DE102005037824A1 - Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation - Google Patents

Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation Download PDF

Info

Publication number
DE102005037824A1
DE102005037824A1 DE200510037824 DE102005037824A DE102005037824A1 DE 102005037824 A1 DE102005037824 A1 DE 102005037824A1 DE 200510037824 DE200510037824 DE 200510037824 DE 102005037824 A DE102005037824 A DE 102005037824A DE 102005037824 A1 DE102005037824 A1 DE 102005037824A1
Authority
DE
Germany
Prior art keywords
virus
inactivation
viruses
reduction
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200510037824
Other languages
German (de)
Inventor
Albrecht Dr. Gröner
Thomas Dr. Nowak
Wolfram Dr. SCHÄFER
Thomas Dr. Weimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSL Behring GmbH Deutschland
Original Assignee
ZLB Behring GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZLB Behring GmbH filed Critical ZLB Behring GmbH
Priority to DE200510037824 priority Critical patent/DE102005037824A1/en
Priority to PCT/EP2006/007827 priority patent/WO2007017242A2/en
Publication of DE102005037824A1 publication Critical patent/DE102005037824A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0082Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
    • A61L2/0088Liquid substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0017Filtration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24311Pestivirus, e.g. bovine viral diarrhea virus
    • C12N2770/24361Methods of inactivation or attenuation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Procedure for the reduction of virus infection in a biological manufacturing process comprises subjecting chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated biological process to mechanical shearing stress that leads to clear virus inactivation.

Description

Die Erfindung betrifft ein Verfahren zur Reduktion der Infektiosität von Viren im Herstellungsprozess von Biologika, wobei chemische und/oder physikalische Methoden die als solche keine oder nur minimale Virusinaktivierungskapazität besitzen mit der Anwendung mechanischer Scherkräften kombiniert werden.The The invention relates to a method for reducing the infectivity of viruses in the manufacturing process of biologics, being chemical and / or physical Methods which as such have no or only minimal virus inactivation capacity combined with the application of mechanical shear forces.

Die Virussicherheit von Biologika beruht auf einem multifaktoriellen Ansatz mit (1) Auswahl des Ausgangsmaterials mit keinem oder minimalem Gehalt an infektiösen Viren, (2) Testung von Produktintermediaten und (3) Herstellungsprozess mit Verfahrensschritten, die Viren inaktivieren und/oder entfernen. Biologika sind oder enthalten therapeutische Proteine (aktive Bestandteile) die, z.B. aus Blut bzw. Plasma, Urin oder anderen biologischen Flüssigkeiten tierischen oder menschlichen Ursprungs, aus in vitro Kulturen von Zellen tierischen oder menschlichen Ursprungs oder aus in vivo Kulturen von Zellen oder Organen und Geweben tierischen und menschlichen Ursprungs gewonnen worden sind. Viele Verfahrensschritte mit hoher Kapazität Viren zu inaktivieren und/oder zu entfernen sind bekannt, so z.B. Virusinaktivierung durch erhöhte Temperatur oder durch Chemikalien, die insbesondere die Lipidhülle von Viren zerstören. Die Pasteurisierung (Hitzebehandlung in einer (stabilisierten) Lösung bei üblicherweise 60°C über 10 Stunden; Chandra et al. Effectiveness of alternative treatments for reducing potential viral contamination from plasma-derived products – Thrombosis Research 2002; 105: 391–400), die Dampfbehandlung (Kreil et al., West Nile virus and the safety of plasma derivatives: verification of high safety margins, and the validity of predictions based on model virus data, Transfusion 43, 2003, 1023– 1028) sowie die Trockenerhitzung (Roberts and Hart, Comparison of the inactivation of canine and bovine parvovirus by freeze drying and dry-heat treatment in two high purity factor VIII concentrates, Biologicals 28, 2000, 185–188) führt zu einer wirksamen Inaktivierung von Viren. Das Solvent/Detergens (SD)-Verfahren (Horowitz et al., Inactivation of viruses in labile blood derivatives. Disruption of lipid-enveloped viruses by tri(n-butyl)phosphate detergent combinations. Transfusion 25, 1985, 516–522) sowie die Behandlung von Produkt-Intermediaten mit Caprylat (Lebing et al., Properties of a new intravenous immunoglobulin produced by virus inactivation with caprylate and column chromatography, Vox Sanguinis 84, 2003, 193–201) führt zu einer wirksamen Inaktivierung von umhüllten Viren. Daneben kommen weitere Verfahren wie Bestrahlung (UV-C oder Gammabestrahlung) oder der Einsatz von nukleinsäure-interkalierenden Substanzen zum Einsatz. Neben diesen Beispielen von Verfahren zur Virusinaktivierung finden Maßnahmen Anwendung, die Viren entfernen, so z.B. Virusfiltration. Hierbei werden Viren entsprechend ihrer Größe durch kleinporige Filtermaterialien zurückgehalten und Plasmaproteine werden im Filtrat gesammelt.The Virus safety of biologics relies on a multifactorial Approach with (1) Selection of starting material with no or minimal Content of infectious Viruses, (2) testing of product intermediates and (3) manufacturing process with procedural steps that inactivate and / or remove viruses. Biologics are or contain therapeutic proteins (active ingredients) the, e.g. from blood or plasma, urine or other biological fluids of animal or human origin, from in vitro cultures of Cells of animal or human origin or from in vivo cultures of cells or organs and tissues animal and human Origin have been obtained. Many process steps with high capacity Inactivating and / or removing viruses are known, e.g. Virus inactivation by increased Temperature or by chemicals, in particular the lipid envelope of Destroy viruses. Pasteurization (heat treatment in a (stabilized) solution at usually 60 ° C over 10 hours; Chandra et al. Effectiveness of alternative treatments for reducing potential viral contamination from plasma-derived products - thrombosis Research 2002; 105: 391-400), steam treatment (Kreil et al., West Nile virus and the safety of plasma derivatives: verification of high safety margins, and the validity of predictions based on virus data, transfusion 43, 2003, 1023-1028) and dry heating (Roberts and Hart, Comparison of the inactivation of canine and bovine parvovirus by freeze drying and dry-heat treatment in two high purity factor VIII concentrates, Biologicals 28, 2000, 185-188) leads to effective inactivation of viruses. The solvent / detergent (SD) method (Horowitz et al., Inactivation of viruses in labile blood derivatives. Disruption of lipid-enveloped viruses by tri (n-butyl) phosphate detergent Combinations. Transfusion 25, 1985, 516-522) as well as the treatment of product intermediates with caprylate (Lebing et al., Properties of a new intravenous immunoglobulin produced by virus inactivation with caprylates and column chromatography, Vox Sanguinis 84, 2003, 193-201) leads to a effective inactivation of enveloped Viruses. In addition, other methods such as irradiation (UV-C or Gamma irradiation) or the use of nucleic acid-intercalating substances for use. Besides these examples of methods for virus inactivation find action Application that removes viruses, e.g. Virus filtration. in this connection Viruses are sized according to their size by small pore filter materials retained and plasma proteins are collected in the filtrate.

Da Virusreduktionsverfahren von den physikochemischen Eigenschaften von Viren beeinflußt werden, so ist z.B. das SD-Verfahren nur gegenüber umhüllten Viren und Bestrahlung besonders gegenüber Viren mit einzelsträngiger Nukleinsäure wirksam, werden entsprechend den Richtlinien der Behörden (z.B. CPMP/BWP/269/95) häufig 2 Verfahrensschritte zur Virusreduktion im Herstellungsverfahren von Biologika integriert um ein breites Spektrum an Viren wie umhüllte und nicht-umhüllte Viren zu inaktivieren und/oder zu entfernen. So ist z.B. die Kombination SD-Verfahren und Trockenerhitzung ein weit verbreitetes Verfahren bei Plasmaderivaten (Dichtelmüller et al., Improvement of virus safety of a S/D-treated factor VIII concentrate by additional dry heat treatment at 100 degrees C, Biologicals 24, 1996, 125–30). Die Kombination SD-Verfahren und Virusfiltration ist ebenfalls eine Möglichkeit um ein breites Spektrum an Viren zu inaktivieren und zu entfernen ( EP1161958A ).Since virus reduction methods are influenced by the physicochemical properties of viruses, eg the SD method is effective only against enveloped viruses and irradiation especially against viruses with single-stranded nucleic acid, according to the guidelines of the authorities (eg CPMP / BWP / 269/95) frequently 2 Procedural steps for virus reduction integrated in the production process of biologicals to inactivate and / or remove a wide range of viruses such as enveloped and non-enveloped viruses. Thus, for example, the combination SD method and dry heating is a widely used method in plasma derivatives (Dichtelmüller et al., Improvement of virus safety of an S / D-treated factor VIII concentrate by additional dry heat treatment at 100 degrees C, Biologicals 24, 1996 , 125-30). The combination SD method and virus filtration is also a way to inactivate and remove a wide range of viruses ( EP1161958A ).

Die zuverlässige Entfernung von Viren ist abhängig von den Eigenschaften der Viren und den aktiven Bestandteilen der Biologika. Da viele Plasmaproteinmoleküle eine ähnliche Größe wie kleine Viren besitzen, ist eine Virusentfernung durch Filtration bei diesen Plasmaproteinen nicht möglich, da die Proteine ebenfalls durch den Filter zurückgehalten werden. Deshalb lassen sich kleine (verglichen mit Viren) Proteinmoleküle relativ einfach von Viren durch Filtration trennen, nicht jedoch größere Proteinmoleküle, die denselben oder sogar größeren Durchmesser haben wie kleine Viren.The reliable Removal of viruses is dependent from the properties of the viruses and the active ingredients of the Biologics. Since many plasma protein molecules are similar in size to small viruses virus removal by filtration on these plasma proteins not possible, because the proteins are also retained by the filter. Therefore Small (relative to viruses) protein molecules can be relatively Simply separate from viruses by filtration, but not larger protein molecules, the the same or even larger diameter have like little viruses.

In der Patentschrift EP 0 727 226 B1 / US 6,391,657 B1 wurde beschrieben, dass der Durchmesser von Viren durch Bindung an Antikörper vergrößert werden kann um so eine Trennung von Viren und größeren Proteinmolekülen durch Filtration zu erreichen. Die Zugabe von Antikörpern, um Viren zu komplexieren, ist jedoch nicht immer möglich, da (1) Antikörper den weiteren Produktionsprozess von Biologika stören können oder (2) nicht im Produkt enthalten sein sollen oder (3) Antikörper gegen Viren, auch "new emerging viruses", nicht in ausreichender Qualität und Menge vorhanden sind um dem Herstellungsprozess von Biologika zugesetzt zu werden.In the patent EP 0 727 226 B1 / US 6,391,657 B1 It has been described that the diameter of viruses can be increased by binding to antibodies so as to achieve a separation of viruses and larger protein molecules by filtration. However, the addition of antibodies to complex viruses is not always possible because (1) antibodies may interfere with the further production process of biologics or (2) should not be included in the product or (3) antibodies against viruses, including new emerging are not available in sufficient quality and quantity to be added to the production process of biologics.

Wie erwähnt ist das SD-Verfahren sehr wirksam gegen umhüllte Viren. Es konnte gezeigt werden, dass das Detergens (z.B. Tween 80) allein jedoch nur zu einer vernachlässigbaren Virusinaktivierung führt (Horowitz, B. – Curr Stud Hematol Blood Transfus 1989; 56: 83–96), so dass ein Lösungsvermittler wie TNBP (Tris-N-Butyl-Phosphat) für eine wirksame Virusinaktivierung zwingend notwendig ist. Grundsätzlich sollten jedoch bei Biologika Lösungsvermittler vermieden werden, um so wenig wie möglich toxisches Reagens im Produktintermediat zu haben, das dann aufwendig zu entfernen ist, oder um keine Reaktion des Lösungsvermittlers mit Substanzen des Produktintermediates zu induzieren.As mentioned the SD method is very effective against enveloped viruses. It showed however, the detergent (e.g., Tween 80) alone will only a negligible one Virus inactivation leads (Horowitz, B. - Curr Stud Hematol Blood Transfus 1989; 56: 83-96), making a solver like TNBP (tris-N-butyl-phosphate) for one effective virus inactivation is mandatory. Basically, should but with Biologika solubilizers avoid as little toxic reagent as possible To have product intermediate, which is then expensive to remove, or no reaction of the solubilizer with substances of the product intermediates.

Überraschenderweise wurde nun gefunden, dass die alleinige Zugabe eines Detergens ohne Lösungsvermittler in einer Konzentration, die als solche Viren nicht inaktiviert, zu einer deutlich erhöhten Reduktion der Virusinfektiosität nach Virusfiltration führt, sogar bei Filtern mit einer Porengröße, die die Größe der Viren sogar überschreiten kann.Surprisingly It has now been found that the sole addition of a detergent without solubilizers in a concentration that does not inactivate as such viruses, to a significantly increased Reduction of viral infectivity leads to virus filtration, even with filters with a pore size that matches the size of the virus even exceed can.

Es konnte gezeigt werden, dass chemische oder physikalische Methoden, die zu einer Destabilisierung der Virusstruktur führen, zu einer erhöhten Virusreduktion führten, wenn Scherkräfte auf die derart destabilisierten Viren einwirken. Dieses Ergebnis tritt auch bei Konzentrationen oder Intensitäten auf, die allein zu keiner oder nur geringen Virusinaktivierung führen. Beispiele für diese Methoden zur Destabilisierung von Viren sind amphiphile Substanzen wie nicht-ionische, kationische, anionische und amphotere Tenside und Phospholipide, Alkohole, Fettsäuren, chaotrope Substanzen wie Urea, Thiocyanat, Guanidiniumhydrochlorid, Chelatbildner wie EDTA, hohe Ionenstärke wie hohe Konzentrationen von Kationen z.B. Na+ und Ca2+ und Anionen wie Cl und SO4 2–, (Ammoniumsulphat), pH-Wert und erhöhte Temperatur. Scherkräfte, die Viren in Gegenwart von destabilisierenden Agentien oder Verfahren inaktivieren können, treten z.B. bei Filtration (Tiefenfilter, Sterilfilter und Virus-/Nanofilter) und Chromatographie (Gelfiltration, IEX, HIC, Affinitätschromatographie, Membranchromatographyie), aber auch den bekannten Homogenisationsverfahren, wie z.B. Ultraschall oder mechanischen Homogenisatoren wie UltraTurrax® (IKA Werke, Janke & Kunkel GmbH & Co KG, Staufen, Deutschland), Hochdruckhomogenisatoren oder Kugelmühlen und Ähnlichen auf. Durch das beschriebene Verfahren inaktivierte Viren werden durch NAT/PCR (Nucleic Acid Amplification Technique/Polymerase Chain Reaction) nachgewiesen. Die Destabiliserung und Anwendung der Scherkräfte können praktisch zeitgleich oder sequentiell erfolgen.It could be shown that chemical or physical methods that lead to a destabilization of the virus structure led to an increased virus reduction when shear forces act on the thus destabilized viruses. This result also occurs at concentrations or intensities which alone result in little or no viral inactivation. Examples of these methods for destabilizing viruses are amphiphilic substances such as nonionic, cationic, anionic and amphoteric surfactants and phospholipids, alcohols, fatty acids, chaotropic substances such as urea, thiocyanate, guanidinium hydrochloride, chelating agents such as EDTA, high ionic strength such as high concentrations of cations eg Na + and Ca 2+ and anions such as Cl - and SO 4 2- , (ammonium sulphate), pH and elevated temperature. Shear forces which can inactivate viruses in the presence of destabilizing agents or processes occur, for example, in filtration (depth filter, sterile filter and virus / nanofilter) and chromatography (gel filtration, IEX, HIC, affinity chromatography, membrane chromatography), but also in the known homogenization methods, such as ultrasound or mechanical homogenizers as UltraTurrax® ® (IKA Werke, Janke & Kunkel GmbH & Co KG, Staufen, Germany), high pressure homogenizer or ball mills and the like on. Viruses inactivated by the method described are detected by NAT / PCR (Nucleic Acid Amplification Technique / Polymerase Chain Reaction). The destabilization and application of the shear forces can occur virtually simultaneously or sequentially.

Bevorzugterweise werden amphiphile Substanzen, insbesondere Tenside, eingesetzt in Konzentrationen von höchstens 0,1% (Gew/Vol), bevorzugterweise höchstens 0,05%, besonders bevorzugterweise 0,001–0,05%, ganz besonders bevorzugterweise 0,001–0,02%.preferably, Amphiphilic substances, in particular surfactants, are used in Concentrations of at most 0.1% (w / v), preferably at most 0.05%, more preferably 0.001-0.05%, most preferably 0.001-0.02%.

Im Vergleich von Infektiositätsdaten und NAT/PCR-Daten wird gezeigt, dass Infektiosität durch das beschriebene Verfahren stärker reduziert wird als virale Nukleinsäuren. Verdaus von Aliquots des Ausgangsmaterials mit DNase bei DNA Viren bzw. RNase bei RNA Viren und anschließende NAT/PCR belegen, dass das beschriebene Verfahren Viruspartikel zerstört und somit zu einer deutlichen Reduktion der Infektiosität im Filtrat führt.in the Comparison of infectiousness data and NAT / PCR data is shown to be infectious by the method described stronger is reduced as viral nucleic acids. Digestion of aliquots of the starting material with DNase in DNA viruses and RNase in RNA Viruses and subsequent NAT / PCR show that the described method destroys virus particles and thus leads to a significant reduction of infectivity in the filtrate.

Deutlich im Sinne dieser Anmeldung bedeutet eine Erhöhung des Virusreduktionsfaktor von mindestens 1 log10, bevorzugterweise 2 log10, besonders bevorzugterweise mindestens 3 log10.Significant for the purposes of this application means an increase in the virus reduction factor of at least 1 log 10 , preferably 2 log 10 , more preferably at least 3 log 10 .

Das folgende Beispiel soll die Erfindung erläutern, in keiner Weise dagegen einschränken.The The following example is intended to explain the invention, in no way against it limit.

Bovines virales Diarrhoevirus (BVDV), ein umhülltes Virus der Familie Flaviviridae, mit einem Durchmesser von etwa 40 bis 60 nm wurde physiologischer Kochsalzlösung (0,9% (Gew/Vol) NaCl pH 7,2) suspendiert. Zu dieser virusversetzten Lösung wurde Tween 80-Stammlösung gegeben (Endkonzentration von Tween 80 betrug 0,02%). Die Proben wurden durch einen Virusfilter mit einer nominellen Porengröße von 75 nm (Planova75N, Asahi-Kasei) entsprechend den Herstellerangaben filtriert. Die Ergebnisse (Tabelle 1) zeigen, dass BVDV nicht signifikant durch den Filter zurückgehalten wird; die Zugabe von Tween 80 in einer Konzentration die keine Virusinaktivierung verursacht (vgl. Standkontrolle) führte jedoch zu einer deutlichen Reduktion der Infektiosität im Filtrat.Bovines viral diarrhea virus (BVDV), an enveloped virus of the family Flaviviridae, with a diameter of about 40 to 60 nm became more physiological Saline (0.9% (w / v) NaCl pH 7.2). To this virusversetzten solution was Tween 80 stock solution (final concentration of Tween 80 was 0.02%). Samples were treated by a virus filter with a nominal pore size of 75 nm (Planova75N, Asahi-Kasei) according to the manufacturer's instructions filtered. The results (Table 1) show that BVDV is not significant retained by the filter becomes; the addition of Tween 80 in a concentration that does not cause virus inactivation caused (see level control), however, led to a significant Reduction of infectivity in the filtrate.

Tabelle 1: Erhöhte Virusreduktion durch Filtration nach Zugabe von Polysorbat 80

Figure 00060001
Table 1: Increased virus reduction by filtration after addition of polysorbate 80
Figure 00060001

Claims (2)

Verfahren zur Reduktion der Infektiosität von Viren im Herstellungsprozess von Biologika, dadurch gekennzeichnet dass die Biologika 1) chemischen und/oder physikalischen Methoden die als solche keine oder nur minimale Virusinaktivierungskapazität besitzen unterworfen werden, und 2) diese so vorbehandelten Biologika mechanischen Scherkräften ausgesetzt werden, die zu einer deutlichen Virusinaktivierung führen.A method for reducing the infectivity of viruses in the production process of biologics, characterized in that the biologics 1) are subjected to chemical and / or physical methods which as such have no or only minimal virus inactivation capacity, and 2) these biologics pretreated in this way are subjected to mechanical shearing forces lead to a significant virus inactivation. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet dass die Biologika 1) mit soviel Tensid versetzt werden, dass eine Endkonzentration von höchstens 0,1 (Gew/Vol) erreicht wird, und 2) diese so vorbehandelten Biologika einer Filtration durch ein Filter mit einer Porengrösse, die in etwa der Virengröße entspricht, ausgesetzt werden.Method according to claim 1, characterized in that the biologics 1) with so much Surfactant can be added that a final concentration of at most 0.1 (w / v) is achieved, and 2) pretreated this way Biologics of a filtration through a filter with a pore size, the corresponds approximately to the virus size, get abandoned.
DE200510037824 2005-08-08 2005-08-08 Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation Ceased DE102005037824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200510037824 DE102005037824A1 (en) 2005-08-08 2005-08-08 Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation
PCT/EP2006/007827 WO2007017242A2 (en) 2005-08-08 2006-08-08 Novel virus reduction method based on detergents and shearing forces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510037824 DE102005037824A1 (en) 2005-08-08 2005-08-08 Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation

Publications (1)

Publication Number Publication Date
DE102005037824A1 true DE102005037824A1 (en) 2007-02-15

Family

ID=37681034

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510037824 Ceased DE102005037824A1 (en) 2005-08-08 2005-08-08 Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation

Country Status (1)

Country Link
DE (1) DE102005037824A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943590C2 (en) * 1989-02-08 1995-05-24 Bran & Luebbe Virus inactivation in liquids
WO2000034446A1 (en) * 1998-12-04 2000-06-15 Csl Limited Inactivation of non-enveloped viruses
WO2003053477A1 (en) * 2001-12-21 2003-07-03 Baxter International Inc. Process for inactivating pathogens in a biological solution
WO2005054275A2 (en) * 2003-12-01 2005-06-16 Novo Nordisk Health Care Ag Nanofiltration of factor vii solutions to remove virus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3943590C2 (en) * 1989-02-08 1995-05-24 Bran & Luebbe Virus inactivation in liquids
WO2000034446A1 (en) * 1998-12-04 2000-06-15 Csl Limited Inactivation of non-enveloped viruses
WO2003053477A1 (en) * 2001-12-21 2003-07-03 Baxter International Inc. Process for inactivating pathogens in a biological solution
WO2005054275A2 (en) * 2003-12-01 2005-06-16 Novo Nordisk Health Care Ag Nanofiltration of factor vii solutions to remove virus

Similar Documents

Publication Publication Date Title
DE69512416T3 (en) FIBRINOGENIC CONCENTRATES FROM BLOOD PLASMA, METHOD AND APPARATUS FOR THEIR PRODUCTION
EP0330047B1 (en) Method for the sterilization of blood, plasma, blood derivatives, plasma derivatives, cell suspensions or the like
DE60128861T2 (en) Method for virus inactivation
DE69637181T2 (en) DEVICE FOR INACTIVATING VIRAL CONTAMINATION IN BLOOD PRODUCTS
DE102008056551A1 (en) Method for reducing the viral and microbial load of solids-containing biological extracts
EP0973544B1 (en) Immunotolerant prothrombin complex preparation
DE69827787T2 (en) METHOD FOR REMOVING VIRUSES FROM PROTEIN SOLUTIONS BY NANOFILTRATION
EP2328623B2 (en) Method for reducing the viral and microbial load of extracts containing solids and obtained from animal pancreas
DE4444045C2 (en) Method for inactivating viruses using acridine or acridine derivatives
EP0722344A1 (en) Process for virus deactivation in the presence of polyalkylene glycol and the pharmaceutical preparation thus obtained
AT390560B (en) METHOD FOR INACTIVATING VARIABLE FILTERABLE DISEASES
EP0309787A2 (en) Process for producing a highly purified, virus-free and biologically active transferrin preparation
EP0776668B1 (en) Process for the removal of aromatic compounds from solutions
DE4021542A1 (en) Combined process for prepn. of non-infectious blood plasma - comprises treating plasma with nonionic surfactants, adding lipid(s) to increase lipid phase and removing lipid phase and surfactants
EP0988063B1 (en) Process for reducing the concentration of viral and molecular pathogens in a biological material
DE102005037824A1 (en) Reduction of virus infection in a biological process comprises using chemical and/or physical methods that possess no or only minimal virus inactivation capacity and exposing the pre-treated process to shearing stress to clear inactivation
JPH06511013A (en) Albumin-Iodine Preservation of Blood, Tissues and Biofluids
DE102005038012A1 (en) Reduction of infectiousness of viruses in production of biologicals, e.g. blood or blood product, uses chemical and/or physical pretreatment, e.g. with detergent, and mechanical shear, e.g. filtration
WO2007017242A2 (en) Novel virus reduction method based on detergents and shearing forces
DE202008003806U1 (en) Extract for the manufacture of pharmaceutical therapeutics and their use as food or food or dietary supplements
EP0776212B1 (en) Method of producing infection-free pharmaceutical preparations and/or foodstuffs from infectious material, particular material containing prions
DE60310240T2 (en) REMOVAL OF PRION INFECTIOUSITY
EP0973543B1 (en) Method for inactivating pathogens, especially viruses, in a biological material
WO2007054297A2 (en) Use of hydrophobic interaction chromatography for the attenuation of viruses
AT406824B (en) Immunotolerant prothrombin complex preparation

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: CSL BEHRING GMBH, 35041 MARBURG, DE

8131 Rejection