindung ist r 0 bis 200, bevorzugt 0 bis 100, bevorzugter 0 bis 50 und noch bevorzugter 0 bis 20.
  • Zur Herstellung der erfindungsgemäßen Polysiloxan-Polyammonium Verbindungen sowohl dieser ersten Ausführungsform als auch aller weiteren bevorzugten Ausführungsformen der erfindungsgemäßen Polysiloxan-Polyammonium Verbindungen a) des erfindungsgemäßen Wirkstoffkomplexes sei ganz explizit auf die Offenlegungsschrift WO 02/10257 verwiesen.
  • Eine besondere Ausführungsform der Erfindung (die im folgenden als sogenannte zweite Ausführungsform der Polysiloxanverbindungen bezeichnet wird) wird durch die Polysiloxan Verbindungen der allgemeinen Formel (II) dargestellt, R2-E-A-N2-K-S-K-N2-A-E-R2 (II)worin
    S, K, -A-E-, -E-A- und R2 die oben genannten Bedeutungen aufweisen, und
    N2 ein organischer Rest, der mindestens eine quartäre Ammoniumgruppe enthält, der allgemeinen Formel -(R8)N+(R9)- ist, worin R8 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R9 ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, oder eine Einfachbindung zu einem zweiwertigen Rest R8 oder zu einem dreiwertigen Rest K darstellt, und die Reste R8 und R9 innerhalb der Polysiloxanverbindung der allgemeinen Formel (II) gleich oder verschieden voneinander sein können.
  • Bevorzugt handelt es sich bei den Polysiloxanverbindungen der zweiten Ausführungsform um (α,ω-Alkylenoxid- und polyquarternär modifizierte Polysiloxane der allgemeinen Formel (II'), R16-E-A-N2-K-S-K-N2-A-E-R16 (II')
  • Worin die Bezeichnungen stehen für,
    S -Si(R1)2-O[-Si(R1)2-O]n-Si(R1)-
    mit R1 C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl,
    n bedeutet 0 bis 1000,
    K ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C2-C20-Kohlenwasserstoffrest, der durch -O-, -N-, -NH-, -NR1-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    N2 eine quartäre Ammoniumstruktur -(R8)N+(R9)- R8 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R9 R8 oder eine Einfachbindung zu K oder R8,
    A -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O-
    E eine Polyalkylenoxideinheit der Struktur -[CH2CH2O]q-[CH2CH(CH3)O]r- q 1 bis 200
    r 0 bis 200 und
    R16 H, geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, oder -C(O)- unterbrochen und -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann.
  • Die Möglichkeit einer dreiwertigen Substruktur für K bedeutet hier, daß K verzweigt sein kann und dann mit zwei Bindungen an der Quartärnierung von N2 beteiligt ist. Die Möglichkeit einer zweiwertigen Substruktur für R8 bedeutet, daß es sich in diesen Fällen um eine cyclische Systeme bildende Struktur handelt, wobei R9 dann eine Einfachbindung zu R2 ist.
  • R8 ist bevorzugt -CH3, -CH2CH3, -(CH2)2CH3, -(CH2)3CH3, -(CH2)5CH3, -CH2CH2OH -CH2CH2NHCO-R17 oder -CH2CH2CH2NHCO-R17,
    worin R17 einen geradkettigen, cyclischen oder verzweigten C1-C18-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, ist.
  • R8 und R9 können wie vorstehend erwähnt auch gemeinsam eine cyclische Struktur der Formeln
    Figure 00400001
    bilden.
  • Zu den bevorzugten Bedeutungen von R1 in der sogenannten zweiten Ausführungsform der Polysiloxanverbindungen kann zu den vorstehenden Ausführungen. verwiesen werden.
  • In der sogenannten zweiten Ausführungsform der Polysiloxanverbindungen ist K bevorzugt ein zweiwertiger oder dreiwertiger geradkettigen, cyclischer oder verzweigter C3-C16-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, worin R1 wie vorstehend definiert ist.
  • Bevorzugt für K sind zum Beispiel Reste der folgenden Strukturen: -CH2CH2CH2- -CH2CH2CH2OCH2CHOHCH2- oder
    Figure 00400002
  • R8 ist bevorzugt ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C16-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O), -C(S)- unterbrochen und mit -OH substituiert sein kann.
  • R16 ist bevorzugt ein geradkettiger, cyclischer oder verzweigter C1-C18-Kohlenwasserstoffrest, der durch -O- oder -C(O)- unterbrochen und mit -OH substituiert und acetylenisch oder olefinisch sein kann.
  • Weiterhin ist R16 bevorzugt C5-C17-Alkyl, -CH2CH=CH2, -CH2CH(OH)CH2OCH2CH=CH2, -CH2CCH, -C(O)CH3, -C(O)CH2CH3.
  • R17 stellt bevorzugt unsubstituierte C5-C17-Kohlenwasserstoffreste, die sich von den entsprechenden Fettsäuren ableiten oder aber hydroxylierte C3-C17-Reste, die auf hydroxylierte Carbonsäuren, bevorzugt auf Saccharidcarbonsäuren zurückgeführt werden können, dar.
  • R17 wird besonders bevorzugt aus der Gruppe aus
    Figure 00410001
    ausgewählt.
  • In der sogenannten zweiten Ausführungsform der Polysiloxanverbindungen ist n bevorzugt 0 bis 200, bevorzugter 0 bis 80, besonders bevorzugt 10 bis 80.
  • In der sogenannten zweiten Ausführungsform der Polysiloxanverbindungen ist q bevorzugt 1 bis 50, bevorzugter 2 bis 20 und besonders bevorzugt 2 bis 10.
  • In der so genannten zweiten Ausführungsform der Polysiloxanverbindungen ist r bevorzugt 0 bis 100 und bevorzugter 0 bis 50.
  • In der sogenannten zweiten Ausführungsform der Erfindung ist r bevorzugt 0 bis 20 und bevorzugter 0 bis 10.
  • Zur Herstellung der erfindungsgemäßen Polysiloxan-Verbindungen der sogenannten zweiten Ausführungsform sei auf die Ausführungen zur ersten bevorzugten Ausführungsform verwiesen.
  • Eine besondere Ausführungsform der Polyammonium-Polysiloxan Verbindungen a) als wesentlicher Bestandteil des erfindungsgemäßen Wirkstoffkomplexes (die im folgenden als sogenannte dritte Ausführungsform der Polysiloxane bezeichnet wird) wird durch die Polysiloxan Verbindungen der allgemeinen Formel (III) dargestellt: -[K-S-K-N3]m- (III)in der S, K und m wie oben definiert sind,
    N3 ein organischer Rest, der mindestens eine quartäre Ammoniumgruppe enthält, der allgemeinen Formel -(R10)-N+(R11) ist, worin R10 ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu K darstellt,
    R11 steht für -A-E-R2, worin -A-E-R2 die oben genannte Bedeutung aufweist.
  • Bevorzugt handelt es sich bei den Polysiloxanverbindungen der dritten Ausführungsform um Alkylenoxidmodifizierte polyparternäre Polysiloxane der allgemeinen Formel (III'), -[K-S-K-N3]m- (III'),in der m 2 bis 500 ist,
    S bedeutet -Si(R1)2-O[-Si(R1)2-O]n-Si(R1)2-
    mit R1 C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl,
    n = 0 bis 1000,
    N3 eine quartäre Ammoniumstruktur -(R10)N+(R11)- worin R10 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu K darstellt,
    R3 -A-E- ist, mit
    A für -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O- und
    E für eine Polyalkylenoxideinheit der Struktur -[CH2CH2O]q-[CH2CH(CH3)O]r-R18 q von 1 bis 200,
    r von 0 bis 200,
    R18 für H, geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, oder -C(O)- unterbrochen -und mit -OH substituiert und acetylenisch, olefinisch oder aromatisch sein kann, sowie
    K ist ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C2-C40-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine quartäre Ammoniumstruktur N5 enthält, mit
    N5 in der Bedeutung von -(R19)N+(R20)-
    R19 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann oder eine Einfachbindung zu R10 darstellt, und R20 -A-E- ist, das wie oben definiert ist.
  • Zur Herstellung der bevorzugten Ausführungsformen der sogenannten dritten Ausführungsform der Polysiloxanverbindungen sei wie bereits zuvor explizit auf die Offenlegungsschrift WO 02/10257 verwiesen.
  • R10 und R19 sind unabhängig voneinander bevorzugt -CH3, -CH2CH3, -(CH2)2CH3, -(CH2)3CH3, -(CH2)5CH3, -CH2CH2OH, -CH2CH2NHCOR21 oder -CH2CH2CH2NHCOR21, worin R21 einen geradkettigen, cyclischen oder verzweigten C1-C18-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, ist.
  • In einer Ausführungsform der sogenannten dritten Ausführungsform der Polysiloxanverbindungen handelt es sich bei einer zweiwertigen Substruktur für R10 um eine ein cyclisches System bildende Struktur, wobei R10 dann eine Einfachbindung zu K besitzt, bevorzugt zu einer tertiären Aminostruktur oder aber zur quartären Struktur N5 über R19.
  • Zu den bevorzugten Bedeutungen von R1 in der sogenannten dritten Ausführungsform der Polysiloxane kann zu den obigen Ausführungen verwiesen werden.
  • Bevorzugt ist R10 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C25-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.
  • Bevorzugt ist R19 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C25-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.
  • In der sogenannten dritten Ausführungsform der Polysiloxanverbindungen ist K weiterhin bevorzugt ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C3-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, noch bevorzugter ist K
    Figure 00440001
    worin R20 wie oben definiert ist.
  • In der sogenannten dritten Ausführungsform der Polysiloxane ist R2 bzw. R18 bevorzugt ein geradkettiger, cyclischer oder verzweigter C1-C18-Kohlenwasserstoffrest, der durch -O- oder -C(O)- unterbrochen und -OH substituiert und acetylenisch oder olefinisch sein kann. Bevorzugter ist R2 bzw. R18 C1-C6-Alkyl, -CH2CH=CH2, -CH2CH(OH)CH2OCH2CH=CH2, -CH2CCH, -C(O)CH3 oder -C(O)CH2CH3.
  • Bevorzugt ist R21 ein unsubstituierter C5-C17-Kohlenwasserstoffrest, der sich von den entsprechenden Fettsäuren ableitet oder aber hydroxylierte C3-C17-Reste aufweist, und aus der Gruppe von hydroxylierten Carbonsäuren, bevorzugt Saccharidcarbonsäuren stammt.
  • So ist R21 beispielsweise:
    Figure 00450001
  • In der sogenannten dritten Ausführungsform der Polysiloxane ist m bevorzugt 2 bis 100, und besonders bevorzugt 2 bis 50, n ist 0 bis 100, bevorzugt 0 bis 80, und besonders bevorzugt 10 bis 80, q ist 1 bis 50, bevorzugt 2 bis 50 besonders bevorzugt 2 bis 20, und noch bevorzugter ist q 2 bis 10, r ist 0 bis 100, bevorzugt 0 bis 50, besonders bevorzugt 0 bis 20, und noch bevorzugter ist r 0 bis 10.
  • Zur Herstellung der erfindungsgemäßen in der Wirkstoffkombination zu verwendenden Polysiloxan-Verbindungen der sogenannten dritten Ausführungsform wird zweckmäßig wiederum auf die Offenlegungsschrift WO 02/10257 verwiesen.
  • Eine besondere Ausführungsform der Polysiloxane (die im folgenden als sogenannte vierte Ausführungsform der erfindungsgemäß zu verwendenden Polysiloxane bezeichnet wird) wird durch die Polysiloxanverbindungen der allgemeinen Formel (IV) dargestellt: -[N4-K-S-K-N4-A-E-A']m- bzw. -[N4-K-S-K-N4-A'-E-A]m- (IV)worin m, K, S, -A-E-A'- und -A'-E-A- wie oben definiert sind, und
    N4 ein organischer Rest, der mindestens eine quartäre Ammoniumgruppe enthält, der allgemeinen Formel -(R12)N+(R13)- ist, worin R12 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest ist, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R13 die Bedeutungen von R12 aufweisen kann, oder eine Einfachbindung zu K oder R12 darstellt, und die Reste R12 und R13 gleich oder verschieden voneinander sein können.
  • Bevorzugt handelt es sich bei den Polysiloxanverbindungen der vierten Ausführungsform um Alkylenoxidmodifizierte polyquarternäre Polysiloxane der allgemeinen Formel (IV'), -[N4-K-S-K-N4-A-E-A]m- (IV')worin m = 2 bis 500,
    S -Si(R1)2-O[-Si(R1)2-O]-Si(R1)2-, worin
    R1 steht für C1-C22-Alkyl, C1-C22-Fluoralkyl oder Aryl,
    n 0 bis 1000,
    K einen zweiwertigen. oder dreiwertigen geradkettigen, cyclischen oder verzweigten C2-C20- Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -NR1, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    N eine quartäre Ammoniumstruktur -(R12)N+(R13)- ist, worin R12 ein einwertiger oder zweiwertiger geradkettigen, cyclischen oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R13 steht für R12 oder eine Einfachbindung zu K oder R12,
    A ist -CH2C(O)O-, -CH2CH2C(O)O- oder -CH2CH2CH2C(O)O-
    E ist eine Polyalkylenoxideinheit der Struktur -[CH2CH2O]q-[CH2CH(CH3)O]r-
    mit q = 1 bis 200 und
    r = 0 bis 200.
  • Zu den Herstellungsverfahren sei auf das bisher ausgeführte verwiesen.
  • Bevorzugtere Ausführungsformen dieser sogenannten vierten Ausführungsform Polysiloxane der Formel (IV) bzw. (IV') werden nachfolgend beschrieben.
  • Die Möglichkeit einer dreiwertigen Substruktur für K bedeutet, daß K verzweigt sein kann und dann mit zwei Bindungen an der Quartämierung von N4 beteiligt sein kann.
  • Die Möglichkeit einer zweiwertigen Substruktur für R12 bedeutet, daß es sich in diesen Fällen um eine cyclische Systeme bildende Struktur handelt, wobei R13 dann eine Einfachbindung zu R12 ist.
  • R12 ist bevorzugt -CH3, -CH2CH3, -(CH2)2CH3, -(CH2)3CH3, -(CH2)5CH3, -CH2CH2OH, -CH2CH2NHCOR22 oder -CH2CH2CH2NHCOR22, worin R22 einen geradkettigen, cyclischen oder verzweigten C1-C18-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, ist.
  • R12 und R13 können wie vorstehend erwähnt auch gemeinsam eine cyclische Struktur der Formeln
    Figure 00470001
  • Zu den bevorzugten Bedeutungen von R1 in der sogenannten vierten Ausführungsform der Polysiloxane kann auf die vorstehenden Ausführungen verwiesen werden.
  • Bevorzugt ist R12 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C16-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann.
  • In der sogenannten vierten Ausführungsform, ist K bevorzugt ein zweiwertiger oder dreiwertiger geradkettiger, cyclischer oder verzweigter C3-C16-Kohlenwasserstoffrest, der durch -O-, -NH-, -NR1-, -N-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, besonders bevorzugt ist K -CH2CH2CH2-, -CH2CH2CH2OCH2CHOHCH2- oder
    Figure 00480001
  • Bevorzugt ist R22 ein unsubstituierter C5-C17-Kohlenwasserstoffrest, der sich von den entsprechenden Fettsäuren ableitet oder aber hydroxylierte C3-C17-Reste aufweist, die auf hydroxylierte Carbonsäuren, bevorzugt Saccharidcarbonsäuren zurückgeführt worden können.
  • Bevorzugter ist R22:
    Figure 00480002
    m ist bevorzugt 2 bis 100, und besonders bevorzugt 2 bis 50. n ist 0 bis 100, bevorzugt 0 bis 80, und besonders bevorzugt 10 bis 80. q ist 1 bis 50, bevorzugt 2 bis 50, und besonders bevorzugt 2 bis 20, noch bevorzugter ist q 2 bis 10. r ist 0 bis 100, bevorzugt 0 bis 50, und besonders bevorzugt 0 bis 20, noch bevorzugter ist r 0 bis 10.
  • Der Begriff "C1-C22-Alkyl oder C1-C30-Kohlenwasserstoffrest", wie er vorstehend verwendet wird, bedeutet im Rahmen der vorliegenden Erfindung aliphatische Kohlenstoffwasserstoffverbindungen mit 1 bis 22 Kohlenstoffatomen bzw. 1 bis 30 Kohlenstoffatomen die geradkettig oder verzweigt sein können. Beispielhaft seien Methyl, Ethyl, Propyl, n-Butyl, Pentyl, Hexyl, Heptyl, Nonyl, Decyl, Undecyl, iso Propyl, Neopentyl, und 1,2,3 Trimethylhexyl aufgeführt.
  • Der Begriff "C1-C22-Fluoralkyl" bedeutet, wie er vorstehend verwendet wird, im Rahmen der vorliegenden Erfindung aliphatische Kohlenstoffwasserstoffverbindungen mit 1 bis 22 Kohlenstoffatomen die geradkettig oder' verzweigt sein können und mit mindestens einem Fluoratom substituiert sind. Beispielhaft seien Monofluormethyl, Monofluorethyl, 1,1,1-Trifluorethyl, Perflourethyl, 1,1,1-Trifluorpropyl, 1,2,2 Triflourbutyl aufgeführt.
  • Der Begriff "Aryl", wie er vorstehend verwendet wird, bedeutet im Rahmen der vorliegenden Erfindung unsubstituierte oder ein oder mehrfach mit OH, F, Cl, CF3 C1-C6-Alkyl, C1-C6-Alkoxy, C3-C7-Cycloalkyl, C2-C6-Alkenyl oder Phenyl substituiertes Phenyl. Der Ausdruck kann gegebenenfalls auch Naphthyl bedeuten.
  • Eine besondere Ausführungsform der erfindungsgemäßen Polysiloxane als Bestandteil a) des erfindungsgemäßen Wirkstoffkomplexes (die im folgenden als sogenannte fünfte Ausführungsform der Polysiloxane bezeichnet wird) wird durch die Polysiloxane der allgemeinen Formel (n dargestellt: [-N5-F1-N5-Y-]m worin
    Y eine Gruppe der Formel -K-S-K- und -A-E-A'- bzw. -A'-E-A- ist,
    worin m, K, S, -A-E-A'- und -A'-E-A- wie oben definiert sind, die Gruppen K, S, -A-E-A'- und -A'-E-A- innerhalb der Polysiloxane der allgemeinen Formel (V) gleich oder verschieden voneinander sein können, und das molare Verhältnis der Gruppe -K-S-K- und der Gruppe -A-E-A'- bzw. -A'-E-A- in der Polysiloxanverbindung der allgemeinen Formel (V) von 100: 1 bis 1: 100 ist,
    N5 eine Ammoniumgruppe der allgemeinen Formel -(R23)N+(R24)- ist, worin
    R23 Wasserstoff, ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann,
    R24 Wasserstoff, ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -C(O)-, C(S)- unterbrochen und mit -OH substituiert sein kann, oder eine Einfachbindung zu einem zweiwertigen Rest R23 darstellt, und die Reste R23 und R24 innerhalb der Gruppe -N5-F1-N5- sowie in der Polysiloxanverbindung gleich oder verschieden voneinander sein können,
    F1 ein zweiwertiger geradkettiger, cyclischer oder verzweigter Kohlenwasserstoffrest darstellt, der durch -O-, -NH-, -N-, -C(O)- oder -C(S)- oder durch eine Gruppe -E- unterbrochen sein kann, worin E wie oben definiert ist, und worin eine Mehrzahl von N5 und F1 jeweils gleich oder verschieden voneinander sein können.
  • Das molare Verhältnis der Gruppe -K-S-K- und der Gruppe -A-E-A'- bzw. -A'-E-A- in der Polysiloxanverbindung der allgemeinen Formel (V) liegt zwischen 100: 1 und 1:100. Dieses molare Verhältnis kann wie in der Offenlegungsschrift WO 02/10257 gezeigt, durch die Wahl des molaren Verhältnisses der Ausgangsverbindungen, insbesondere des Verhältnisses der erfindungsgemäß bevorzugt verwendeten (α,α-Halogencarbonsäurepolyalkylenoxidester-Verbindungen und der Polysiloxan-Bisepoxid-Verbindungen gesteuert werden. Die Eigenschaften der Produkte hängen wesentlich vom verwendeten Verhältnis der Ausgangsmaterialien, sowie der Länge der darin enthaltenen Polyalkylenoxid- bzw. Polysiloxanblöcke ab.
  • In einer bevorzugten Ausführungsform der sogenannten fünften Ausführungsform der Polysiloxane ist K ein zweiwertiger Kohlenwasserstoffrest mit mindestens 4 Kohlenstoffatomen, der eine Hydroxylgruppe aufweist und der durch ein Sauerstoffatom unterbrochen sein kann.
  • In einer bevorzugten Ausführungsform der sogenannten fünften Ausführungsform der Polysiloxane ist F1 ein zweiwertiger geradkettiger, cyclischer oder verzweigter C2-C30-Kohlenwasserstoffrest, der durch -O-, -NH-, -N-, -C(O)-, -C(S)- oder durch eine Gruppe -E- unterbrochen sein kann, worin E wie oben definiert ist, und worin die Kohlenstoffatome, die aus dem Rest E resultieren, nicht zu den 2 bis 30 Kohlenstoffatomen des C2-C30 Kohlenwasserstoffrest gezählt werden.
  • In einer weiteren bevorzugten Ausführungsform der sogenannten fünften Ausführungsform der Erfindung ist -N5-F1-N5- eine Gruppe der Formel: -N(R25R26)+-F2-N(R25R26)+ worin
    R25 ein einwertiger oder zweiwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S)- unterbrochen und mit -OH substituiert sein kann, besonders bevorzugt Methyl ist,
    R26 ein einwertiger geradkettiger, cyclischer oder verzweigter C1-C20-Kohlenwasserstoffrest, der durch -O-, -NH-, -C(O)-, -C(S) unterbrochen und mit -OH substituiert sein kann, besonders bevorzugt Methyl ist, oder eine Einfachbindung zu einem zweiwertigen Rest R25 darstellt, und die Reste R25 und R26 innerhalb der Gruppe -N5-F2-N5- sowie in der Polysiloxanverbindung gleich oder verschieden voneinander sein können,
    und
    F2 ein zweiwertiger geradkettiger, cyclischer oder verzweigter Kohlenwasserstoffrest ist, der durch -O-, -NH-, -N-, -C(O)-, -C(S)- unterbrochen sein kann.
  • In einer noch bevorzugteren Ausführungsform ist F2 eine verzweigte, bevorzugt geradkettige C1-C6- Alkandiyl-Gruppe, worunter eine 1,6-Hexandiyl- (bzw. Hexamethylen-) Gruppe bevorzugt ist.
  • In einer weiteren bevorzugten Ausführungsform. der sogenannten fünften Ausführungsform der Polysiloxanverbindungen ist -N5-F1-N5- eine Gruppe der Formel: -N(R27R28)+-F3-N(R27R28)+ worin
    R27 und R28 jeweils Wasserstoff, C1-C6-Alkyl oder Hydroxy (C1-C6)alkyl, bevorzugt Wasserstoff, Methyl oder -CH2CH2OH sind, und
    F3 ein zweiwertiger geradkettiger, cyclischer oder verzweigter Kohlenwasserstoffrest ist, der durch eine Gruppe -E- unterbrochen ist, worin E wie oben definiert ist.
  • F3 ist besonders bevorzugt eine Gruppe der Formel -D-E-D worin E wie oben definiert ist und D jeweils eine Einfachbindung oder eine geradkettige oder verzweigte C1-C6-Alkandiylgruppe ist, mit der Maßgabe, das D keine Einfachbindung ist, wenn es an ein endständiges Sauerstoffatom der Gruppe E bindet.
  • Bevorzugt wird die Gruppe -D-E-D- durch eine Gruppe der Formel -D-(OCH2CH2)v(OCH2CH(CH3))w-O-D dargestellt, worin D eine geradkettige oder verzweigte C1-C6-Alkandiylgruppe ist und r und q wie oben definiert sind. In der Gruppe -D-(OCH2CH2)q(OCH2CH(CH3))r-O-D- können die Ethylenoxid- und Propylenoxideinheiten beliebig angeordnet sein, z. B. als statistische Copolymereinheit oder als Blockcopolymereinheit.
  • v ist bevorzugt 1 bis 100, bevorzugter 1 bis 70, noch bevorzugter 1 bis 40.
  • w ist bevorzugt 0 bis 100, bevorzugter 0 bis 70, noch bevorzugter 0 bis 40.
  • In einer weiteren bevorzugten Ausführungsform der sogenannten fünften Ausführungsform der Erfindung wird die Gruppe -N5-F1-N5 durch eine Gruppe der Formel: -N+R25R26-F2-N+R25R26 und eine Gruppe der Formel: -N+R27R28-F3-N+R27R28 dargestellt, worin die Substituenten jeweils die vorstehenden Bedeutungen aufweisen.
  • Dies bedeutet, das die Polysiloxanverbindungen der allgemeinen Formel (V) aus zwei verschiedenen Typen der Gruppe -N5-F1-N5- aufgebaut sind.
  • In dieser Ausführungsform beträgt das molare Verhältnis der Gruppe -N+R25R26-F2-N+R25R26 zur Gruppe -N+R27R28-F3-N+R27R28 zweckmäßig 70:30 bis 95:5, bevorzugt 80:20 bis 90:10.
  • Die Polysiloxanverbindungen der allgemeinen Formel (V) können cylisch oder linear sein. Im Falle der linearen Verbindungen resultieren die endständigen Gruppen entweder aus den für die Herstellung verwendeten unten beschriebenen bifunktionellen Monomeren oder deren funktionalisierten Derivaten oder aus Monoaminen, die während der Polymerisation als Kettenabbruchmittel zugesetzt werden. Die aus der Verwendung der Monoamin-Kettenabbruchmittel resultierenden terminalen Gruppen liegen bevorzugt als Ammoniumgruppen, entweder durch Quartärnierung oder Protonierung vor.
  • In einer weiteren bevorzugten Ausführungsform der sogenannten fünften Ausführungsform der Polysiloxane steht K für eine der Gruppen der Formel:
    Figure 00540001
  • In der sogenannten fünften Ausführungsform der Polysiloxane liegt q bevorzugt im Bereich von 1 bis 50, insbesondere 2 bis 50, speziell 2 bis 20 und ganz speziell 2 bis 10, und r liegt im Bereich von 0 bis 100, insbesondere 0 bis 50, speziell 0 bis 20 und ganz speziell 0 bis 10.
  • In der sogenannten fünften Ausführungsform der Erfindung wird der organische oder anorganische Säurerest zur Neutralisation der aus der(n) Ammoniumgruppe(n) resultierenden Ladungen zweckmäßig ausgewählt aus anorganischen Resten, wie Chlorid, Bromid, Hydrogensulfat, Sulfat, bzw. organischen Resten, wie Acetat, Propionat, Octanoat, Decanoat, Dodecanoat, Tetradecanoat, Hexadecanoat, Octadecanoat und Oleat, wobei wie eingangs erwähnt Chlorid und Bromid bevorzugt aus der Umsetzung der Alkylhalogenidgruppen mit Amingruppen resultieren.
  • Weiterhin liegen die Polysiloxane der fünften Ausführungsform in protonierter Form als Aminsalze oder als Amine vor.
  • Die Polysiloxane der fünften Ausführungsform der Erfindung werden zweckmäßig hergestellt durch eines der Verfahren, welche in der Offenlegungsschrift WO 02/10257 beschrieben sind.
  • Die vorstehend beschriebenen Polyammonium-Polysiloxan Verbindungen können beispielsweise unter der Handelsbezeichnung Baysilone® von GE Bayer Silicones bezogen werden. Die Produkte mit den Bezeichnungen Baysilone TP 3911, SME 253 und SFE 839 sind dabei bevorzugt. Ganz besonders bevorzugt ist die Verwendung von Baysilone TP 3911 als Komponente a) der erfindungsgemäßen Wirkstoffkombination.
  • Die vorstehend beschriebenen Polyammonium-Polysiloxan Verbindungen werden in dem erfindungsgemäßen Wirkstoffkomplex in einer Menge von 0,01 bis 10 Gew.%, vorzugsweise 0,01 bis 7,5, besonders bevorzugt 0,01 bis 5,0 Gew.%, ganz besonders bevorzugt von 0,05 bis 2,5 Gew.% jeweils in Bezug auf die Gesamtzusammensetzung verwendet.
  • Bevorzugte Viskositäten der Polyammonium-Polysiloxan-Verbindungen liegen zwischen 0,1 und 5000 cSt, ganz besonders bevorzugte Viskositäten liegen zwischen 0,1 und 3000 cSt. Der bevorzugteste Bereich liegt zwischen 0,5 und 200 cSt. Der höchst bevorzugteste Bereich liegt zwischen 1 cSt und 50 cSt.
  • Innerhalb der Inhaltsstoffe a) der erfindungsgemäßen Wirkstoffkombination werden bevorzugt Dimethicone, Dimethiconole, Amodimethicone und Polyammonium-Polysiloxane sowie deren Mischungen verwendet. Besonders bevorzugt ist die Verwendung von Dimethiconen und Dimethiconolen sowie deren Mischungen. Ganz besonders bevorzugt ist die Verwendung von Dimethiconen. Selbstverständlich ist es erfindungsgemäß dabei höchst bevorzugt, wenn diese Substanzen in den bereits beschriebenen Molmassenbereichen und Viskositätsbereichen verwendet werden. Dies bedeutet für die Mischungen aus mindestens zwei Silikonen, dass es erfindungsgemäß höchst bevorzugt ist, wenn in diesem Falle die zuvor genannten Eigenschaften in den gleichen Molmassen und Viskositätsbereichen liegen. Dennoch ist es auch möglich, im Falle von Mischungen aus mindestens zwei Silikonen ausschließlich eine Silikonverbindung im bevorzugten Bereich der Molmassenverteilung und der Viskosität zu verwenden. In diesem Falle wird ganz besonders die Gruppe der Dimethicone im bevorzugten Bereich der Molmassenverteilung und der Viskosität verwendet. Ein höchst bevorzugtes Dimethicon ist das Handelsprodukt Dow Corning 200 mit einer Viskosität zwischen 0,1 und 50 cSt.
  • Die Inhaltsstoffe b) der erfindungsgemäßen Wirkstoffkombination sind ausgewählt aus der Gruppe der Esteröle.
  • Unter Esterölen sind zu verstehen die Ester von C6-C30- Fettsäuren mit C2-C30- Fettalkoholen. Sowohl die Fettsäuren als auch die Fettalkohole können linear, gesättigt oder ungesättigt, als auch verzweigt, gesättigt oder ungesättigt sein. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Besonders bevorzugt sind die Ester der Fettsäuren mit Alkoholen mit 2 bis 16 C-Atomen. Ganz besonders bevorzugt sind die Ester der Fettsäuren mit Alkoholen mit 2 bis 6 C-Atomen. Höchst bevorzugt sind die Ester der Fettsäuren mit 2 bis 4 C-Atomen. Die Fettsäuren weisen bevorzugt 6 bis 22 C-Atome auf. Besonders bevorzugt weisen die Fettsäuren eine C-Kette von 6 bis 18 C-Atomen auf. Ganz besonders bevorzugt weisen die Fettsäuren eine C-Kette von 12 bis 18 C-Atomen auf. Am bevorzugtesten sind Esteröle mit einer C-Kettenlänge der Fettsäure von 12 bis 18 C-Atomen und einer C-Kettenlänge des Alkoholes von 2 bis 6 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen.
  • Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
  • Die erfindungsgemäßen Esteröle werden in einer Menge von 0,01 bis 20 Gew.% in den erfindungsgemäßen Zusammensetzungen verwendet. Mengen von 0,1 bis 10 Gew.% sind dabei bevorzugt. Besonders bevorzugt sind Mengen von 0,1 bis 7,5 Gew.%. Ganz besonders bevorzugt sind Mengen von 0,1 bis 5 Gew.%.
  • Das Mischungsverhältnis von Polysiloxanverbindung zu Esteröl beträgt erfindungsgemäß 10:1 bis 1:10. Bevorzugt ist ein Mischungsverhältnis von 5:1 bis 1:5. Besonders bevorzugt ist ein Mischungsverhältnis von 2,5 : 1 bis 1:2,5. Am bevorzugtesten ist ein Mischungsverhältnis von 1,5:1 bis 1:1,5.
  • Die Gesamtmenge an Polysiloxanverbindung und Esteröl in den erfindungsgemäßen Mitteln beträgt 0,1 bis 20 Gew.%. Bevorzugt sind Mengen von 0,1 bis 10 Gew.%. Besonders bevorzugt sind Mengen von 0,2 bis 7,5 Gew.% und ganz besonders bevorzugt sind Mengen von 0,3 bis 5 Gew.%.
  • Weitere besonders bevorzugte Inhaltsstoffe c), welche mit der erfindungsgemäßen Wirkstoffkombination in hervorragender Weise zusammenwirken, sind ausgewählt aus mindestens einer der Gruppen der Polymere, der Naturstoffe bzw. der naturanlogen Stoffe, der Fettstoffe und der oberflächenaktiven Verbindungen, insbesondere der milden oberflächenaktiven Verbindungen.
  • Die erste Gruppe der Inhaltsstoffe c) sind Polymere (G). In einer ersten bevorzugten Ausführungsform werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als prinzipiell geeignet erwiesen haben. Innerhalb der Gruppe der Polymere erweisen sich die geladenen Polymeren als vorteilhafter gegenüber den nichtionischen Polymeren. Bevorzugt innerhalb der geladenen Polymere sind wiederum die kationischen und die amphoteren Polymere.
  • Im folgenden werden einige Beispiele von besonders bevorzugten Polymeren beschrieben.
  • Unter kationischen Polymeren sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
  • Homopolymere der allgemeinen Formel (G1-I),
    Figure 00590001
    in der R1=-H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X- ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt:
    • – R1 steht für eine Methylgruppe
    • – R2, R3 und R4 stehen für Methylgruppen
    • – m hat den Wert 2.
  • Als physiologisch verträgliches Gegenionen X- kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
  • Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Solche Produkte sind beispielsweise unter den Bezeichnungen Rheocare® CTH (Cosmetic Rheologies) und Synthalen® CR (Ethnichem) im Handel erhältlich. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
  • Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral 0il) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
  • Copolymere mit Monomereinheiten gemäß Formel (G1-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-C1-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
  • Weitere bevorzugte kationische Polymere sind beispielsweise
    • – quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
    • – kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
    • – kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
    • – kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte,
    • – polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
    • – Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoalkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
    • – Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
    • – quaternierter Polyvinylalkohol,
    • – sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette,
    • – Vinylpyrrolidon-Vinylcaprolactam-Acrylat-Terpolymere, wie sie mit Acrylsäureestern und Acrylsäureamiden als dritter Monomerbaustein im Handel beispielsweise unter den Bezeichnungen Gaffix® VC 713 oder Aquaflex® SF 40 angeboten werden.
  • Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
  • Weitere in den erfindungsgemäßen Mitteln einsetzbare kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
  • Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer®JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.
  • Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
  • Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
  • Die kationischen Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Weiterhin ist es erfindungsgemäß bevorzugt, wenn kationische Polymere als Inhaltsstoff c) des Wirkstoffkomplexes A verwendet werden, wenn das Verhältnis zwischen den Inhaltsstoffen b) und c) 5:1 bis 1:5, bevorzugt 3:1 bis 1:3, besonders bevorzugt 2:1 bis 1:2 und ganz besonders bevorzugt 1:2 bis 1:1 beträgt.
  • Ganz besonders bevorzugte kationische Polymere sind kationische Polymere auf der Basis von Cellulose, Stärke und/oder Guar. Derartige Polymere werden beispielsweise mit den Markenbezeichnungen Polymer® JR, Cosmedia® Guar, Jaguar® oder Structure® im Handel vertrieben. Weiterhin ist es ganz besonders bevorzugt, wenn das Verhältnis der beiden Wirkstoffe untereinander, den Polyammonium-Polysiloxan Verbindungen a) und den kationischen Polymeren b), 1:1 bis 1:5 beträgt.
  • Bei den anionischen Polymeren (G2) handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2-methylpropansulfonsäure und Acrylsäure.
  • Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
  • Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfon-säure, das beispielsweise unter der Bezeichnung Rheothik®11-80 im Handel erhältlich ist.
  • Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
  • Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernetzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
  • Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich, als erfindungsgemäß besonders wirksam erwiesen.
  • Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
  • Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnung Stabileze® QM im Handel erhältlich.
  • Die anionischen Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Weiterhin ist es erfindungsgemäß bevorzugt, wenn anionische Polymere als Inhaltsstoff b) des Wirkstoffkomplexes A verwendet werden, wenn das Verhältnis zwischen den Inhaltsstoffen b) und c) 1:10 bis 1:5, bevorzugt 1:5 bis 1:3, besonders bevorzugt 1:2 bis 1:1 beträgt.
  • Weiterhin können als Polymere amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
  • Amphotere Polymere sind ebenso wie die kationischen Polymere ganz besonders bevorzugte Polymere.
  • Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
  • Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
    • (a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5A(-) (G3-I)in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4 und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A(-) das Anion einer organischen oder anorganischen Säure ist, und
    • (b) monomeren Carbonsäuren der allgemeinen Formel (G3-II), R6-CH=CR7-COOH (G3-II)in denen R6 und R7 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
  • Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH-Gruppe und A(-) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
  • Die amphoteren Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Weiterhin ist es erfindungsgemäß bevorzugt, wenn amphotere Polymere als Inhaltsstoff b) des Wirkstoffkomplexes A verwendet werden, wenn das Verhältnis zwischen den Inhaltsstoffen a) und b) 5:1 bis 1:5, bevorzugt 3:1 bis 1:3, besonders bevorzugt 2:1 bis 1:2 und ganz besonders bevorzugt 1:2 bis 1:1 beträgt.
  • Ganz besonders bevorzugte amphotere Polymere sind unter der Handelsbezeichnung Merquat® verfügbar. Innerhalb dieser Typen variiert die kationische Ladung in den unterschiedlichen Produkten, so dass diese Produktreihe sowohl kationische als auch amphotere Polymere umfasst. Ein insbesondere bevorzugtes amphoteres Polymer dieser Reihe ist das Produkt Merquat 280.
  • Die erfindungsgemäßen Mittel können als Inhaltsstoff b) in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
  • Geeignete nichtionogene Polymere sind beispielsweise:
    • – Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
    • – Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) und Natrosol®-Typen (Hercules) vertrieben werden.
    • – Stärke und deren Derivate, insbesondere Stärkeether, beispielsweise Structure® XL (National Starch), eine multifunktionelle, salztolerante Stärke;
    • – Schellack
    • – Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
    • – Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 °C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
    • – Glycosidisch substituierte Silicone.
  • Die nichtionischen Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
  • Unter dem Begriff Polymer sind erfindungsgemäß ebenfalls spezielle Zubereitungen von Polymeren wie sphärische Polymerpulver zu verstehen. Es sind verschiedene Verfahren bekannt, solche Mikrokugeln aus verschiedenen Monomeren herzustellen, z. B. durch spezielle Polymerisationsverfahren oder durch Auflösen des Polymeren in einem Lösungsmittel und Versprühen in ein Medium, in dem das Lösungsmittel verdunsten oder aus den Teilchen herausdiffundieren kann. Ein solches Verfahren ist z. B. aus EP 466 986 B1 bekannt. Geeignete Polymerisate sind z. B. Polycarbonate, Polyurethane, Polyacrylate, Polyolefine, Polyester oder Polyamide. Besonders geeignet sind solche sphärischen Polymerpulver, deren Primärpartikeldurchmesser unter 1 μm liegt. Solche Produkte auf Basis eines Polymethacrylat-Copolymers sind z. B. unter dem Warenzeichen Polytrap®Q5-6603 (Dow Corning) im Handel. Andere Polymerpulver, z. B. auf Basis von Polyamiden (Nylon 6, Nylon 12) sind mit einer Teilchengröße von 2–10 μm (90 %) und einer spezifischen Oberfläche von ca. 10 m2/g unter der Handelsbezeichnung Orgasol® 2002 DU Nat Cos (Atochem S.A., Paris) erhältlich. Weitere sphärische Polymerpulver, die für den erfindungsgemäßen Zweck geeignet sind, sind z. B. die Polymethacrylate (Micropearl M) von SEPPIC oder (Plastic Powder A) von NIKKOL, die Styrol-Divinylbenzol-Copolymeren (Plastic Powder FP) von NIKKOL, die Polyethylen- und Polypropylen-Pulver (ACCUREL EP 400) von AKZO, oder auch Silikonpolymere (Silicone Powder X2-1605) von Dow Corning oder auch sphärische Cellulosepulver.
  • Die zuvor beschriebenen Polymerpulver sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Polymere können unabhängig von ihrer chemischen Struktur und Ladung auch nach ihrer Funktion in kosmetischen Mitteln charakterisiert werden. Insbesondere ist zu unterscheiden in:
    Antistatische Polymere: Mit Hilfe der elektrischen Eigenschaften dieser Polymere werden die Oberflächen der mit kosmetischen Mitteln behandelten Substrate Haut, Nägel und keratinische Fasern in ihrem elektrischen Potential beeinflußt. Beispielsweise in der Haarpflege wird auf diesem Weg der als „fly-away-Effekt" bezeichnete und auf der elektrostatischen Abstoßung der Haarfasern beruhende Effekt vermindert. Aber auch auf der Hautoberfläche wird auf diesem Wege das Hautgefühl beeinflußt. Einige dieser Polymere entfalten dabei ihre optimale Wirkung in einem bestimmten pH-Bereich.
  • Festigende Polymere: Polymere, welche das Haar fixieren, die sogenannten festigenden Polymere; tragen zum Halt und/oder zum Aufbau des Haarvolumens, der Haarfülle der Gesamtfrisur bei. Film bildende Polymere und Gumme sind daher generell typische Substanzen für Haarbehandlungsmittel wie Haarfestiger, Haarschäume, Haarwachse, Haarsprays. Substanzen, welche dem Haar weiterhin hydrophobe Eigenschaften verleihen, sind hierbei bevorzugt, weil sie die Tendenz des Haares Feuchtigkeit, also Wasser zu absorbieren, verringern. Dadurch wird das schlaffe Herunterhängen der Haarsträhnen vermindert und somit wird ein langanhaltender Frisurenaufbau und -erhalt gewährleistet. Als Testmethode hierfür wird häufig der sogenannte curl-retention-Test angewendet. Diese polymeren Substanzen können weiterhin erfolgreich in leave-on und rinse-off Haarkuren oder Shampoos eingearbeitet werden.
  • Filmbildende Polymere: Unter filmbildenden Polymeren sind solche Polymere zu verstehen, welche beim Trocknen einen kontinuierlichen Film auf der Haut, dem Haar oder den Nägeln hinterlassen. Derartige Filmbildner können in den unterschiedlichsten kosmetischen Produkten wie beispielsweise Gesichtsmasken, Make-up, Haarfestigern, Haarsprays, Haargelen, Haarwachsen, Haarkuren, Shampoos oder Nagellacken verwendet werden.
  • Emulsionsstabilisierende Polymere: Selbstverständlich zählen auch die emulsionsstabilisierenden Polymere zu den erfindungsgemäß bevorzugten Polymeren. Hierunter sind Polymere zu verstehen, welche den Aufbau und die Stabilisierung von Emulsionen (O/W und W/O sowie multiple Emulsionen) wesentlich unterstützen. Tenside und Emulgatoren sind selbstverständlich die wesentlichen Bestandteile, jedoch tragen die stabilisierenden Polymere durch eine positive Beeinflussung der kontinuierlichen oder der dispersen Phase zu einer Verringerung der Koaleszenz der emulgierten Tröpfchen bei. Diese positive Beeinflussung kann auf einer elektrischen Abstoßung, einer Erhöhung der Viskosität oder einer Filmbildung auf der Tröpfchenoberfläche beruhen.
  • Lipidverdickende Polymere: Hierzu werden Polymere eingesetzt, welche nicht wasserlöslich aber kompatibel mit Lipiden sind. Sie werden auch zur Gelbildung von kosmetischen Mitteln mit hohen Lipidanteilen verwendet.
  • Suspendierhilfsmittel: Eine weitere wesentliche Funktion von Polymeren in kosmetischen Mitteln ist die Funktion als Suspendierhilfsmittel.
  • Suspendierhilfsmittel erleichtern das Verteilen von Feststoffen in Flüssigkeiten. Hierbei belegen die Polymere durch Adsorption die Oberfläche der Feststoffteilchen und verändern dadurch die Oberflächeneigenschaften der Feststoffe.
  • Wässrige Phasen verdickende Polymere: Polymere können die Viskosität von wäßrigen und nicht-wäßrigen Phasen in kosmetischen Zubereitungen erhöhen. In wäßrigen Phasen beruht ihre die Viskosität erhöhende Funktion auf ihrer Löslichkeit in Wasser oder ihrer hydrophilen Natur. Sie werden sowohl in tensidischen als auch in emulsionsförmigen Systemen angewendet.
  • Die Wahl des geeigneten Polymeren richtet sich auch nach der Verwendung der erfindungsgemäßen Zusammensetzung. So wird beispielsweise besonders bevorzugt ein filmbildendes kationisches oder amphoteres Polymer ausgewählt, wenn die Zusammensetzung als Stylingmittel oder Festiger verwendet werden soll.
  • Die Polymere (G) sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
  • Insbesondere bei der Verwendung der ionischen Polymere, ganz besonders bevorzugt bei der Verwendung der kationischen und/oder der amphoteren Polymere wird aus der kosmetischen Zusammensetzung eine deutlich erhöhte Menge an weiteren Wirkstoffen auf der Haut oder dem Haar abgeschieden. Experimentelle Ergebnisse zeigen, dass sowohl die Menge an abgeschiedenem Polysiloxan a) als auch der abgeschiedenen Menge an weiteren Wirkstoffen wie beispielsweise Antischuppenmitteln wie Octopirox, Metall-Aminosäurekomplexen wie beispielsweise Mg, Zn, Ca, Mn, Fe Komplexen von Glutamin, Asparagin, Arginin, Cystein, Methionin, Alanin, Lysin, Histidin, Ornithin, Citrullin, Serin, Prolin, Hydroxyprolin etc. deutlich durch die erfindungsgemäße Wirkstoffzusammensetzung aus den Polysiloxanverbindungen a) und den Esterölen b) erhöht wird.
  • Gleichzeitig erhöht diese Wirkstoffkombination die Penetration von Wirkstoffen bis zu einem Molgewicht von etwa 1000 Dalton ins Haar. Dies wurde insbesondere gefunden für Aminosäuren, Biotin, Panthenol, Pantolacton, Niacinamid, organischen Säuren mit einem Molgewicht bis zu 1000 Dalton sowie deren Salzen, insbesondere deren Na, K, Mg, Ca, Zn, Cu, Fe und Ammoniumsalzen N+R1R2R3R4. Die Reste R1 bis R4 stehen dabei unabhängig voneinander für H, -CH3, -C2H5, -CH2CH2CH3, iso-Propyl, -CH2CH2CH2CH3, iso-Butyl und Pentyl, iso-Pentyl sowie Neopentyl.
  • Weiterhin wurde gefunden, dass die äußere Haut- und Haarstruktur deutlich glatter und weniger rauh ist. Dies wurde sowohl in einem Testpannel aus geschulten Personen, als auch objektiv mit Hilfe der AFM (atomic force microscopy) Methode festgestellt.
  • Schließlich zeigen experimentelle Befunde, dass die erfindungsgemäße Wirkstoffkombination besonders gut geeignet ist, um Parfümöle oder Duftstoffe auf der Haut und dem Haar in erhöhter Menge abzuscheiden. Gleichzeitig verbleiben die Parfümöle und Duftstoffe deutlich länger auf der Haut oder dem Haar haften. Dies führt zu einer erhöhten Akzeptanz derartiger Zusammensetzungen beim Verbraucher. Diese Ergebnisse sind besonders relevant für Zusammensetzungen wie Duschbad, Schaumbad, Shampoo, Gesichtsreiniger, Deo- und Antitranspirantien, Wellmittel, Stylingmittel sowie Haut- und Haarpflegemittel.
  • Aufgrund dieser Ergebnisse kann es ganz besonders bevorzugt sein, wenn nicht nur ein weiterer Inhaltsstoff c) im erfindungsgemäßen Wirkstoffkomplex verwendet wird, sondern mindestens zwei weitere Inhaltsstoffe c), ganz besonders, wenn der zweite Inhaltsstoff c) ausgewählt ist aus den Naturstoffen und/oder den naturanalogen Stoffen und hierbei wiederum insbesondere deutlich bevorzugt, wenn mindestens einer der weiteren Inhaltsstoffe der Gruppe c) ausgewählt ist aus der Gruppe der Proteinhydrolysate, der Vitamine oder der Pflanzenextrakte, wobei die höchste Bevorzugung eine Auswahl aus den Aminosäuren, den Vitaminen der A, B und E-Reihe sowie ein 2-Pyrrolidon-5-carbonsäurederivat ist.
  • Als weiterer Inhaltsstoff c) des erfindungsgemäßen Wirkstoffkomplexes A eignen sich in hervorragender Weise Naturstoffe und/oder naturanaloge Stoffe.
  • Zu den Naturstoffen und den naturanalogen Stoffen sind zu zählen 2-Pyrrolidinon-5-carbonsäure und deren Derivate, Proteinhydrolysate und deren Derivate, Vitamine, deren Derivate und Vorstufen sowie schließlich Pflanzenextrakte.
  • 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) ist eine weitere Substanzgruppe, welche als Inhaltsstoff b) des erfindungsgemäßen Wirkstoffkomplexes geeignet ist. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen vorzugsweise 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5 und insbesondere 0,1 bis 3 Gew.%.
  • Wenn die erfindungsgemäße Wirkstoffkombination enthaltend eine Polysiloxan Verbindung a) und ein Esteröl b) und als weiterer Inhaltsstoff c) eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) enthält, wird die Feuchtigkeit von damit behandelter Haut und Haaren sowie das Haut- und Haargefühl im nassen wie im trockenen Zustand deutlich gesteigert. Dieser Effekt wird sowohl experimentell als auch im Panelltest mit Probanden bestätigt.
  • Der erfindungsgemäße Inhaltsstoff c) der zusätzlich zum erfindungsgemäßen Wirkstoffkompiexes (A) verwendet wird, kann weiterhin ein Proteinhydrolysat und/oder dessen Derivat (P) sein.
  • Diese erfindungsgemäße synergistische Kombination bewirkt insbesondere eine Steigerung der Milde und der Hautverträglichkeit aber auch einen feinen cremigen Schaum. Dieser in seiner Struktur sehr feine, cremige und als äußerst angenehm sich anfühlender Schaum wird dabei in allen Zusammensetzungen erzielt, in welchen oberflächenaktive Substanzen enthalten sind. Insbesondere jedoch in tensidischen Zusammensetzungen. Die Wirksamkeit des erfindungsgemäßen Wirkstoffkomplexes (A) kann dabei weiterhin durch die gleichzeitige Verwendung von Polymeren und/oder Penetrations- und Quellhilfsmitteln gesteigert werden. In diesen Fällen verbleibt auch nach der Anwendung der jeweiligen Zusammensetzung deutlich mehr Proteinhydrolysat oder deren Derivat auf der Oberfläche von Haut oder Haar zurück, was zu einer verbesserten Wirkung führt. Haut und Haar sind dadurch deutlich in ihrer Struktur gestärkt und geglättet. Auch dieser Effekt ist eindeutig mit objektiven Wirkungsnachweisen wie beispielsweise der Messung der Kämmkräfte des nassen und des trockenen Haares, der Messung der Reißkräfte oder der Messung des Torsionswinkels auf der Haut nachweisbar. Eine Bestätigung dieser Resultate findet sich auch in den Ergebnissen der Verbraucherteste wieder.
  • Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch β-Aminosäuren und deren Derivate wie β-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgewicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton. Selbstverständlich umfasst die vorliegende erfindungsgemäße Lehre auch, dass im Falle der Aminosäuren diese in Form von Derivaten, wie beispielsweise der N-Acylderivate, der N-Alkyl oder der O-Ester vorliegen können. Im Falle der N-acylderivate ist die Acylgruppe eine Formylrest, ein Acetylrest, ein Propionylrest, ein Butyrylrest oder der Rest einer geradkettigen, verzweigten oder unverzweigten, gesättigten oder ungesättigten Fettsäure mit einer Kettenlänge von 8 bis 30 C-Atomen. Im Falle einer N-Alkylderivate kann die Alkylgruppe linear, verzweigt, gesättigt oder ungesättigt sein und hat eine C-Kettenlänge von 1 bis 30 C-Atomen. Im Falle der O-Ester sind die der Veresterung zugrunde liegenden Alkohole Methanol, Ethanol, Isopropanol, Butanol, Isobutanol, Pentanol, Neopentanol, Isopentanol, Hexanole, Heptanole, Capryl- oder Capronalkohol, Octanole, Nonanole, Decanole, Dodecanole, Lauranole, insbesondere gesättigte oder ungesättigte, lineare oder verzweigte Alkohole mit einer C-Kettenlänge von 1 bis 30 C-Atomen. Selbstverständlich können die Aminosäuren sowohl am N-Atom als auch am O-Atom gleichzeitig derivatisiert sein. Selbstverständlich können die Aminosäuren auch in Salzform, insbesondere als Mischsalze zusammen mit Genusssäuren verwendet werden. Dies kann erfindungsgemäß bevorzugt sein.
  • Als Beispiele für Aminosäuren und deren Derivaten als erfindungsgemäße Proteinhydrolysate werden genannt: Alanin, Arginin, Carnitin, Creatin, Citrullin, Cystathionin, Cystein, Cystin, Cystinsäure, Glycin, Histidin, Homocystein, Homoserin, Isoleucin, Lanthionin, Leucin, Lysin, Methionin, Norleucin, Norvalin, Ornithin, Phenylalanin, Prolin, Hydroxyprolin, Sarcosin, Serin, Threonin, Tryptophan, Thyronin, Tyrosin, Valin, Asparaginsäure, Asparagin, Glutaminsäure und Glutamin. Bevorzugte Aminosäuren sind Alanin, Arginin, Glycin, Histidin, Lanthionin, Leucin, Lysin, Prolin, Hydroxyprolin Serin und Asparagin. Ganz besonders bevorzugt werden verwendet Alanin, Glycin, Histidin, Lysin, Serin und Arginin. Am bevorzugtesten werden Glycin, Histidin, Lysin und Serin verwendet.
  • Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
  • Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiβ-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
  • Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
  • Weitere erfindungsgemäß bevorzugte Proteinhydrolysate sind maritimen Ursprunges. Hierzu zählen beispielsweise Kollagenhydrolysate von Fischen oder Algen sowie Proteinhydrolysate von Muscheln bzw. Perlenhydrolysate.
  • Perlen von Muscheln bestehen im wesentlichen aus anorganischen und organischen Calciumsalzen, Spurenelementen und Proteinen. Perlen lassen sich auf einfache Weise aus kultivierten Muscheln gewinnen. Die Kultivierung der Muscheln kann sowohl in Süßwasser als auch in Meereswasser erfolgen. Dies kann sich auf die Inhaltsstoffe der Perlen auswirken. Erfindungsgemäß bevorzugt ist ein Perlenextrakt, welcher von in Meeres- bzw. Salzwasser kultivierten Muscheln stammt. Die Perlen bestehen zu einem großen Teil aus Aragonit (Calciumcarbonat), Conchiolin und einem Albuminoid. Letztere Bestandteile sind Proteine. Weiterhin sind in Perlen noch Magnesium- und Natriumsalze, anorganische Siliciumverbindungen sowie Phosphate enthalten.
  • Zur Herstellung des Perlenextraktes werden die Perlen pulverisiert. Danach werden die pulverisierten Perlen mit den üblichen Methoden extrahiert. Als Extraktionsmittel zur Herstellung der Perlenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter Wasser sind dabei sowohl demineralisiertes Wasser, als auch Meereswasser zu verstehen. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Glycerin, Diglycerin, Triglycerin, Polyglycerin, Ethylenglykol, Propylenglykol und Butylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit demineralisiertem Wasser oder Meereswasser, bevorzugt. Perlenextrakte auf Basis von Wasser/Glyceringemischen haben sich als besonders geeignet erwiesen. Je nach Extraktionsbedingungen können die Perlenproteine (Conchiloin und Albuminoid) weitestgehend in nativem Zustand oder bereits teilweise oder weitestgehend als Proteinhydrolysate vorliegen. Bevorzugt ist ein Perlenextrakt, in welchem Conchiolin und Albuminoid bereits teilweise hydrolysiert vorliegen. Die wesentlichen Aminosäuren dieser Proteine sind Glutaminsäure, Serin, Alanin, Glycin Asparaginsäure und Phenylalanin. In einer weiteren besonders bevorzugten Ausgestaltung kann es vorteilhaft sein, wenn der Perlenextrakt zusätzlich mit mindestens einer oder mehreren dieser Aminosäuren diesen Aminosäuren angereichert wird. In der bevorzugtesten Ausführungsform ist der Perlenextrakt angereichert mit Glutaminsäure, Serin und Leucin.
  • Weiterhin findet sich je nach Extraktionsbedingungen, insbesondere in Abhängigkeit von der Wahl des Extraktionsmittels ein mehr oder weniger großer Anteil an Mineralien und Spurenelementen im Extrakt wieder. Ein bevorzugter Extrakt enthält organische und/oder anorganische Calciumsalze sowie Magnesium- und Natriumsalze, anorganische Siliciumverbindungen und/oder Phosphate. Ein ganz besonders bevorzugter Perlenextrakt enthält mindestens 75 %, bevorzugt 85 %, bevorzugter 90 % und ganz besonders bevorzugt 95 % aller Inhaltsstoffe der natürlich vorkommenden Perlen.
  • Beispiele für erfindungsgemäße Perlenextrakte sind die Handelsprodukte Pearl Protein Extract BG® oder Crodarom® Pearl.
  • In den kosmetischen Zusammensetzungen ist einer der zuvor beschriebenen Perlenextrakte in einer Menge von mindestens 0,01 bis zu 20 Gew.% enthalten. Bevorzugt werden Mengen des Extraktes von 0,01 bis zu 10 Gew.%, ganz besonders bevorzugt Mengen von 0,01 bis 5 Gew.% bezogen auf die gesamte kosmetische Zusammensetzung verwendet.
  • Ein weiteres ganz besonderes Proteinhydrolysat wird aus der Seide gewonnen.
  • Seide ist ein kosmetisch sehr interessantes Faserprotein Seide. Unter Seide versteht man die Fasern des Kokons des Maulbeer-Seidenspinners (Bombyx mori L.). Die Rohseidenfaser besteht aus einem Doppelfaden Fibroin. Als Kittsubstanz hält Sericin diesen Doppelfaden zusammen. Seide besteht zu 70–80 Gew.% aus Fibroin, 19–28 Gew.% Sericin, 0,5–1 Gew.% aus Fett und 0,5–1 Gew.% aus Farbstoffen und mineralischen Bestandteilen.
  • Die wesentlichen Bestandteile des Sericin sind mit ca. 46 Gew.% Hydroxyaminosäuren. Das Sericin besteht aus einer Gruppe von 5 bis 6 Proteinen. Die wesentlichen Aminosäuren des Sericines sind Serin (Ser, 37 Gew.%), Aspartat (Asp, 26 Gew.%), Glycin (Gly, 17 Gew.%), Alanin (Ala), Leucin (Leu) und Tyrosin (Tyr).
  • Das wasserunlösliche Fibroin ist zu den Skleroproteinen mit langkettiger Molekülstruktur zu zählen. Die Hauptbestandteile des Fibroin sind Glycin (44 Gew.%), Alanin (26 Gew.%), und Tyrosin (13 Gew.%). Ein weiteres wesentliches Strukturmerkmal des Fibroines ist die Hexapeptidsequenz Ser-Gly-Ala-Gly-Ala-Gly.
  • Technisch ist es auf einfache Art und Weise möglich, die beiden Seidenproteine voneinander zu trennen. So verwundert es nicht, daß sowohl Sericin als auch Fibroin als Rohstoffe zur Verwendung in kosmetischen Produkten jeweils für sich allein bekannt sind. Weiterhin sind Proteinhydrolysate und -derivate auf der Basis der jeweils einzelnen Seidenproteine bekannte Rohstoffe in kosmetischen Mitteln. So wird beispielsweise Sericin als solches seitens der Fa. Pentapharm Ltd. als Handelsprodukt mit der Bezeichnung Sericin Code 303-02 vertrieben. Weitaus häufiger noch wird Fibroin als Proteinhydrolysat mit unterschiedlichen Molekulargewichten im Markt angeboten. Diese Hydrolysate werden insbesondere als "Seidenhydroylsate" verstanden. So wird beispielsweise unter der Handelsbezeichnung Promois® Silk hydrolysiertes Fibroin mit mittleren Molekulargewichten zwischen 350 und 1000 vertrieben. Die DE 31 39 438 A1 beschreibt kolloidale Fibroinlösungen als Zusatz in kosmetischen Mitteln.
  • Die positiven Eigenschaften der Seidenproteinderivate aus Sericin und Fibroin sind jeweils für sich genommen in der Literatur bekannt. So beschreibt die Verkaufsbroschüre der Fa. Pentapharm die kosmetischen Effekte des Sericines auf der Haut als reizlindernd, hydratisierend und filmbildend. Die Eigenschaften eines Shampoos enthaltend Sericin als pflegende Komponente werden in der "Ärztlichen Kosmetologie 17, 91-110 (1987)" von W. Engel et al. referiert. Die Wirkung eines Fibroinderivates wird beispielsweise in der DE 31 39 438 A1 als pflegend und avivierend für das Haar beschrieben. In keiner der zitierten Schriften findet sich jedoch auch nur der geringste Hinweis auf eine synergistische Steigerung der positiven Wirkungen der Seidenproteine und deren Derivate bei einer gleichzeitigen Verwendung von Sericin und Fibroin bzw. deren Derivaten und/oder Hydrolysaten bei einer gleichzeitigen Verwendung der erfindungsgemäßen Polyammonium-Polysiloxan Verbindung.
  • Erfindungsgemäß bevorzugt können als Wirkstoffe b) im Wirkstoffkomplex (A) verwendet werden:
    • – natives Sericin,
    • – hydrolysiertes und/oder weiter derivatisiertes Sericin, wie beispielsweise Handelsprodukte mit den INCI-Bezeichnungen Sericin, Hydrolyzed Sericin, oder Hydrolyzed Silk,
    • – eine Mischung aus den Aminosäuren Serin, Aspartat und Glycin und/oder deren Methyl, Propyl, iso-Propyl, Butyl, iso-Butylestern, deren Salze wie beispielsweise Hydrochloride, Sulfate, Acetate, Citrate, Tartrate, wobei in dieser Mischung das Serin und/oder dessen Derivate zu 20 bis 60 Gew.%, das Aspartat und/oder dessen Derivate zu 10–40 Gew.% und das Glycin und/oder dessen Derivate zu 5 bis 30 Gew.% enthalten sind, mit der Maßgabe, daß sich die Mengen dieser Aminosäuren und/oder deren Derivate vorzugsweise zu 100 Gew.% ergänzen,
    • – sowie deren Mischungen.
  • Erfindungsgemäß können als Wirkstoffe b) weiterhin im Wirkstoffkomplex (A) verwendet werden:
    • – natives, in eine lösliche Form überführtes Fibroin,
    • – hydrolysiertes und/oder weiter derivatisiertes Fibroin, besonders teilhydrolisiertes Fibroin, welches als Hauptbestandteil die Aminosäuresequenz Ser-Gly-Ala-Gly-Ala-Gly enthält,
    • – die Aminosäuresequenz Ser-Gly-Ala-Gly-Ala-Gly,
    • – eine Mischung der Aminosäuren Glycin, Alanin und Tyrosin und/oder deren Methyl, Propyl, iso-Propyl, Butyl, iso-Butylestern, deren Salze wie beispielsweise Hydrochloride, Sulfate, Acetate, Citrate, Tartrate, wobei in dieser Mischung das Glycin und/oder dessen Derivate in Mengen von 20–60 Gew.%, das Alanin und dessen Derivate in Mengen von 10–40 Gew,% und das Tyrosin und dessen Derivate in Mengen von 0 bis 25 Gew.% enthalten sind, mit der Maßgabe, daß sich die Mengen dieser Aminosäuren und/oder deren Derivate vorzugsweise zu 100 Gew.% ergänzen,
    • – sowie deren Mischungen.
  • Wenn in den erfindungsgemäßen Zusammensetzungen enthaltend den Wirkstoffkomplexes (A) gleichzeitig beide Seidenproteinhydrolysate und/oder deren Derivate verwendet werden, kann es erfindungsgemäß bevorzugt sein, daß mindestens eine der beiden Seidenbestandteile, Fibroin oder Sericin in der nativen oder allenfalls löslich gemachten Form verwendet wird. Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Seidenproteinhydrolysaten und/oder deren Derivaten einzusetzen.
  • Wenn eine Mischung aus mindestens zwei Seidenhydrolysaten und/oder deren Derivaten verwendet wird, kann es erfindungsgemäß bevorzugt sein, daß die beiden Seidenproteinhydrolysate im Verhältnis von 10:90 bis 70:30, insbesondere 15:85 bis 50:50 und ganz besonders 20:80 bis 40:60 bezogen auf deren jeweilige Gehalte an aktiver Wirksubstanz in den erfindungsgemäßen Zubereitungen eingesetzt werden.
  • Die Derivate der Hydrolysate von Sericin und Fibroin umfassen sowohl anionische als auch kationisierte Proteinhydrolysate. Die erfindungsgemäßen Proteinhydrolysate von Sericin und Fibroin sowie die daraus hergestellten Derivate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche Proteinhydrolysate von Sericin und Fibroin und/oder deren Derivate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 10000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten von Sericin und Fibroin auch quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxyproypltrimonium Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Silk, Quaternium-79 Hydrolyzed Silk. Als typische Beispiele für die erfindungsgemäßen anionischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Potassium Cocoyl Hydrolyzed Silk, Sodium Lauroyl Hydrolyzed Silk oder Sodium Stearoyl Hydrolyzed Silk. Letztlich seien noch als typische Beispiele für die erfindungsgemäß einsetzbaren Derivate aus Sericin und Fibroin die unter den INCI-Bezeichnungen im Handel erhältlichen Produkte genannt: Ethyl Ester of Hydrolyzed Silk und Hydrolyzed Silk PG-Propyl Methylsilanediol. Weiterhin erfindungsgemäß verwendbar, wenngleich nicht unbedingt bevorzugt sind die im Handel erhältlichen Produkte mit den INCI-Bezeichnungen Palmitoyl Oligopeptide, Palmitoyl Pentapeptide-3, Palmitoyl Pentapeptide-2, Acetyl Hexapeptide-1, Acetyl Hexapeptide-3, Copper Tripeptide-1, Hexapeptide-1, Hexapeptide-2, MEA-Hydrolyzed Silk.
  • In den erfindungsgemäß verwendeten Mitteln sind die Seidenproteinhydrolysate und/oder deren Derivate in Mengen von 0,001–10 Gew.-% bezogen auf das gesamte Mittel enthalten. Mengen von 0,005 bis 5, insbesondere 0,01 bis 3 Gew.-%, sind ganz besonders bevorzugt.
  • Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Proteinhydrolysaten (P) einzusetzen.
  • Die Proteinhydrolysate (P) sind in den Mitteln in Konzentrationen von 0,001 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,05 Gew.% bis zu 5 Gew.% enthalten.
  • Schließlich ist unter der Komponente c), welche in hervorragender Weise zusätzlich im erfindungsgemäßen Wirkstoffkomplexes (A) als Naturstoff und/oder naturanaloger Stoff verwendet werden kann, auch ein Pflanzenextrakt (L) zu verstehen.
  • Auch durch den Einsatz von Pflanzenextrakten (L) gemeinsam mit den Polysiloxanen a) und den Esterölen b) wird eine synergistische Wirkung erzielt. Diese Wirkstoffkombination bewirkt einen angenehmen Duft sowohl der geformten Kosmetischen Zusammensetzung, als auch der damit Haut sowie des behandelten Haares. Dabei kann gegebenenfalls sogar auf den Zusatz von weiteren Parfümölen und Duftstoffen verzichtet werden.
  • Weiterhin beeinflusst diese erfindungsgemäße Wirkstoffkombination auch den Feuchtigkeitshaushalt der Haut günstig. Außerdem zeigt sie eine entzündungshemmende und die Haut beruhigende Wirkung wenn beispielsweise Kamille oder Baldrian verwendet werden.
  • Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
  • Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
  • Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Baldrian, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng, Kaffee, Kakao, Moringa und Ingwerwurzel bevorzugt.
  • Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Baldrian, Kaffee, Kakao, Moringa, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
  • Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
  • Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
  • Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2–80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
  • Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
  • Eine weitere Gruppe von Naturstoffen und/oder naturanalogen Inhaltsstoffen sind Vitamine, deren Derivate und Vorstufen. Vitamine, Pro-Vitamine und Vitaminvorstufen sind dabei besonders bevorzugt, die den Gruppen A, B, C, E, F und H zugeordnet werden.
  • Ebenfalls als ganz besonders vorteilhaft hat sich in allen Mitteln die Kombination der Polyammonium-Polysiloxan Verbindungen a) mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) als Wirkstoffgruppe c) erwiesen. Die Haut hinterläßt nach der Behandlung mit diesen ganz besonders bevorzugten Komponenten einen wesentlich gepflegteren, vitaleren, kräftigeren Eindruck mit deutlich verbessertem Glanz und einem sehr guten Griff sowohl im nassen als auch im trockenen Zustand. Weiterhin beeinflusst dieser Wirkstoffkomplex die Regenerierung und Restrukturierung der angegriffenen Haut und des strapazierten Haares, führt zu einer Regulierung des Fetthaushaltes, so dass die somit behandelte Haut und das Haar langsamer nachfettet und nicht zur Überfettung neigt. Zusätzlich zeigt dieser Wirkstoffkomplex einen entzündungshemmenden und die Haut beruhigenden Effekt.
  • Diese Wirkungen können beispielsweise objektiv mit Hilfe von sogenannten DSC- Messungen als auch im Verbrauchertest nachgewiesen werden.
  • Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäßen Mittel enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf die gesamte Zubereitung.
  • Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
    • – Vitamin B1 (Thiamin)
    • – Vitamin B2 (Riboflavin)
    • – Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
    • – Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05–10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1–5 Gew.-% sind besonders bevorzugt.
    • – Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
  • Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
  • Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05–1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
  • Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
  • Vitamin H. Als Vitamin H wird die Verbindung (3aS, 4S, 6aR)-2-Oxohexahydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
  • Bevorzugt enthalten die erfindungsgemäßen Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und N. Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
  • Weiterhin sind zu den naturanalogen Stoffen kurzkettige Carbonsäuren (N) zu zählen.
  • Vorteilhaft im Sinne der Erfindung können kurzkettige Carbonsäuren (N) als Inhaltsstoff c) zusätzlich im Wirkstoffkomplex (A) verwendet werden. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettige oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C-Atomen in der Kette.
  • Eine Verwendung der kurzkettigen Carbonsäuren ist die Einstellung des pH-Wertes der erfindungsgemäßen kosmetischen Zusammensetzungen. Der erfindungsgemäße Wirkstoffkomplex (A) jedoch führt zu einer verbesserten Hautglätte und zu einer verbesserten Hautstruktur sowie einer geglätteten Haarstruktur.
  • Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Daneben können jedoch auch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Die Natrium-, Kalium-, Ammonium- sowie Argininsalze sind bevorzugte Salze. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure als Wirkstoff (c) aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
  • Zu den erfindungsgemäß ganz besonders bevorzugten Wirkstoffen (c) zählen die Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren.
  • Beispiele für besonders geeignete Hydroxycarbonsäuren sind Glycolsäure, Glycerinsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass diese Säuren in Form von Mischsalzen beispielsweise mit Aminosäuren, verwendet werden. Dies kann erfindungsgemäß bevorzugt sein.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich eine Mischung aus mehreren Wirkstoffen (b) einzusetzen.
  • Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8-Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α-Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
  • Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-Carbamoyloctansäure, 1,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1,2,4,6,7-Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxyphthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),
    Figure 00900001
    in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
  • Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt.
  • Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z. B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
  • Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.
  • Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diacid® 1550 und Westvaco Diacid® 1595 (Hersteller: Westvaco) erhältlich.
  • Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
  • Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit dem Wirkstoff (A) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der β-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8–22 C-Atomen, also z. B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z. B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
  • Erfindungsgemäß ganz besonders bevorzugt sind als kurzkettige Carbonsäuren im Sinne der Erfindung die sogenannten Genusssäuren zu verwenden.
  • Die erfindungsgemäßen Wirkstoffe (b) sind in den Mitteln in Konzentrationen von 0,01 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 5 Gew.% enthalten.
  • Weitere ganz besonders bevorzugte naturanaloge Stoffe der erfindungsgemäßen Mittel sind Polyhydroxyverbindungen.
  • Unter Polyhydroxyverbindungen (C) im Sinne der Erfindung werden alle Substanzen verstanden, welche die Definition in Römpp's Lexikon der Chemie von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyverbindungen organische Verbindungen mit mindestens zwei Hydroxygruppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
    • – Polyole mit mindestens zwei Hydroxygruppen, wie beispielsweise Trimethylolpropan,
    • – Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze,
    • – insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
    • – Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, Ganz besonders bevorzugt sind hierunter Monosaccharide mit 3 bis 8 C-Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können, weiterhin sind ganz besonders bevorzugt Oligosaccharide mit bis zu 50 Monomereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und -NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
  • Beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glucosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Trehalose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffinose sowie Cellotiose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer-Walter, Lehrbuch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt III, Seiten 393 und folgende verwiesen.
  • Bevorzugte Polyhydroxyverbindungen sind Sorbit, Inosit, Mannit, Threit, Erythreit, Erythrose, Threose, Arabinose, Ribose, Xylose, Glucose, Galactose, Mannose, Allose, Fructose, Sorbose, Desoxyribose, Glucosamin, Galaktosamin, Saccharose, Lactose, Trehalose, Maltose und Cellobiose. Besonders bevorzugt werden Glucose, Galactose, Mannose, Fructose, Desoxyribose, Glucosamin, Saccharose, Lactose, Maltose und Cellobiose verwendet. Ganz besonders bevorzugt ist jedoch die Verwendung von Glucose, Galactose, Mannose, Fructose, Saccharose, Lactose, Maltose oder Cellobiose.
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis-trans-Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
  • Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Wirkstoffen (C) einzusetzen.
  • Die erfindungsgemäßen Wirkstoffe (C) sind in den Mitteln in Konzentrationen von 0,01 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 10 Gew.% enthalten.
  • In einer besonders bevorzugten Ausführungsform ist als Wirkstoff c) mindestens eine Polyhydroxyverbindung mit mindestens 2 OH-Gruppen enthalten. Unter diesen Verbindungen sind diejenigen mit 2 bis 12 OH-Gruppen und insbesondere diejenigen mit 2, 3, 4, 5, 6 oder 10 OH-Gruppen bevorzugt.
  • Polyhydroxyverbindungen mit 2 OH-Gruppen sind beispielsweise Glycol (CH2(OH)CH2OH) und andere 1,2-Diole wie H-(CH2)n-CH(OH)CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Auch 1,3-Diole wie H-(CH2)n-CH(OH)CH2CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 sind erfindungsgemäß einsetzbar. Die (n,n + 1)- bzw. (n,n + 2)-Diole mit nicht endständigen OH-Gruppen können ebenfalls eingesetzt werden.
  • Wichtige Vertreter von Polyhydroxyverbindungen mit 2 OH-Gruppen sind auch die Polyethylen- und Polypropylenglycole.
  • Unter den Polyhydroxyverbindungen mit 3 OH-Gruppen hat das Gylcerin eine herausragende Bedeutung.
  • Zusammenfassend sind erfindungsgemäße Mittel bevorzugt, bei denen die Polyhydroxyverbindung ausgewählt ist aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol, Glycerin, Glucose, Fructose, Pentaerythrit, Sorbit, Mannit, Xylit und ihren Mischungen.
  • Unabhängig vom Typ der eingesetzten Polyhydroxyverbindung mit mindestens 2 OH-Gruppen sind erfindungsgemäße Mittel bevorzugt, die, bezogen auf das Gewicht des Mittels, 0,01 bis 5 Gew.%, vorzugsweise 0,05 bis 4 Gew.%, besonders bevorzugt 0,05 bis 3,5 Gew.% und insbesondere 0,1 bis 2,5 Gew.% Polyhydroxyverbindung(en) enthalten.
  • Mit besonderem Vorzug können die erfindungsgemäßen Mittel zusätzlich Polyethylenglycolether der Formel (IV) H(CH2)k(OCH2CH2)nOH(IV) enthalten, worin k eine Zahl zwischen 1 und 18 unter besonderer Bevorzugung der Werte 0, 10, 12, 16 und 18 und n eine Zahl zwischen 2 und 20 unter besonderer Bevorzugung der Werte 2, 4, 5, 6, 7, 8, 9, 10, 12 und 14 bedeutet. Bevorzugt sind unter diesen die Alkylderivate des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Hexaethylenglycols, des Heptaethylenglycols, des Octaethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols und des Tetradecaethylenglycols sowie die Alkylderivate des Dipropylenglycols, des Tripropylenglycols, des Tetrapropylenglycols, des Pentapropylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols und des Tetradecapropyolenglycols, wobei unter diesen die Methyl-, Ehyl-, Propyl-, n-Butyl, n-Pentyl, n-Hexyl-, n-Heptyl-, n-Octyl-, n-Nonyl, n-Decyl-, n-Undecyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.
  • Es hat sich gezeigt, daß Mischungen „kurzkettiger" Polyalkylenglycolether mit solchen „langkettiger" Polyalkylenglycolether Vorteile besitzen. „Kurz- bzw. langkettig" bezieht sich in diesem Zusammenhang auf den Polymerisationsgrad des Polyalkylenglycols. Besonders bevorzugt sind Mischungen von Polyalkylenglycolethern mit einem Oligomerisierungsgrad von 5 oder weniger mit Polyalkylenglycolethern mit einem Oligomerisierungsgrad von 7 oder mehr.
  • Bevorzugt sind Mischungen von Alkylderivaten des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Dipropylenglycols, des Tripropylenglycols, des Tetrapropylenglycols oder des Pentapropylenglycols mit Alkylderivaten des Hexaethylenglycols, des Heptaethylenglycols, des Octaethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols oder des Tetradecapropyolenglycols, wobei in beiden Fällen die n-Octyl-, n-Decyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.
  • Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß es mindestens einen Polyalkylenglycolether (IV a) der Formel (IV), in der n für die Zahlen 2, 3, 4 oder 5 steht und mindestens einen Polyalkylenglycolether (IV b) der Formel (IV) enthält, in der n für die Zahlen 10, 12, 14 oder 16 steht, wobei das Gewichtsverhältnis (IV b) zu (IV a) 10:1 bis 1:10, vorzugsweise 7,5:1 bis 1:5 und insbesondere 5:1 bis 1:1 beträgt.
  • Eine weitere Gruppe von Inhaltsstoffen, welche als Synergisten c) für die Polysiloxan Verbindungen a) im erfindungsgemäßen Wirkstoffkomplex (A) vorteilhaft verwendet werden kann, ist die Gruppe der Fettstoffe (D).
  • Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse. Die Fettstoffe können sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können. Schließlich sind unter Fettstoffen natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
  • Als Fettsäuren (D1) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6–30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10–22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
  • Die Einsatzmenge beträgt dabei 0,1–15 Gew.%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5–10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1–5 Gew.% sein können.
  • Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6-C30-, bevorzugt C10-C22- und ganz besonders bevorzugt C12-C22-Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z. B. Stenol® 1618 oder Lanette®, z. B. Lanette® 0 oder Lorol®, z. B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z. B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1–30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1–20 Gew.-% eingesetzt.
  • Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.
  • Die Einsatzmenge beträgt 0,1–50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1–20 Gew.% und besonders bevorzugt 0,1–15 Gew.% bezogen auf das gesamte Mittel.
  • Zu den natürlichen und synthetischen kosmetischen Ölkörpern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffkomplexes (A) steigern können, sind beispielsweise zu zählen:
    • – pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
    • – flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n-alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen 1,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol® OE) können bevorzugt sein.
    • – Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)-succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol-di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat,
    • – symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
    • – Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
    • – Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
      Figure 01000001
      in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m + n + q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m + n + q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
  • Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,1–30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1–20 Gew.-%, und insbesondere 0,1–15 Gew.-%.
  • Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass eine Mischung aus mehreren Fettstoffen (D) aus unterschiedlichen Klassen von Fettstoffen, mindestens zwei unterschiedlichen Fettstoffklassen in den erfindungsgemäßen Zusammensetzungen verwendet werden kann. Die bevorzugten Mischungen aus mindestens zwei Öl- und Fettkomponenten enthalten in diesem Falle zwingend mindestens eine weitere Silikonkomponente. Bevorzugt wird die Silikonkomponente in diesem Falle ausgewählt aus den Dimethiconolen und den Amodimethiconen.
  • Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5–75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5–35 Gew.-% sind erfindungsgemäß bevorzugt.
  • Eine weitere Gruppe von Inhaltsstoffen, welche als Synergisten c) im erfindungsgemäßen Wirkstoffkomplex (A) vorteilhaft verwendet werden kann, ist die Gruppe der oberflächenaktiven Substanzen. Unter den oberflächenaktiven Substanzen werden insbesondere Tenside und Emulgatoren sowie Lösungsvermittler verstanden.
  • Unter dem Begriff Tenside (E) werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in "H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift. Bei den im folgenden genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54–124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123–217 verwiesen.
  • Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Typische Beispiele für anionische Tenside sind Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbon-säuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Acyllactylate, Acyltartrate, Acylglutamate, Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Beispiele für besonders geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
    • – lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
    • – Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe, sind seit langem bekannte, hautfreundliche oberflächenaktive Stoffe, die durch Veresterung von Fettsäuren mit dem Natriumsalz der 2-Hydroxyethan-sulfonsäure (Isethionsäure), z. B. nach dem Verfahren, das in US 3,320,292 beschrieben ist, zugänglich sind. Wenn man für diese Veresterung Fettsäuren mit 8 bis 24 C-Atomen, also z. B. Laurin-, Myristin-, Palimitin- oder Stearinsäure oder auch technische Fettsäurefraktionen, z. B. die aus Kokosfettsäure erhältliche C12-C18-Fettsäurefraktion einsetzt, erhält man die erfindungsgemäß bevorzugt geeigneten C12-C18 Acylisethionate. Es ist bekannt, die Natriumsalze von C12-C18-Acylisethionaten ähnlich wie Seifen auf Fettsäurebasis durch Kneten, Pilieren, Strangpressen, Extrudieren, Schneiden und Stückpressen in eine geeignete Form für den Transport und für die Anwendung zu bringen. Auf diese Weise lassen sich Nadeln, Granulate, Nudeln, Riegel und handliche Toilettenseifen-Stücke erzeugen.
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen. Die Sulfobernsteinsäuremonoalkyl(C8-C24)-ester-dinatriumsalze werden nach bekanntem Verfahren z. B. dadurch hergestellt, daß man Maleinsäureanhydrid mit einem Fettalkohol mit 8–24 C-Atomen zum Maleinsäuremonoester des Fettalkohols umsetzt und diesen mit Natriumsulfit zum Sulfobernsteinsäureester sulfitiert. Besonders geeignete Sulfobernsteinsäureester leiten sich von Fettalkoholfraktionen mit 12–18 C-Atomen ab, wie sie z. B. aus Kokosfettsäure oder Kokosfettsäuremethylester durch Hydrierung zugänglich sind.
    • – lineare Alkansulfonate mit 8 bis 24 C-Atomen,
    • – lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
    • – Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
    • – Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
    • – Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
    • – sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
    • – Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2–15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I),
      Figure 01040001
    • – in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht,
    • – sulfatierte Fettsäurealkylenglykolester der Formel (E1-II) R7CO(AlkO)nSO3M (E1-II) in der R7CO-für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)
      Figure 01050001
    • – in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1-III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-B1 0 561 825, der EP-B1 0 561 999, der DE-A1 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
    • – Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
    • – Kondensationsprodukte aus einem wasserlöslichen Salz eines wasserlöslichen Eiweißhydrolysat-Fettsäure-Kondensationsproduktes. Diese werden durch Kondensation von C8–C30 Fettsäuren, bevorzugt von Fettsäuren mit 12–18 C-Atomen mit Aminosäuren, Mono-, Di- und wasserlöslichen Oligopeptiden und Gemischen solcher Produkte hergestellt, wie sie bei der Hydrolyse von Proteinen anfallen. Diese Eiweißhydrolysat-Fettsäure-Kondensationsprodukte werden mit einer Base neutralisiert und liegen dann bevorzugt als Alkali-, Ammonium-, Mono-, Di- oder Trialkanolammoniumsalz vor. Solche Produkte sind unter dem Warenzeichen Lamepon®, Maypon®, Gluadin®, Hostapon® KCG oder Amisoft® seit langem im Handel erhältlich.
  • Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
  • Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COOL(-)- oder -SO3 (-)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
  • Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8-C24- Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Amino-propionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine.
  • Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acylsarcosin.
  • Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 6 bis 30 C-Atomen, die Fettalkoholpolyglykolether bzw. die Fettalkoholpolypropylenglykolether bzw. gemischte Fettalkoholpolyether,
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettsäuren mit 6 bis 30 C-Atomen, die Fettsäurepolyglykolether bzw. die Fettsäurepolypropylenglykolether bzw. gemischte Fettsäurepolyether,
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, die Alkylphenolpolyglykolether bzw. die Alkylpolypropylenglykolether, bzw. gemischte Alyklphenolpolyether,
    • – mit einem Methyl- oder C2-C6-Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
    • – C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol – Typen (Cognis),
    • – alkoxilierte Triglyceride,
    • – alkoxilierte Fettsäurealkylester der Formel (E4-I) R1CO-(OCH2CHR2)wOR3(E4-I) in der R1CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
    • – Aminoxide,
    • – Hydroxymischether, wie sie beispielsweise in der DE-OS 19738866 beschrieben sind,
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
    • – Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II), R4O-[G]p (E4-II)in der R4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SCOFW-Journal Heft 8, 598 (1995) verwiesen.
  • Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (E4-II) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
    • – Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nichtionisches Tensid der Formel (E4-III),
      Figure 01100001
      in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424 , US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H.Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden: R1CO-(NR8)-CH2-[CH(OH)]4-CH2OH (E4-IV)
    • Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R8 für Wasserstoff oder eine Alkylgruppe steht und R7CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
  • Die Zuckertenside können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1–20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5–15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5–7,5 Gew.%.
  • Weitere typische Beispiele für nichtionische Tenside sind Fettsäureamidpolyglycolether, Fettaminpolyglycolether, Mischether bzw. Mischformale, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis) und Polysorbate.
  • Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure sowie die Zuckertenside erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
  • Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
  • Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
  • Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
  • Als Zusätze zur weiteren Verbesserung der Cremigkeit des Schaumes und des Hautgefühls während und nach der Anwendung haben sich auch nichtionische Tenside bewährt, deren zusätzliche Verwendung zur Herstellung der erfindungsgemäßen Zusammensetzungen empfohlen werden kann: Besonders bevorzugt sind daher erfindungsgemäße Zusammensetzungen mit einem zusätzlichen Gehalt von 0,1–20 Gew.-% an nichtionischen Tensiden mit einem HLB-Wert von 2–18. Solche Produkte können durch Anlagerung von Ethylenoxid an z. B. Fettalkohole mit 6–30 C-Atomen, an Fettsäuren mit 6–30 C-Atomen oder an Glycerin- oder Sorbitanfettsäure-Partialester auf Basis von C12-C18-Fettsäuren oder an Fettsäurealkanolamide hergestellt. Der HLB-Wert bedeutet den Anteil an hydrophilen Gruppen, z. B. an Glycolether- oder Polyol-Gruppen bezogen auf das Gesamt-Molekül und er errechnet sich nach der Beziehung HLB = 1/5 × (100 Gew.% L), wobei Gew.-% L der Gewichtsanteil an liphophilen Gruppen, also z. B. an Alkyl- oder Acylgruppen mit 6–30 C-Atomen im Tensidmolekül darstellt.
  • Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E5) vom Typ der quarternären Ammoniumverbindungen, der Esterquats, der Imidazoline und der Amidoamine. Bevorzugte quaternäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 8 bis 30 Kohlenstoffatome auf. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminester-Salze.
  • Besonders bevorzugt einsetzbar können erfindungsgemäß kationische Verbindungen mit Behenylresten, insbesondere die unter der Bezeichnung Behentrimoniumchlorid bzw. -bromid (Docosanyltrimethylammonium Chlorid bzw. -Bromid) bekannten Substanzen. Andere bevorzugte QAV weisen mindestens zwei Behenylreste auf. Kommerziell erhältlich sind diese Substanzen beispielsweise unter der Bezeichnungen Genamin® KDMP (Clariant).
  • Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
  • Als weitere kationische Tenside können die erfindungsgemäßen Mittel mindestens eine quartäre Imidazolinverbindung, d. h. eine Verbindung, die einen positiv geladenen Imidazolinring aufweist, enthalten. Die im folgenden dargestellte Formel (E5-V) zeigt die Struktur dieser Verbindungen.
  • Figure 01140001
  • Die Reste R stehen unabhängig voneinander jeweils für einen gesättigten oder ungesättigten, linearen oder verzweigten Kohlenwasserstoffrest mit einer Kettenlänge von 8 bis 30 Kohlenstoffatomen. Die bevorzugten Verbindungen der Formel I enthalten für R jeweils den gleichen Kohlenwasserstoffrest. Die Kettenlänge der Reste R ist bevorzugt 12 Kohlenstoffatome. Besonders bevorzugt sind Verbindungen mit einer Kettenlänge von mindestens 16 Kohlenstoffatomen und ganz besonders bevorzugt mit mindestens 20 Kohlenstoffatomen. Eine ganz besonders bevorzugte Verbindung der Formel I weist eine Kettenlänge von 21 Kohlenstoffatomen auf. Ein Handelsprodukt dieser Kettenlänge ist beispielsweise unter der Bezeichnung Quaternium-91 bekannt. In der Formel (E5-V) ist als Gegenion Methosulfat dargestellt. Erfindungsgemäß umfasst sind jedoch als Gegenionen auch die Halogenide wie Chlorid, Fluorid, Bromid, oder auch Phosphate.
  • Die Imidazoline der Formel (E5-V) sind in den erfindungsgemäßen Zusammensetzungen in Mengen von 0,01 bis 20 Gew.%, bevorzugt in Mengen von 0,05 bis 10 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 bis 7,5 Gew.% enthalten. Die allerbesten Ergebnisse werden dabei mit Mengen von 0,1 bis 5 Gew.% jeweils bezogen auf die Gesamtzusammensetzung des jeweiligen Mittels erhalten.
  • Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar. Die Alkylamidoamine können sowohl als solche vorliegen und durch Protonierung in entsprechend saurer Lösung in eine quaternäre Verbindung in der Zusammensetzung überführt werden, sie können aber selbstverständlich auch als permanent quaternäre Verbindung in den erfindungsgemäßen Zusammensetzungen verwendet werden. Beispiele für permanent quaternierte Amidoamine sind beispielsweise die Rohstoffe mit der Handelsbezeichnung Rewoquat® UTM 50, Lanoquat® DES-50 oder Empigen CSC.
  • Die kationischen Tenside (E5) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
  • Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
  • Die Tenside (E) werden in Mengen von 0,1–45 Gew.%, bevorzugt 0,5–30 Gew.% und ganz besonders bevorzugt von 0,5–25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
  • Weiterhin sind zu den oberflächenaktiven Substanzen Emulgatoren (F) zu zählen. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W-Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O-Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in "H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
    • – Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
    • – C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
    • – Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäureester, Fettsäurealkanolamide und Fettsäureglucamide,
    • – C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oligomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
    • – Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov®68,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Partialester von Polyolen mit 3–6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
    • – Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
    • – Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z. B. als Lecithine bzw. Phospahtidylcholine aus z. B. Eidotter oder Pflanzensamen (z. B. Sojabohnen) gewonnen werden, verstanden.
    • – Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
    • – Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hydroxystearat (Handelsprodukt Dehymuls® PGPH),
    • – Lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn-Salze.
  • Als besonders vorteilhaft hat sich auch ein Zusatz eines an sich bekannten Emulgators vom Typ Wasser-in-Öl in einer Menge von ca. 1–5 Gew.-% erwiesen. Dabei handelt es sich um einen Mischester, der ein Kondensationsprodukt aus einem Pentaerythrit-di-fettsäureester und einem Zitronensäure-di-fettalkoholester darstellt, wie es in DE-PS 11 65 574 näher beschrieben ist. Durch den Zusatz solcher Mischester wird ein besonders cremiger, feinblasiger Schaum und ein angenehmes Hautgefühl bei der Anwendung des Körperreinigungsmittels erreicht.
  • Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1–25 Gew.-%, insbesondere 0,5–15 Gew.-%, bezogen auf das gesamte Mittel.
  • Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10–15 können erfindungsgemäß besonders bevorzugt sein.
  • Erfindungsgemäß bevorzugte oberflächenaktiven Substanzen sind die sogenannten milden oberflächenaktiven Substanzen. Die Milde von Tensiden und Emulgatoren kann mit verschiedenen Methoden bestimmt werden. Hierzu werden beispielsweise der Neutralrot-Test, der HET-CAM Test, das Humanhautmodell oder das sogenannte BUS (bovine udder skin) Modell herangezogen. Allen Testverfahren gemein ist, dass prinzipiell gegen einen Standard gemessen wird, auf welchen die Ergebnisse bezogen werden.
  • Nach diesen Prüfmethoden haben sich die folgenden bevorzugten oberflächenaktiven Substanzen als mild bis besonders mild erwiesen:
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
    • – Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2–15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I),
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III),
    • – Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
    • – Kondensationsprodukte aus einem wasserlöslichen Salz eines wasserlöslichen Eiweißhydrolysat-Fettsäure-Kondensationsproduktes,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol-Typen (Cognis),
    • – Aminoxide,
    • – Hydroxymischether, wie sie beispielsweise in der DE-OS 19738866 beschrieben sind,
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
    • – Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II),
    • – Esterquats,
    • – Alkylamidoamine und quaternierte Alkylamidoamine.
    • – C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oligomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
    • – Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov®68,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Partialester von Polyolen mit 3–6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
    • – Sterine, Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
    • – Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z. B. als Lecithine bzw. Phospahtidylcholine aus z. B. Eidotter oder Pflanzensamen (z. B. Sojabohnen) gewonnen werden, verstanden.
    • – Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
    • – Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hydroxystearat (Handelsprodukt Dehymuls® PGPH),
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre auch, daß diese besonders milden oberflächenaktiven Substanzen sowohl einzeln als auch gemischt in der erfindungsgemäßen Wirkstoffkombination verwendet werden können.
  • Ein ganz besonderer Vorteil bei der Verwendung dieser besonderen oberflächenaktiven Substanzen als Wirkkomponente c) gemeinsam mit dem Wirkstoffkomplex (A) ist, dass die damit hergestellten kosmetischen Mittel, insbesondere schäumende Mittel, ein ganz hervorragendes Anschäumverhalten, eine ausgezeichnete Cremigkeit, eine exzellente Schaumstabilität sowie ein sehr hohes Schaumvolumen aufweisen. Dies ist selbst dann der Fall, wenn auf die sogenannten stark schäumenden oberflächenaktiven Substanzen wie beispielsweise Alkylsulfate oder Alkylethersulfate weitestgehend verzichtet wird. Ein weitestgehender Verzicht auf Alkylethersulfate und Alkylsulfate bedeutet, dass der Anteil dieser oberflächenaktiven Substanzen höchstens 8 Gew.% bezogen auf die gesamte Zusammensetzung beträgt. Bevorzugt beträgt der Anteil an Alkylethersulfat und/oder Alkylsulfat nur 5 Gew.%.
  • Im folgenden werden besondere und bevorzugte weitere Inhaltsstoffe der vorliegenden Erfindung beschrieben.
  • Weiterhin kann ein erfindungsgemäßes Mittel auch UV-Filter (I) enthalten. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315–400 nm)-, im UVB(280–315nm)- oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Die erfindungsgemäße Wirkstoffkombination (A) erhöht deutlich die Abscheidung der UV-Filter auf der Haut und dem Haar. Dies hat erhebliche Konsequenzen. Einerseits kann bei gleicher Konzentration im Vergleich zu Zusammensetzungen des Standes der Technik der Lichtschutzfaktor erhöht werden. Auf der anderen Seite kann der Lichtschutzfaktor zu einer herkömmlichen Zusammensetzung mit einer geringeren Konzentration an UV-Filter erreicht werden. Dies hat neben einem kommerziellen Vorteil auch eine geringere Belastung von Haut und Haar des Konsumenten zur Folge. UV-Schutzzusammensetzungen werden dadurch wesentlich verträglicher.
  • Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
  • Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethylcyclohexylsalicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®360), 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Dimethylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol®587, Neo Heliopan®OS, Uvinul®018), 4-Methoxyzimtsäureisopentylester (Isoamyl p-Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophenone-1; Uvasorb®20 H, Uvinul®400), 1,1'-Diphenylacrylonitrilsäure-2- ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminobenzoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahydroxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natriumsulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethylcyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methylbenzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, 4-Methoxyzimtsäure-2-ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
  • Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 °C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
  • Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
  • Diese UV-Filter weisen die allgemeine Struktur U-Q auf.
  • Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird.
  • Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
    • – substituierte Benzophenone,
    • – p-Aminobenzoesäureester,
    • – Diphenylacrylsäureester,
    • – Zimtsäureester,
    • – Salicylsäureester,
    • – Benzimidazole und
    • – o-Aminobenzoesäureester.
  • Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylaminobenzoesäureamid ableiten, sind erfindungsgemäß bevorzugt.
  • Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315–400 nm)-, als auch im UVB(280–315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
  • Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
  • Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
  • Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)x-N+R1R2R3X-, in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für C1-4-Alkylgruppen, R3 steht für eine C1-22-Alkylgruppe oder eine Benzylgruppe und X- für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die die Zahl 3, R1und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
  • Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
  • Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incroquat®UV-283) und Dodecyl-dimethylaminobenzamidopropyldimethylammoniumtosylat (Escalol® HP 610).
  • Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
  • Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1–5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4–2,5 Gew.-% sind bevorzugt.
  • Weitere optionale Inhaltsstoffe der erfindungsgemäßen Zusammensetzungen sind Deowirkstoffe.
  • Die erfindungsgemäße Wirkstoffkombination (A) erhöht deutlich analytisch nachweisbar die Abscheidung von Deowirkstoffen auf der Haut. Im Paneltest macht sich dies unter anderem auch durch eine deutlich verlängert anhaltende Wirkung bemerkbar.
  • Als Deowirkstoffe kommen z. B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiβ- und/oder Polysaccharidfällung (vgl. J.Soc.Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5Cl]*2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist (vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, COGNIS). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4-dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben wird.
  • Weitere ganz besonders bevorzugte optionale Inhaltsstoffe der Zusammensetzungen, welche die erfindungsgemäße Wirkstoffkombination (A) enthalten, sind Farbstoffvorprodukte. Unter Farbstoffvorprodukten sind Oxidationsfarbstoffvorprodukte vom Entwickler-(X1) und Kuppler-Typ (X2), natürliche und synthetische direktziehende Farbstoffe (Y) und Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen
  • Als solche können Oxidationsfarbstoffvorprodukte vom Entwickler- (X1) und Kuppler-Typ (X2), natürliche und synthetische direktziehende Farbstoffe (Y) und Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
  • Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ (X1) werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, o-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, N,N-Bis-(2-hydroxy-ethyl)-p-phenylendiamin, 2-(2,5-Diaminophenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6-diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4-amino-phenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phenol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1,4-Bis-(4-aminophenyl)-diazacycloheptan, 1,3-Bis(N(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4-Amino-2-(2-hydroxyethoxy)-phenol, 1,10-Bis-(2,5-diaminophenyl)-1,4,7,10-tetraoxadecan sowie 4,5-Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-1-(2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phenylendiamin, p-Toluylendiamin, p-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
  • Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ (X2) werden in der Regel m-Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m-Aminophenolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3-Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4-aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6-methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5-(2'-Hydroxyethyl)-amino-2-methylphenol, 3-(Diethylamino)-phenol, N-Cyclopentyl-3-aminophenol, 1,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3- aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1-Methoxy-2-amino-4-(2'-hydroxyethylamino)benzol, 1,3-Bis-(2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol und 1-Amino-3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-1-methylbenzol, Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Resorcin-monomethylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol, Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2-Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihydroxy-3,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3-Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin, Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2-Hydroxymethyl-1-naphthol, 2-Hydroxyethyl-1-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxynaphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxybenzomorpholin und 6-Aminobenzomorpholin, Chinoxalinderivate wie beispielsweise 6-Methyl-1,2,3,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise 1-Phenyl-3-methylpyrazol-5-on, Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol, Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4-methylendioxybenzol, 1-Amino-3,4-methylendioxybenzol und 1-(2'-Hydroxyethyl)-amino-3,4-methylendioxybenzol.
  • Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxynaphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3-hydroxypyridin, Resorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
  • Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 1,4-Bis-(β-hydroxyethyl)-amino-2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1,2,3,4-tetrahydrochinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4-nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydroxy-4-nitrobenzol.
  • In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
  • Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.
  • Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Substituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxyindolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6- dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4-Aminoindol.
  • Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
  • Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
  • Bei der Verwendung von Farbstoff-Vorstufen vom Indolin- oder Indol-Typ kann es bevorzugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α-Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt.
  • Sowohl die Oxidationsfarbstoffvorprodukte als auch die direktziehenden Farbstoffe und die Vorstufen naturanaloger Farbstoffe sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Der Vorteil, welcher durch die erfindungsgemäße Wirkstoffkombination (A) in Verbindung mit den Farbstoffvorprodukten erzielt wird, ist eine deutlich verbesserte Abscheidung der Farbstoffvorprodukte auf dem Haar. Zusätzlich zu einer erhöhten Abscheidung auf dem Haar bewirkt der erfindungsgemäße Wirkstoffkomplex auch einer schnellere Penetration in das Haar. Weiterhin wird die erwünschte Haarfarbe schneller ausgebildet. Die Applikationszeit der Zusammensetzung kann um mindestens 10 % bei gleichem Färbeergebnis verkürzt werden. Eine Verkürzung der Applikationszeit ist mit der erfindungsgemäßen Kombination bis zu 40 % bei gleichem Färbeergebnis ist möglich. All diese Effekte werden bei einer gleichzeitig gesteigerten Waschbeständigkeit der ausgebildeten Haarfarbe erzielt. Die Erfindung schließt die Lehre mit ein, dass aufgrund der erzielten Effekte andererseits auch die Konzentration an Farbstoffen deutlich reduziert werden kann. Dies ist einerseits wirtschaftlich von großer Bedeutung, andererseits bedeutet dies aber auch eine erhebliche Verbessserung der dermatologischen Verträglichkeit der gesamten Zusammensetzung.
  • Eine ganz besonders bevorzugte Zusammensetzung der Erfindung betrifft daher kosmetische Mittel zur Färbung von Haut und Haar, enthaltend den erfindungsgemäßen Wirkstoffkomplex (A) und ein Farbstoffvorprodukt, sowie die Verwendung dieses Mittels und ein Verfahren zur Haarfärbung mit diesem Mittel.
  • Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH-Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdalkalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, Z-Amino-2-methyl-1,3-propandiol, 2-Amino-2-ethyl-1,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-1,3-propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω-Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
  • Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Prozesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per-Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel, oder auch Enzyme verwendet werden, die Elektronen aus geeigneten Entwicklerkomponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1 % und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
  • Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40 °C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
  • Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorprodukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufgebracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann – gegebenenfalls nach einer Zwischenspülung – die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachshampooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösungen als Oxidationsmittel bevorzugt sein.
  • Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispielsweise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn2+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden.
  • In einer weiteren Ausführungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den Wirkstoffkomplex (A) direkt in Färbe- oder Tönungsmittel einzuarbeiten, das bedeutet, den erfindungsgemäßen Wirkstoffkomplex (A) in Kombination mit Farbstoffen und/oder Farbstoffvorprodukten einzusetzen.
  • Weitere optionale Inhaltsstoffe, welche in kosmetischen Zusammensetzungen gemeinsam mit dem erfindungsgemäßen Wirkstoffkomplex (A) verwendet werden können, sind Konservierungsmittel. Als Konservierungsmittel eignen sich beispielsweise:
    • – aromatische Alkohole, wie beispielsweise Phenoxyethanol, Benzylalkohol, Phenethylalkohol, Phenoxyisopropanol,
    • – Aldehyde wie beispielsweise Formaldehydlösung und Paraformaldehyd, Glutaraldehyd
    • – Parabene, beispielsweise Methylparaben, Ethylparaben, Propylparaben, Butylparaben, Isobutylparaben
    • – 1,2-Alkandiole mit 5 bis 22 Kohlenstoffatomen in der Kohlenstoffkette, wie beispielsweise 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Heptandiol, 1,2-Dekandiol, 1,2-Dodekandiol, 1,2-Hexadekandiol,
    • – Formaldehyd abspaltende Verbindungen, wie beispielsweise DMDM Hydantoin, Diazolidinyl Urea
    • – Halogenierte Verbindungen wie beispielsweise Isothiazolinone, wie beispielsweise Methylchloroisothiazolinon/Methylisothiazolinone, Triclosan, Triclocarban, Iodopropynylbutylcarbamat, 5-Bromo-5-Nitro-1,3-Dioxan, Chlorhexidindigluconat und Chlorhexidinacetat, 2-Bromo-2-Nitropropan-1,3-diol, Methyldibromoglutaronitril,
    • – Anorganische Verbindungen wie beispielsweise Sulfite, Borsäure und Borate, Bisulfite,
    • – Kationische Substanzen wie beispielsweise Quaternium-15, Benzalkoniumchlorid, Benzethoniumchlorid, Polyaminopropylbiguanid,
    • – Organische Säuren und deren physiologisch verträgliche Salze wie beispielsweise Citronensäure, Milchsäure, Essigsäure, Benzoesäure, Sorbinsäure, Salicylsäure, Dehydroacetsäure
    • – Aktive Wirkstoffe mit zusätzlichen Wirkungen wie beispielsweise Zink-Pyrithion, Piroctonolamin,
    • – Antioxidantien wie beispielsweise BHT (butyliertes Hydroxytoluol), BHA (butyliertes Hydroxyanisol), Propylgallat, t-Butylhydrochinon,
    • – Komplexbildner wie beispielsweise EDTA und dessen Derivate, HEDTA und dessen Derivate, Etidronic Acid und deren Salze,
    • – Sowie Mischungen der zuvor aufgeführten Stoffe.
  • Weiterhin finden die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten Stoffklassen Verwendung. Besonders bevorzugt ist eine milde Konservierung. Hierzu finden die folgenden Substanzen und deren Mischungen Verwendung:
    • – aromatische Alkohole, wie beispielsweise Phenoxyethanol, Benzylalkohol, Phenethylalkohol, Phenoxyisopropanol,
    • – Parabene, beispielsweise Methylparaben, Ethylparaben, Propylparaben, Butylparaben, Isobutylparaben
    • – 1,2-Alkandiole mit 5 bis 22 Kohlenstoffatomen in der Kohlenstoffkette, wie beispielsweise 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Heptandiol, 1,2-Dekandiol, 1,2-Dodekandiol, 1,2-Hexadekandiol,
    • – Organische Säuren und deren physiologisch verträgliche Salze wie beispielsweise Citronensäure, Milchsäure, Essigsäure, Benzoesäure, Sorbinsäure, Salicylsäure, Dehydroacetsäure.
  • In einer weiteren besonders bevorzugten Art der erfindungsgemäßen Zusammensetzung kann auch die Wasseraktivität in den erfindungsgemäßen Zusammensetzungen soweit reduziert werden, dass ein Wachstum von Mikroorganismen nicht mehr stattfinden kann. Hierzu werden insbesondere Glycerin und Sorbin verwendet.
  • Der erfindungsgemäße Wirkstoffkomplex (A) trägt in den erfindungsgemäßen Zusammensetzungen mit dazu bei, dass die Konservierung in hervorragender Art und Weise mit den milden Konservierungszusätzen möglich ist. Aber auch der vollständige Verzicht auf Konservierungsmittel ist möglich und erfindungsgemäß bevorzugt.
  • Die Mengen an Konservierungsmittel betragen von 0 bis 5 Gew.%, bevorzugt von 0–2 Gew.%, besonders bevorzugt von 0–1 Gew.% und ganz besonders bevorzugt von 0 bis 0,8 Gew.% bezogen auf die Gesamtmenge der Zusammensetzung.
  • Eine weitere Gruppe von ganz besonders bevorzugten weiteren Inhaltsstoffen kosmetischer Zusammensetzungen enthaltend die erfindungsgemäße Wirkstoffkombination (A) sind Parfüms. Die hervorragenden und völlig überraschenden positiven Ergebnissen von Zusammensetzungen enthaltend die erfindungsgemäße Wirkstoffkombination (A) und Parfüms, wurde bereits zuvor ausführlich beschrieben.
  • Mit dem Begriff Parfüm sind Parfümöle, Duftstoffe und Riechstoffe gemeint. Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen.
  • Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian, Kamille), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax).
  • Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum.
  • Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat, Cyclohexylsalicylat, Floramat, Melusat, Jasmecyclat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether und Ambroxan, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame wie Limonen und Pinen.
  • Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenblütenöl, Orangenschalenöl, Sandelholzöl, NeroliolAllylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
  • Weitere Beispiele für Riechstoffe, die in den erfindungsgemäßen Zusammensetzungen sein können, finden sich z. B. in S. Arctander, Perfume and Flavor Materials, Vol. I und II, Montclair, N. J., 1969, Selbstverlag oder K. Bauer, D. Garbe und H. Surburg, Common Fragrance and Flavor Materials, 3rd. Ed., Wiley-VCH, Weinheim 1997.
  • Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in „Kopfnote" (top note), „Herz- bzw. Mittelnote" (middle note bzw. body) sowie „Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d. h. haftfesten Riechstoffen besteht.
  • Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung vorteilhafterweise einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaïvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronenöl, Zitronenöl sowie Zypressenöl.
  • Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung vorteilhafterweise als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, -Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylakohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, -Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Di-methylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n- nonylketon, Muskon, -Naphtholethylether, -Naphthol-methylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, -Phenylethylakohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, -Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester.
  • Zu den leichter flüchtigen Riechstoffen, die im Rahmen der vorliegenden Erfindung vorteilhaft einsetzbar sind, zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Usprung, die allein oder in Mischungen eingesetzt werrden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Bu-tandion, Limonen, Linalool, Linaylacetat und -propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
  • Alle vorgenannten Riechstoffe sind alleine oder in Mischung gemäß der vorliegenden Erfindung mit den bereits genannten Vorteilen einsetzbar.
  • Liegen die Siedepunkte der einzelnen Duftstoffe im wesentlichen unterhalb 300 °C, so liegt eine bevorzugte Ausführungsform der Erfindung vor, wobei vorzugsweise zumindest 50 % der enthaltenen Duftstoffe einen Siedepunkt unterhalb 300 °C aufweisen, vorteilhafterweise zumindest 60 %, in weiter vorteilhafter Weise zumindest 70 %, in noch vorteilhafterer Weise zumindest 80 %, in überaus vorteilhafter Weise zumindest 90 %, insbesondere sogar 100 %.
  • Siedepunkte unterhalb 300°C sind deswegen vorteilhaft, da die betreffenden Duftstoffe bei höheren Siedepunkten eine zu geringe Volatilität aufweisen würden. Um aber aus dem Partikel zumindest anteilsweise „ausströmen" zu können und Duft zu entfalten, ist eine bestimmte Volatilität der Duftstoffe von Vorteil.
  • Es wurde schon früher beobachtet, daß manche, instabile Parfümbestandteile mit Trägermaterial mitunter nicht gut kompatibel sind und sich nach Inkorporation im Träger zumindest anteilsweise zersetzen, insbesondere dann, wenn der Träger ein poröser mineralischer Träger ist, wie beispielsweise Ton, oder Zeolith, vor allem dehydratisierter und/oder aktivierter Zeolith. Instabile Duftstoffe im Sinne dieser Erfindung können dadurch identifiziert werden, daß man eine Parfümzusammensetzung, umfassend wenigstens 6 Duftstoffe in aktiviertem/dehydratisiertem Zeolith X inkorporiert und die resultierende Probe für 24 Stunden bei Raumtemperatur lagert. Dann werden die Duftstoffe mit Aceton extrahiert und gaschromatographisch analysiert, um die Stabilität zu bestimmen. Ein Duftstoff gilt dann als instabil im Sinne dieser Erfindung, wenn sich wenigstens 50 Gew.-%, vorzugsweise wenigstens 65 Gew.-%, vorteilhafterweise wenigstens 80 Gew.-%, insbesondere wenigstens 95 Gew.-% dieses Duftstoffes in Abbauprodukte zersetzt haben und bei der Extraktion nicht wieder erbracht werden könne.
  • Sind in dem erfindungsgemäßen Mittel weniger als 15 Gew.-%, vorzugsweise weniger als 8 Gew.-%, vorteilhafterweise weniger als 6 Gew.-%, noch vorteilhafter weniger als 3 Gew.-%, an unstabilem Parfüm enthalten, bezogen auf die gesamte Parfümmenge, welche in/auf der Partikel ad/absorbiert ist, so liegt eine bevorzugte Ausführungsform der Erfindung vor, wobei das instabile Parfüm insbesondere die Gruppe der Allylalkoholester, Ester von sekundären Alkoholen Ester von tertiären Alkoholen, allylische Ketone, Kondensationsprodukte von Aminen und Aldehyden, Acetate, Ketale und Mischungen der vorgenannten umfasst.
  • Wenn das Parfüm, welches in/auf der Partikel ad/absorbiert ist, wenigstens 4, vorteilhafterweise zumindest 5, in weiter vorteilhafter Weise zumindest 6, in noch weiter vorteilhafter Weise zumindest 7, in noch vorteilhafterer Weise zumindest 8, vorzugsweise zumindest 9, insbesondere zumindest 10 unterschiedliche Riechstoffe enthält, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
  • Wenn der logP-Wert der Parfümkomponenten, welche in/auf der Partikel ad/absorbiert sind, im wesentlichen mindestens 2, vorzugsweise mindestens 3 oder größer ist, so daß also zumindest 40 %, vorteilhafterweise zumindest 50 %, in weiter vorteilhafterweise zumindest 60 %, in noch vorteilhafterer Weise zumindest 70 %, vorzugsweise zumindest 80 %, insbesondere 90 % der Parfümkomponenten dieses log-Erfordernis erfüllen, so liegt eine bevorzugte Ausführungsform der Erfindung vor.
  • Der logP-Wert ist ein Maß für die Hydrophobie der Parfümkomponenten. Es ist der dekadische Logarithmus des Verteilungskoeffizienten zwischen n-Octanol und Wasser. Der Octanol/Wasser-Verteilungskoeffizient eines Parfüm-Bestandteiles ist das Verhältnis zwischen seinen Gleichgewichtskonzentrationen in Wasser und Octanol. Ein Parfümbestandteil mit höherem Verteilungskoeffizienten P ist stärker hydrophob. Die genannten Bedingungen für den logP sind deshalb von Vorteil, weil dadurch gewährleist wird, daß die Duft-stoffe besser in den Poren des Trägermaterials zurückgehalten werden können und sich auch besser auf Objekten, welche mit den Partikeln behandelt werden (beispielsweise mittelbar durch Behandlung mit einer Detergensformulierung, welche die erfindungsgemäßen Partikel enthält) niederschlagen. Der logP-Wert vieler Parfüm-Bestandteile ist in der Literatur angegeben; beispielsweise enthält die Pomona 92-Datenbank, erhältlich von der Firma Daylight Chemical Information Systems, Inc. (Daylog CIS), Irvine, Kalifornien, viele derartige Werte zusammen mit Hinweisen auf die Original-Literatur. Die logP-Werte können auch berechnet werden, beispielsweise mit dem „CLOG P"-Programm der eben genannten Firma Daylight CIS. Bei berechneten logP-Werten spricht man in der Regel von ClogP-Werten. Im Rahmen dieser Erfindung sind mit dem Begriff der logP-Werte auch die Clog-P-Werte mitumfasst. Vorzugsweise sollen dann Clog-P-Werte zur Hydrophobizitätsabschätzung herangezogen werden, wenn keine experimentellen logP-Werte für bestimmte Parfümbestandteile vorliegen.
  • Wenn erwünscht, kann das Parfüm auch mit einem Parfümfixativ kombiniert werden. Man geht davon aus, daß Parfümfixative die Ausdünstung der höher volatilen Anteile von Parfüms verlangsamen können.
  • Gemäß einer weiteren bevorzugten Ausführungsform umfasst das Parfüm, welches in/auf dem Trägermaterial ab/adsorbiert ist, ein Parfümfixativ, vorzugsweise in Form von Diethyl-phthalaten, Moschus(derivaten) sowie Mischungen dieser, wobei die Fixativmenge vorzugsweise 1 bis 55 Gew.-%, vorteilhafterweise 2 bis 50 Gew.-%, noch vorteilhafter 10 bis 45 Gew.-%, insbesondere 20 bis 40 Gew.-% der gesamten Parfümmenge beträgt.
  • Gemäß einer weiteren bevorzugten Ausführungsform enthalten die Partikel ein die Viskosität von Flüssigkeiten, insbesondere von Parfüm erhöhendes Mittel, vorzugsweise PEG (Polyethylenglykol), vorteilhafterweise mit einem Molekulargewicht von 400 bis 2000, wobei das die Viskosität erhöhende Mittel in bevorzugter Weise in Mengen von 0,1 bis 20 Gew.-%, vorteilhafterweise von 0,15 bis 10 Gew.-%, in weiter vorteilhafter Weise von 0,2 bis 5 Gew.-%, insbesondere von 0,25 bis 3 Gew.-% enthalten ist, bezogen auf die Partikel.
  • Es hat sich herausgestellt, daß die Viskosität von Flüssigkeiten, insbesondere von Parfüm erhöhenden Mittel einen weiteren Beitrag zur Stabilisierung des Parfüms in der Partikel liefern, wenn gleichzeitig nichtionisches Tensid vorhanden ist.
  • Die Viskosität erhöhende Mittel sind vorzugsweise Polyethylenglykole (kurz: PEG), die durch die allgemeine Formel I beschrieben werden können: H-(O-CH2-CH2)n-OH (I),in der Polymerisationsgrad n von ca. 5 bis zu > 100.000, entsprechend Molmassen von 200 bis 5.000.000 gmol-1, variieren kann. Die Produkte mit Molmassen unter 25.000 g/mol werden dabei als eigentliche Polyethylenglykole bezeichnet, während höhermolekulare Produkte in der Literatur oftmals als Polyethylenoxide (kurz: PEOX) bezeichnet werden. Die vorzugsweise eingesetzten Polyethylenglykole können eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind, und endgruppenverschlossen sein.
  • Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 400 und 2000. Es können insbesondere auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Zustand vorliegen; hier ist vor allem von Polyethylenglykol mit einer relativen Molekül-masse von 200, 400 und 600 die Rede.
  • Die Parfüms werden im allgemeinen in einer Menge von 0.05 bis 5 Gew.-%, bevorzugt von 0.1 bis 2.5 Gew.-%, insbesondere bevorzugt von 0.2 bis 1.5 Gew.-%, bezogen auf die Gesamtzusammensetzung, der Gesamtzusammensetzung zugesetzt.
  • Die Parfüms können in flüssiger Form, unverdünnt oder mit einem Lösungsmittel verdünnt für Parfümierungen den Zusammensetzungen zugesetzt werden. Geeignete Lösungsmittel hierfür sind z. B. Ethanol, Isopropanol, Diethylenglycolmonoethylether, Glycerin, Propylenglycol, 1,2-Butylenglycol, Dipropylenglycol, Diethylphthalat, Triethylcitrat, Isopropylmyristat usw.
  • Des weiteren können die Parfüms für die erfindungsgemäßen Zusammensetzungen an einen Trägerstoff adsorbiert sein, der sowohl für eine feine Verteilung der Riechstoffe im Produkt als auch für eine kontrollierte Freisetzung bei der Anwendung sorgt. Derartige Träger können poröse anorganische Materialien wie Leichtsulfat, Kieselgele, Zeolithe, Gipse, Tone, Tongranulate, Gasbeton usw. oder organische Materialien wie Hölzer und Cellulose-basierende Stoffe sein.
  • Die Parfümöle für die erfindungsgemäßen Zusammensetzungen können auch mikroverkapselt, sprühgetrocknet, als Einschluss-Komplexe oder als Extrusions-Produkte vorliegen und in dieser Form den zu parfümierenden Zusammensetzungen hinzugefügt werden.
  • Gegebenenfalls können die Eigenschaften der derart modifizierten Parfümöle durch sogenanntes "Coaten" mit geeigneten Materialien im Hinblick auf eine gezieltere Duftfreisetzung weiter optimiert werden, wozu vorzugsweise wachsartige Kunststoffe wie z. B. Polyvinylalkohol verwendet werden.
  • Der Verbraucher mag bei der Wahrnehmung der kosmetischen Zusammensetzungen, insbesondere hervorgerufen durch eine ästethisch ansprechende Verpackung, gegebenenfalls in Verbindung mit aromatischen Duftnoten, die erfindungsgemäße Zusammensetzung mit einem Genußmittel wie z. B. Süsswaren oder Getränken in Verbindung bringen. Durch diese Assoziation kann, insbesondere bei Kindern, eine orale Aufnahme bzw. ein Herunterschlucken der kosmetischen Zusammensetzung prinzipiell nicht ausgeschlossen werden. In einer bevorzugten Ausführungsform enthalten daher die erfindungsgemäßen Zusammensetzungen einen Bitterstoff, um ein Herunterschlucken bzw. eine akzidentielle Ingestion zu verhindern. Dabei sind erfindungsgemäß Bitterstoffe bevorzugt, die in Wasser bei 20 °C zu mindestens 5 g/l löslich sind.
  • Hinsichtlich einer unerwünschten Wechselwirkung mit gegebenenfalls in den kosmetischen Zusammensetzungen enthaltenen Duft-Komponenten, insbesondere einer Veränderung der vom Verbraucher wahrgenommenen Duftnote, haben die ionogenen Bitterstoffe sich den nichtionogenen als überlegen erwiesen. Ionogene Bitterstoffe, bevorzugt bestehend aus organischem(n) Kationen) und organischem(n) Anion(en), sind daher für die erfindungsgemäßen Zubereitungen bevorzugt.
  • Erfindungsgemäß hervorragend geeignet als Bitterstoffe sind quartäre Ammoniumverbindungen, die sowohl im Kation als auch im Anion eine aromatische Gruppe enthalten. Eine solche Verbindung ist das kommerziell z. B. unter den Warenzeichen Bitrex® und Indige-stin® erhältliche Benzyldiethyl((2,6-Xylylcarbamoyl)methyl)ammoniumbenzoat. Diese Verbindung ist auch unter der Bezeichnung Denatonium Benzoate bekannt.
  • Der Bitterstoff ist in den erfindungsgemäßen Formkörpern in Mengen von 0,0005 bis 0,1 Gew.-%, bezogen auf die gesamte Zusammensetzung, enthalten. Besonders bevorzugt sind Mengen von 0,001 bis 0,05 Gew.-%.
  • Zusätzlich kann es sich als vorteilhaft erweisen und die synergistischen Wirkungen der erfindungsgemäßen Wirkstoffkombination (A) noch weiter steigern, wenn Penetrationshilfsstoffe und/oder Quellmittel (M) enthalten sind. Diese Stoffe können eine bessere Penetration von Wirkstoffen in die zu behandelnde Haut oder das zu behandelnde Haar bewirken. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und Dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Glycerin, Glykol und Glykolether, Propylenglykol und Propylenglykolether, beispielsweise Propylenglykolmonoethylether, Carbonate, Nydrogencarbonate, Diole und Triole, und insbesondere 1,2-Diole und 1,3-Diole wie beispielsweise 1,2-Propandiol, 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Dodecandiol, 1,3-Propandiol, 1,6-Hexandiol, 1,5-Pentandiol, 1,4-Butandiol.
  • Als Farbstoffe zur Anfärbung der Zusammensetzungen können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81–106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
  • Der pH-Wert der erfindungsgemäßen Zubereitungen kann prinzipiell bei Werten von 2–11 liegen. Der pH-Wert wird je nach dem Zweck und der Verwendung der erfindungsgemäßen Zusammensetzung ganz gezielt ausgewählt und eingestellt. Für Färbemittel liegt er beispielsweise bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Für reinigende Zusammensetzungen liegt er beispielsweise zwischen 4 und 7,5, bevorzugt zwischen 4 und 6.
  • Zur Einstellung dieses pH-Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)-ethylendiamin.
  • Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt.
  • Es wurde weiterhin gefunden, daß die Wirkung des erfindungsgemäßen Wirkstoffes in den erfindungsgemäßen Mitteln in Kombination mit Stoffen, welche primäre oder sekundäre Aminogruppen enthalten, weiter gesteigert werden kann. Als Beispiele für derartige Aminoverbindungen seien genannt Ammoniak, Monoethanolamin, 2-Amino-2-methyl-1-propanol, 2-Amino-2-methyl-propandiol sowie basische Aminosäuren wie beispielsweise Lysin, Arginin oder Histidin. Selbstverständlich können diese Amine auch in Form der entsprechenden Salze mit anorganischen und/oder organischen Säuren eingesetzt werden, wie beispielsweise als Ammoniumcarbonat, Ammoniumcitrat, Ammoniumoxalat, Ammoniumtartrat oder Lysinhydrochlorid. Die Amine werden mit dem erfindungsgemäßen Wirkstoff gemeinsam in Verhältnissen von 1:10 bis 10:1, bevorzugt 3:1 bis 1:3 und ganz besonders bevorzugt in stöchiometrischen Mengen, eingesetzt.
  • Auch protische Lösemittel, wie beispielsweise Wasser, und Alkohole können in den erfindungsgemäßen Zusammensetzungen enthalten sein. Als Alkohole finden alle physiologisch bedenkenlos verwendbaren Alkohole Verwendung, beispielsweise Methanol, Ethanol, Isopropanol, Propanol, Butanol, Isobutanol, Glykol, Glycerin und deren Mischungen untereinander. Der Anteil an protischen Lösemitteln ergänzt in jedem Fall die erfindungsgemäße Zusammensetzung auf 100 Gewichtsteile. Bevorzugt sind in den kosmetischen Zusammensetzungen mindestens 30 Gew.% protische Lösemittel, besonders bevorzugt mindestens 50 Gew.% und ganz besonders bevorzugt mindestens 75 Gew.% sowie höchst bevorzugt mindestens 85 Gew.% protische Lösemittel enthalten.
  • Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader verwiesen.
  • Neben dem erfindungsgemäß zwingend erforderlichen Wirkstoffkomplex (A) und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
  • Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
    • – Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
    • – haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline,
    • – Dimethylisosorbid und Cyclodextrine,
    • – symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
    • – faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
    • – Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
    • – quaternierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
    • – Antischuppenwirkstoffe wie Piroctone Ölamine, Zink Omadine und Climbazol,
    • – Wirkstoffe wie Allantoin und Bisabolol,
    • – Cholesterin,
    • – Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure, Iminodibersnsteinsäure und derne Salze, Etidronic acid und deren Salze und Phosphonsäuren,
    • – Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
    • – Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
    • – Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
    • – Pigmente,
    • – Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cysteamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
    • – Antioxidantien.
  • Im folgenden werden weitere bevorzugte Ausgestaltungsformen der vorliegenden Erfindung beschrieben. Eine Ausgestaltungsform besteht darin, die erfindungsgemäßen Zusammensetzungen enthaltend den Wirkstoffkomplex (A) als Formkörper zu formulieren. Im folgenden wird daher diese Ausgestaltung der Formkörper detailliert beschrieben.
  • Zur Anwendung der erfindungsgemäßen Zusammensetzungen als Aerosolsprays müssen Treibgase verwendet werden. Die erfindungsgemäß bevorzugten Treibgase sind ausgewählt aus den Kohlenwasserstoffen mit 3 bis 5 Kohlenstoffatomen, wie Propan, n-Butan, iso-Butan, n-Pentan und iso-Pentan, Dimethylether, Kohlendioxid, Distickstoffoxid, Fluorkohlenwasserstoffen und Fluorchlorkohlenwasserstoffen sowie Mischungen dieser Substanzen. Ganz besonders bevorzugte Treibgase sind Propan, Butan, Isobutan, Pentan, Isopentan, Dimethylether und die Gemische dieser zuvor genannten Treibgase jeweils untereinander. Erfindungsgemäß bevorzugteste Treibgase sind die Gemische von Dimethylether mit Kohlenwasserstoffen. Innerhalb der Gruppe der Kohlenwasserstoffe als Treibgasen sind bevorzugt sind n-Butan und Propan.
  • Vorteilhafterweise wird das Treibmittel so ausgewählt, daß es gleichzeitig als Lösungsmittel für weitere Inhaltsstoffe wie beispielsweise Öl- und Wachskomponenten, den Fettstoffen (D) dienen kann. Das Treibmittel kann dann als Lösungsmittel für diese letztgenannten Komponenten dienen, wenn diese bei 20 °C zu mindestens 0,5 Gew.-%, bezogen auf das Treibmittel, in diesem löslich sind.
  • Gemäß einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zubereitungen die genannten Kohlenwasserstoffe oder Mischungen der genannten Kohlenwasserstoffe mit Dimethylether als einziges Treibmittel. Die Erfindung umfaßt aber ausdrücklich auch die Mitverwendung von Treibmittel vom Typ der Fluorchlorkohlenwasserstoffe, insbesondere aber der Fluorkohlenwasserstoffe.
  • Die Treibgase sind in Mengen von 5–98 Gew.%, bevorzugt 10–98 Gew.% und besonders bevorzugt 20–98 Gew.%, ganz besonders bevorzugt von 40 bis 98 Gew.-%, jeweils bezogen auf die gesamte Aerosolzusammensetzung, enthalten.
  • Die erfindungsgemäßen Zusammensetzungen können in handelsüblichen Aerosoldosen verpackt sein. Die Dosen können aus Weißblech oder aus Aluminium sein. Weiterhin können die Dosen innen beschichtet sein, um die Gefahr der Korrosion so gering wie möglich zu halten.
  • Wenn die erfindungsgemäßen Zusammensetzungen als Non-Aerosol Sprühapplikation angewendet wird, ist selbstverständlich kein Treibgas enthalten. Jedoch sind die Sprühköpfe in jedem Falle nach den entsprechenden erforderlichen Sprühraten auszuwählen.
  • Die Dosen sind mit einem geeigneten Sprühkopf ausgestattet. Je nach Sprühkopf sind Ausstoßraten, bezogen auf voll gefüllte Dosen, von 0,1 g/s bis 5,0 g/s möglich. Die Sprührate wird dabei so bestimmt, dass eine mit Treibgas und der entsprechenden Zusammensetzung gefüllte und mit dem betreffenden Ventil verschlossene Aerosoldose bei Raumtemperatur (etwa 23 °C) zunächst gewogen wird. Die Dose wird samt Inhalt 10 mal kräftig von Hand geschüttelt, damit sich der Inhalt gut vermischt. Dann wird für 10 s das Ventil der senkrecht stehenden Dose betätigt. Danach wird wiederum gewogen. Der Vorgang wird 5 mal hintereinander durchgeführt und das statistische Mittel aus den Ergebnissen gebildet. Die Differenz der beiden Wägungen ist die Sprührate pro 10 s. Daraus lässt sich durch einfaches Dividieren die Sprührate je Sekunde bestimmen. Im Falle von Non-Aerosolen wird der Sprühmechanismus entsprechend 10 mal betätigt. Unter der Sprührate ist in letzterem Falle die durchschnittliche ausgebrachte Menge je Sprühstoß (Pumpstoß) zu verstehen. Sprühraten von 0,1 bis 0,5 g/s sind dabei bevorzugt. Sprühraten von 0,1 bis 0,4 g/s sind besonders bevorzugt.
  • Hinsichtlich der Art, gemäß welcher der erfindungsgemäße Wirkstoffkomplex auf die keratinische Faser, insbesondere das menschliche Haar, aufgebracht wird, bestehen keine prinzipiellen Einschränkungen.
  • Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet.
  • Auf dem Haar verbleibende Zubereitungen haben sich als wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Haarwäsche, d. h. in der Regel mehr als 12 Stunden, auf dem Haar.
  • Gemäß einer weiteren bevorzugten Ausführungsform werden diese Zubereitungen als Haarkur oder Haar-Conditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Ausführungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumindest überwiegend wasserhaltigen Mittel ausgespült werden; sie können jedoch, wie oben ausgeführt, auf dem Haar belassen werden. Dabei kann es bevorzugt sein, die erfindungsgemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die erfindungsgemäße Zubereitung als Strukturschutz für die nachfolgenden Anwendungen.
  • Gemäß weiteren bevorzugten Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel wie Shampoos, pflegende Mittel wie Spülungen, festigende Mittel wie Haarfestiger, Schaumfestiger, Styling Gels und Fönwellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungsmittel oder Nachspülungen handeln.
  • In einer weiteren besonderen Ausführungsform der erfindungsgemäßen Zusammensetzungen bestehen diese aus mindestens einer transparenten bis klaren Phase und aus mindestens einer nicht transparenten, nicht klaren Phase.
  • Unter Transparenz im Sinne der Erfindung wird die Durchlässigkeit der erfindungsgemäßen Zusammensetzung gegenüber dem sichtbaren Licht verstanden. Hierzu die Durchlässigkeit der erfindungsgemäßen Zusammensetzung bei einer Schichtdicke von 1 cm vermessen. Diese wird in einer üblichen Messanordnung mit sichtbarem Licht vermessen. Ab einer Durchlässigkeit von mindestens 20 % des sichtbaren Lichtes wird dabei von Transparenz im Sinne der vorliegenden Erfindung gesprochen. Ab einer Durchlässigkeit von mindestens 60 % wird von klar im Sinne der Erfindung gesprochen. Eine Durchlässigkeit von mindestens 40 % ist erfindungsgemäß bevorzugt. Eine Durchlässigkeit von mindestens 60 % ist besonders bevorzugt, eine Durchlässigkeit für sichtbares Licht von mindestens 75 % ist ganz besonders bevorzugt. Und eine Durchlässigkeit von mindestens 85 % ist höchst bevorzugt.
  • Weitere Gegenstände der vorliegenden Erfindung sind die Verwendung einer erfindungsgemäßen Zubereitung zur Reinigung von Haut und Haar sowie die Verwendung einer erfindungsgemäßen Zubereitung zur Restrukturierung von keratinischen Fasern, insbesondere menschlichen Haaren.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung von Haut oder Haar, bei dem eine erfindungsgemäße Zubereitung auf die Haut und/oder das Haar aufgetragen wird, wobei die Zubereitung nach einer Einwirkzeit von 0 bis 45 Minuten wieder ausgespült wird.
  • Alternativ kann die Zubereitung auch auf das Haut und/oder das Haar aufgebracht und dort bis zur nächsten Haut- bzw. Haarwäsche belassen werden. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Behandlung von Haut oder Haar, bei dem eine erfindungsgemäße Zubereitung auf die Haut und/oder das Haar aufgetragen und dort bis zur nächsten Wäsche belassen wird.
  • Bevorzugte Verfahren der letztgenannten Art sind dadurch gekennzeichnet, daß die nächste Wäsche länger als 24 Stunden nach dem Auftragen der erfindungsgemäßen Zubereitung auf die Haut und/oder das Haar erfolgt.
  • Beispiele:
  • Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile. 1. Haarkur, Rinse-Off:
    C16-18-Fettalkohol 7,00
    Eumulgin® B21 0,03
    Genamin® DSAC202 1,20
    Laureth-4 0,075
    Laureth-6 0,075
    C12-14 Sec-Pareth-9 0,075
    PEG-8 0,075
    Dow Corning 200, 1 cSt 1,00
    Dehyquart F 753 1,20
    Amodimethicone 0,60
    Glycol 0,15
    Panthenol 0,5
    Tocopherylacetat 0,1
    Methylparaben 0,20
    Parfüm 0,30
    Phenoxyethanol 0,40
    Isopropylpalmitat 0,7
    Wasser ad 100
    • 1 Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth-20) (COGNIS)
    • 2 Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
    • 3 Mischung aus Esterquat und Fettalkohol (INCI-Bezeichnung Distearoylethyl Hydroxyethylmonium Methosulfate (and) Cetearyl Alcohol) (COGNIS)
    2. Haarspülung, Rinse-Off:
    C16-18-Fettalkohol 5,00
    Eumulgin® B21 0,03
    Genamin® DSAC202 1,20
    Trideceth-10 0,19
    Trideceth-5 0,11
    Dow Corning 200, 5 cSt 1,5
    Dehyquart F 753 1,20
    Amodimethicone 0,48
    Glycerin 0,135
    Pantholacton 0,5
    Methylparaben 0,20
    Parfüm 0,30
    Phenoxyethanol 0,40
    Isopropylmyristat 1,0
    Wasser ad 100
    • 1 Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth-20) (COGNIS)
    • 2 Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
    • 3 Mischung aus Esterquat und Fettalkohol (INCI-Bezeichnung Distearoylethyl Hydroxyethylmonium Methosulfate (and) Cetearyl Alcohol) (COGNIS)
    3. Sprühkur, Rinse-Off:
    Cetyltrimethylammoniumbromid 1,00
    Dow Corning 200, 20 cSt 0,60
    Glycol 0,15
    Laureth-4 0,075
    Laureth-6 0,075
    C12-14 Sec-Pareth-9 0,075
    PEG-8 0,075
    Ethylhexylpalmitat 0,5
    Cremophor® CO-401 0,60
    Panthenol 0,50
    Methylparaben 0,20
    Parfüm 0,30
    Phenoxyethanol 0,40
    Wasser ad 100
    • 1 PEG-40 Hydrogenated Castor Oil (COGNIS)
    4. Sprühkur, Leave-On:
    Dehyquart F 751 1,50
    Amodimethicone 0,48
    Glycerin 0,135
    Trideceth-10 0,19
    Trideceth-5 0,11
    Cremophor® CO-401 0,80
    Sonnenblumenöl 0,10
    Dow Corning 2-1491 0,8
    Niacinamid 0,10
    Methylparaben 0,20
    Parfüm 0,30
    Phenoxyethanol 0,40
    Laurinsäurehexylester 0,8
    Wasser ad 100
    • 1 Mischung aus Esterquat und Fettalkohol (INCI-Bezeichnung Distearoylethyl Hydroxyethylmonium Methosulfate (and) Cetearyl Alcohol) (COGNIS)
    5. Haarkur, Rinse-Off:
    C16-18-Fettalkohol 7,00
    Eumulgin® B2 0,03
    Genamin® DSAC20 1,20
    Laureth-4 0,075
    Laureth-6 0,075
    C12-14 Sec-Pareth-9 0,075
    PEG-8 0,075
    Dehyquart F 75 1,20
    Amodimethicone 0,60
    Dimethiconol 0,60
    Glycol 0,15
    Baysilone® TP 3911 2,5
    Panthenol 0,5
    Tocopherylacetat 0,1
    Methylparaben 0,20
    Parfüm 0,30
    Phenoxyethanol 0,40
    2-Ethylhexylstearat 1,2
    Wasser ad 100
  • Zur Bestimmung der subjektiven Unterschiede wurden alle Rezepturen mengengleich jeweils einmal mit dem erfindungsgemäßen Wirkstoffkomplex mit jeweils nur einer Komponente des erfindungsgemäßen Wirkstoffkomplexes gegeneinander im Halbseitenvergleich geprüft. Die Bewertung erfolgte durch jeweils 10 Personen, welche allesamt geschultes Fachpersonal waren.
  • Die erfindungsgemäßen Produkte wurden bei diesen Vergleichstests gegenüber den Produkten, die den erfindungsgemäßen Wirkstoffkomplex
    • a) mindestens einer Polyammonium-Polysiloxan Verbindung und
    • b) mindestens einem weiteren kosmetischen Inhaltsstoff, ausgewählt aus mindestens einer Verbindung der Gruppe der Polymere, der Naturstoffe sowie der naturanalogen Stoffe, der Fettstoffe oder der oberflächenaktiven Substanzen und/oder deren Mischungen.
    nicht enthalten, durchweg wesentlich besser beurteilt. Die erfindungsgemäßen Produkte werden bei Vergleichstests gegenüber Produkten, die nur die Komponente a) des erfindungsgemäßen Wirkstoffkomplexes enthalten durchweg besser beurteilt. Gegenüber Produkten, die nur die Komponente b) des erfindungsgemäßen Wirkstoffkomplexes enthalten, werden deutliche Leistungsvorteile beobachtet.
  • Weitere Beispiele:
  • Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
  • 6. Sprühbare Haarkur, leave-on
    Figure 01570001
  • Figure 01580001
  • 7. Leave-on Haarkur
    Figure 01580002
  • Figure 01590001
  • 8. Leave-on Haarkur
    Figure 01590002
  • Figure 01600001

Claims (7)

  1. Kosmetisches Mittel, enthaltend eine Wirkstoffkombination aus a) mindestens einer Polysiloxan Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und b) mindestens einem Esteröl, welches aus einer C6 bis C30 Fettsäure und einem C2 bis C30 Alkohol aufgebaut ist.
  2. Kosmetisches Mittel nach Anspruch 1, dadurch gekennzeichnet, dass weiterhin ein Inhaltsstoff c) ausgewählt aus mindestens einer der Gruppen der Polymere, der Naturstoffe bzw. der naturanalogen Stoffe, der Fettstoffe und der oberflächenaktiven Verbindungen enthalten ist.
  3. Verwendung einer Wirkstoffkombination enthaltend a) mindestens eine Polysiloxan Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und b) mindestens ein Esteröl, welches aus einer C6 bis C30 Fettsäure und einem C2 bis C30 Alkohol aufgebaut ist, zur Erhöhung der Wirkung von UV-Schutzfiltern auf Haaren.
  4. Verfahren zur Behandlung von Haut oder Haar, bei dem eine erfindungsgemäße Zubereitung enthaltend a) mindestens eine Polysiloxan Verbindung mit einer Viskosität von 0,1 cSt bis 5000 cSt und b) mindestens ein Esteröl, welches aus einer C6 bis C30 Fettsäure und einem C2 bis C30 Alkohol auf die Haut und/oder das Haar aufgetragen und dort bis zur nächsten Wäsche belassen wird.
  5. Kosmetisches Mittel nach Anspruch 1, dadurch gekennzeichnet, dass die Polysiloxan Verbindung a) ausgewählt ist aus den Dimethiconen und den Dimethiconolen.
  6. Kosmetisches Mittel nach Anspruch 1, dadurch gekennzeichnet, dass das Esteröl ausgewählt ist aus den Esterölen, welche aus einem Alkohol mit einer Zahl an C-Atomen von 2 bis 16 und einer Fettsäure mit einer Anzahl an C-Atomen von 6 bis 18 aufgebaut sind.
  7. Kosmetische Mittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass weiterhin mindestens ein UV-Filter enthalten ist.
DE200610002767 2006-01-20 2006-01-20 Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe Withdrawn DE102006002767A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200610002767 DE102006002767A1 (de) 2006-01-20 2006-01-20 Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe
PCT/EP2006/011898 WO2007087860A1 (de) 2006-01-20 2006-12-11 Kosmetische mittel enthaltend ein polysiloxan und ein esteröl und weitere wirkstoffe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610002767 DE102006002767A1 (de) 2006-01-20 2006-01-20 Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe

Publications (1)

Publication Number Publication Date
DE102006002767A1 true DE102006002767A1 (de) 2007-07-26

Family

ID=37807877

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200610002767 Withdrawn DE102006002767A1 (de) 2006-01-20 2006-01-20 Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe

Country Status (2)

Country Link
DE (1) DE102006002767A1 (de)
WO (1) WO2007087860A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015913A2 (de) * 2007-08-01 2009-02-05 Henkel Ag & Co. Kgaa Naturkosmetisches haarbehandlungsmittel
DE102010048056A1 (de) 2010-10-12 2012-04-12 Beiersdorf Ag Haarnachbehandlungsmittel, das besonders langanhaltenden Glanz vermittelt
EP3664774B1 (de) 2017-08-10 2021-09-01 Kao Corporation Kosmetische haarzusammensetzung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016006672B1 (pt) 2013-09-27 2021-03-30 The Procter & Gamble Company Composições de cabelo compreendendo polímeros de silicone de baixa viscosidade

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370319A (en) * 1980-06-19 1983-01-25 The Procter & Gamble Company Skin conditioning compositions
LU87180A1 (fr) * 1988-03-28 1989-10-26 Oreal Utilisation en cosmetique de diorganopolysiloxanes a fonction benzylidene-3 camphre et nouvelles compositions cosmetiques contenant ces composes,destinees a la protection de la peau et des cheveux
US5393526A (en) * 1994-02-07 1995-02-28 Elizabeth Arden Company, Division Of Conopco, Inc. Cosmetic compositions
FR2728167A1 (fr) * 1994-12-15 1996-06-21 Cird Galderma Composition cosmetique ou dermatologique sous forme d'une emulsion eau dans huile a teneur elevee en hydroxyacides
US6696067B2 (en) * 2001-04-12 2004-02-24 Ondeo Nalco Company Cosmetic compositions containing dispersion polymers
JP2006514661A (ja) * 2003-02-03 2006-05-11 デーエスエム アイピー アセッツ ベー. ヴェー. 新規な安定化されたケイ皮酸エステルサンスクリーン組成物
US20060013789A1 (en) * 2004-07-16 2006-01-19 L'oreal Cosmetic composition with improved staying power

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015913A2 (de) * 2007-08-01 2009-02-05 Henkel Ag & Co. Kgaa Naturkosmetisches haarbehandlungsmittel
WO2009015913A3 (de) * 2007-08-01 2009-10-08 Henkel Ag & Co. Kgaa Naturkosmetisches haarbehandlungsmittel
DE102010048056A1 (de) 2010-10-12 2012-04-12 Beiersdorf Ag Haarnachbehandlungsmittel, das besonders langanhaltenden Glanz vermittelt
EP2441434A2 (de) 2010-10-12 2012-04-18 Beiersdorf AG Haarnachbehandlungsmittel, das besonders langanhaltenden Glanz vermittelt
EP3664774B1 (de) 2017-08-10 2021-09-01 Kao Corporation Kosmetische haarzusammensetzung
US11540989B2 (en) 2017-08-10 2023-01-03 Kao Corporation Hair cosmetic

Also Published As

Publication number Publication date
WO2007087860A1 (de) 2007-08-09

Similar Documents

Publication Publication Date Title
EP1771144B1 (de) Haarkonditionierende mittel mit aminofunktionellen siliconen
EP1761232B2 (de) Haarreinigungsmittel mit aminofunktionellen siliconen
DE102006061863A1 (de) Haarkonditionierende Mittel mit ausgewählten kationischen Polymeren und wasserlöslichen Silikonen
EP1812118A1 (de) Haarkonditionierende mittel mit imidazolinen und aminofunktionellen siliconen oder dimethiconolen
DE102005061917A1 (de) Kosmetisches Kit zur Haar- und Kopfhautbehandlung
EP1827369A1 (de) Wirkstoffgemische zur restrukturierung keratinischer fasern
WO2008080701A1 (de) Kosmetische zusammensetzungen enthaltend ausgewählte fettsäuren- und squalen
EP1789010A1 (de) Wirkstoffgemisch zur behandlung keratinischer fasern
EP2107902A1 (de) Kosmetische zusammensetzung enthaltend arganöl und sheabutter
DE102006002767A1 (de) Kosmetische Mittel enthaltend ein Polysiloxan und ein Esteröl und weitere Wirkstoffe
DE102006059569A1 (de) Konditionierende Zusammensetzung von besonders ausgewählten milden anionischen Tensiden und kationischen oder amphoteren Polymeren in Mitteln zur Behandlung keratinischer Fasern
EP1791515A1 (de) Perlenextrakt in kosmetischen mitteln
DE102005029534A1 (de) Kosmetische Mittel enthaltend eine Polyammonium-Polysiloxan Verbindung und weitere Wirkstoffe
EP2061422A2 (de) Natürliche mineralische pulver in kosmetischen mitteln
WO2007031168A1 (de) Pulverisierte zuchtperlen in kosmetischen mitteln
DE102006061555A1 (de) Synergistische Kombination von Seidenproteinen und ausgewählten Metallen
EP2054026A1 (de) Kosmetische wirkstoffzusammensetzung mit sandelholzextrakt
DE102007001008A1 (de) Kosmetische Wirkstoffzusammensetzung mit Ayurveda-Extrakten
EP1759686A2 (de) Quarz in kosmetischen Mitteln
DE102004039158A1 (de) Volumen-Haarreinigungsmittel

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

8139 Disposal/non-payment of the annual fee