DE102005021803A1 - Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode - Google Patents
Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode Download PDFInfo
- Publication number
- DE102005021803A1 DE102005021803A1 DE102005021803A DE102005021803A DE102005021803A1 DE 102005021803 A1 DE102005021803 A1 DE 102005021803A1 DE 102005021803 A DE102005021803 A DE 102005021803A DE 102005021803 A DE102005021803 A DE 102005021803A DE 102005021803 A1 DE102005021803 A1 DE 102005021803A1
- Authority
- DE
- Germany
- Prior art keywords
- electrode
- titanium
- capacitor structure
- insulator layer
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 36
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000010936 titanium Substances 0.000 title claims abstract description 24
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 24
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910003447 praseodymium oxide Inorganic materials 0.000 title claims abstract description 18
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 239000000615 nonconductor Substances 0.000 title claims description 5
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000012212 insulator Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- DPGAAOUOSQHIJH-UHFFFAOYSA-N ruthenium titanium Chemical compound [Ti].[Ru] DPGAAOUOSQHIJH-UHFFFAOYSA-N 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1272—Semiconductive ceramic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/10—Metal-oxide dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/0805—Capacitors only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/55—Capacitors with a dielectric comprising a perovskite structure material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/92—Capacitors having potential barriers
- H01L29/94—Metal-insulator-semiconductors, e.g. MOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02183—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02192—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
In sogenannten Metall/Isolator/Metall-Kondensatoren (MIM-Kondensatoren) werden Isolatormaterialien mit hoher Dielektrizitätskonstante eingesetzt. Mit diesen Isolatormaterialien kann eine Erhöhung der Kapazität gegenüber solchen Strukturen erzielt werden, die Siliziumdioxid SiO2 als Dielektrikum enthalten. Mit Hilfe der neuartigen, sogenannten „High-K"-Materialien kann bei äquivalenten Siliziumdioxidschichtdicken (EOT, equivalent oxide thickness) von weniger als 1 nm eine ausreichende Durchschlagfestigkeit und ein gutes Leckstromverhalten erzielt werden. Häufig sind amorphe Isolatormaterialien im Einsatz.In so-called metal / insulator / metal capacitors (MIM capacitors) insulator materials are used with high dielectric constant. With these insulator materials, it is possible to achieve an increase in capacitance compared with structures which contain silicon dioxide SiO 2 as the dielectric. With the help of the novel, so-called "high-K" materials, equivalent dielectric thicknesses (EOT) of less than 1 nm can achieve sufficient dielectric strength and good leakage current behavior.
Bekannte Isolatormaterialien mit hoher Dielektrizitätskonstante haben den Nachteil, dass sie bei Luftkontakt Reaktionen mit der Luft oder der darin enthaltenen Feuchtigkeit eingehen, wodurch sich ihre dielektrischen Eigenschaften verändern. Zur Stabilisierung wird beim Stand der Technik eine Mischung verschiedener Oxide eingesetzt. Dies bewirkt häufig eine amorphe Kristallstruktur des Dielektrikums. Eine amorphe Kristallstruktur ist jedoch nachteilig beim Einsatz in der industriellen Schaltkreisfertigung. Hier sind epitaktische Schichten vorteilhaft.Known Isolate materials with high dielectric constant have the disadvantage that they react with the air or the air contained in it in contact with air Moisture, thereby increasing their dielectric properties change. To stabilize the prior art is a mixture of different Oxides used. This often works an amorphous crystal structure of the dielectric. An amorphous crystal structure however, is disadvantageous for use in industrial circuit manufacturing. Here epitaxial layers are advantageous.
Ein weiterer Nachteil amorpher Schichtstrukturen ist ihre Neigung, bei hoher Temperaturbelastung, wie sie beispielsweise im Herstellungsprozess von Halbleiterstrukturen vorliegt, nicht reproduzierbar zu kristallisieren. Eine Stabilisierung der Schichteigenschaften der amorphen Isolatorstrukturen ist nur mit großem Aufwand möglich.One Another disadvantage of amorphous layer structures is their tendency to high temperature load, such as in the manufacturing process of Semiconductor structures is present, not reproducible to crystallize. A stabilization of the layer properties of the amorphous insulator structures is only great Effort possible.
Das der vorliegenden Erfindung zugrunde liegende technische Problem ist es, die genannten Nachteile zu verringern oder zu vermeiden.The the technical problem underlying the present invention is to reduce or avoid the disadvantages mentioned.
Gemäß einem ersten Aspekt der Erfindung bildet die Lösung des genannten technischen Problems eine Kondensatorstruktur mit einer ersten Elektrode, einer zweiten Elektrode und einer Isolatorschicht zwischen der ersten und der zweiten Elektrode, bei der die Isolatorschicht Praseodymoxid Pr2O3 enthält, wobei dem Praseodymoxid elementares Titan oder Titannitrid beigemischt ist.According to a first aspect of the invention, the solution to said technical problem is a capacitor structure comprising a first electrode, a second electrode and an insulator layer between the first and second electrodes, wherein the insulator layer comprises praseodymium oxide Pr 2 O 3 , the praseodymium oxide being elemental titanium or titanium nitride is mixed.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Herstellung einer Kondensatorstruktur, insbesondere einer MOS- oder MIM-Struktur, vorgeschlagen mit einer ersten Elektrode, einer zweiten Elektrode und einer Isolatorschicht zwischen der ersten und der zweiten Elektrode, bei dem die Isolatorschicht in Form einer Praseodymoxid Pr2O3 enthaltenden Schicht abgeschieden wird. Der Isolatorschicht wird erfindungsgemäß elementares Titan oder Titannitrid beigemischt.According to a further aspect of the invention, a method for producing a capacitor structure, in particular a MOS or MIM structure, proposed with a first electrode, a second electrode and an insulator layer between the first and the second electrode, wherein the insulator layer in the form of a Praseodymium oxide containing Pr 2 O 3 layer is deposited. According to the invention, the insulator layer is admixed with elemental titanium or titanium nitride.
Weitere Aspekte der Erfindung betreffen einen elektrischen Isolator, umfassend oder bestehend aus überwiegend einkristallinem oder vollständig einkristallinem Praseodymoxid Pr2O3, dem elementares Titan oder Titannitrid beigemischt ist, sowie ein Bauelement mit diesem elektrischen Isolator.Further aspects of the invention relate to an electrical insulator, comprising or consisting of predominantly monocrystalline or completely monocrystalline praseodymium oxide Pr 2 O 3 , to which elemental titanium or titanium nitride is admixed, and to a component with this electrical insulator.
Mit der Beimischung von Titan oder Titannitrid gelingt eine einkristalline (epitaktische), in einer alternativen Form der Erfindung eine überwiegend einkristalline Abscheidung. Hierbei genügt eine Zugabe von nur geringsten Atomprozenten Titan zur Erzielung dieser Wirkung, wobei durch einen örtlich geringere oder ver schwindende Konzentration innerhalb der Isolatorschicht bei Bedarf gezielt nichteinkristalline Bereiche erzeugt werden können.With The admixture of titanium or titanium nitride succeeds a monocrystalline (epitaxial), in an alternative form of the invention a predominantly monocrystalline deposition. Here, an addition of only the slightest is sufficient Atomic percent titanium to achieve this effect, being replaced by a locally lower or decreasing concentration within the insulator layer If required, non-monocrystalline regions can be produced in a targeted manner.
Titan wird bevorzugt bei einer MOS-Kondensatorstruktur verwendet. Eine bevorzugte Titanverbindung zur Verwendung im Zusammenhang mit der vorliegenden Erfindung ist Titannitrid. Dieses kommt bevorzugt in MIM-Strukturen zum Einsatz.titanium is preferably used in a MOS capacitor structure. A preferred titanium compound for use in connection with the present invention Invention is titanium nitride. This comes preferably in MIM structures for use.
Denkbar ist auch eine kombinierte Beimischung von elementarem Titan und von Titannitrid zur Isolatorschicht.Conceivable is also a combined admixture of elemental titanium and of titanium nitride to the insulator layer.
Mit Hilfe der erfindungsgemäßen Lösung gelingt es, wesentlich geringere Schichtdicken zu verwenden, die aufgrund ihrer strukturellen Ordnung eine höhere Isolationswirkung haben als amorphes Material. Mit verringerter Schichtdicke lässt sich die Kapazität eines Kondensators bei gleicher Fläche verringern. Alternativ kann die Kondensatorfläche bei gleichbleibender Kapazität gesenkt werden. Letzteres ist besonders interessant, wenn im Bereich der Bauelementfertigung eine Verringerung der Strukturausmaße erzielt werden soll.With Help the solution according to the invention succeeds it is to use much lower layer thicknesses due to their structural order have a higher isolation effect as amorphous material. With reduced layer thickness can be the capacity of a capacitor reduce the same area. alternative can the capacitor area with the same capacity be lowered. The latter is especially interesting when in the area Component manufacturing achieved a reduction in structural dimensions shall be.
Vorteilhaft bei der erfindungsgemäßen Lösung ist weiterhin, dass einkristalline Materialien einen thermodynamisch stabileren Zustand gegenüber amorphen, jedoch kristallisierbaren Materialien bilden. Aus diesem Grund wird beim Einsatz zum Beispiel in DRAM-Kondensatoren bei der industriellen Bauelementfertigung die nachfolgende Temperatur-/Zeitbelastung durch Vermeidung des Strukturumschlages reduziert. Diese Reduktion ist beim Einsatz eines hochtemperaturbeständigen, einkristallinen „High-K"-Dielektrikums nicht zwingend notwendig und vereinfacht den Fertigungsprozess von dynamischen Speichern.Advantageous in the inventive solution furthermore, that monocrystalline materials have a thermodynamic more stable against amorphous, but form crystallizable materials. That's why when used for example in DRAM capacitors in industrial component manufacturing the subsequent temperature / time load by avoiding the Structural envelope reduced. This reduction is when using a high temperature resistant, monocrystalline "high-K" dielectric not imperative and simplifies the manufacturing process of dynamic To save.
Nachfolgend werden Ausführungsbeispiele der erfindungsgemäßen Kondensatorstruktur und des erfindungsgemäßen Verfahrens beschrieben.following Be exemplary embodiments of inventive capacitor structure and the method of the invention described.
Bei einem bevorzugten Ausführungsbeispiel der Kondensatorstruktur besteht die Isolatorschicht aus Praseodymoxid, abgesehen von der erfindungsgemäßen Beimischung von Titan oder einer Titanverbindung oder von Mischphasen oder Verunreinigungen, die im Grenzbereich zu einer benachbarten Schicht enthalten sein können. Diese Mischoxide im Grenzbereich, sogenannte Silikate, besitzen selbst eine vergleichsweise große Dielektrizitätskonstante von etwa 13 bis 15 und sind deshalb besonders geeignet, in der Form einer sehr dünnen Interfaceschicht die Anpassung zwischen der Pr2O3-Schicht und dem Si(001)-Substrat zu übernehmen.In a preferred embodiment of the capacitor structure, the insulator layer consists of praseodymium oxide, apart from the admixture of titanium or a titanium compound according to the invention or of mixed phases or impurities, which may be contained in the boundary region to an adjacent layer. These mixed oxides in the boundary region, so-called silicates, themselves have a comparatively large dielectric constant of about 13 to 15 and are therefore particularly suitable, in the form of a very thin interface layer, the matching between the Pr 2 O 3 layer and the Si (001) substrate to take over.
Bei einem weiteren Ausführungsbeispiel der Kondensatorstrukturist der Isolatorschicht oder dem Praseodymoxid zusätzlich Titanoxid, beispielsweise TiO2 beigemischt. Titanoxid kann eine zusätzliche Stabilisierung gegenüber Feuchtigkeit und darüber hinaus auch, je nach Gehalt im Praseodymoxid, eine Variation der Dielektrizitätskonstante bewirken.In a further exemplary embodiment of the capacitor structure, the insulator layer or the praseodymium oxide is additionally mixed with titanium oxide, for example TiO 2 . Titanium oxide can cause additional stabilization against moisture and, moreover, depending on the content in the praseodymium oxide, a variation of the dielectric constant.
Bei einem anderen Ausführungsbeispiel der Kondensatorstruktur enthält die erste Elektrode oder die zweite Elektrode oder die erste und die zweite Elektrode überwiegend ein Halbleitermaterial oder besteht aus einem Halbleitermaterial. Je nach Kombination von Elektroden kann so eine MIS-, MOS-, oder SIS-Kondensatorstruktur gebildet werden.at another embodiment contains the capacitor structure the first electrode or the second electrode or the first and the second electrode predominantly a semiconductor material or consists of a semiconductor material. Depending on the combination of electrodes such a MIS, MOS, or SIS capacitor structure be formed.
Ergänzend bzw. alternativ kann die erste Elektrode oder die zweite Elektrode oder die erste und die zweite Elektrode metallisch leitfähig ausgebildet sein. Dieses Ausführungsbeispiel umfasst insbesondere eine MIM-Struktur.Supplementary or alternatively, the first electrode or the second electrode or the first and the second electrode formed metallically conductive be. This embodiment includes in particular a MIM structure.
Wie bereits erwähnt genügen schon geringe Konzentrationen von Titan zur Erzielung der beschriebenen vorteilhaften Wirkung. Bei verschiedenen Ausführungsbeispielen ist der Gehalt von Titan in der Isolatorschicht mit einer Konzentration von maximal 5 Atomprozent, maximal 3 Atomprozent, maximal 1 Atomprozent maximal 0,1 Atomprozent und maximal 0,01 Atomprozent nach oben begrenzt.As already mentioned suffice already low concentrations of titanium to achieve the described advantageous effect. In various embodiments, the content is of titanium in the insulator layer with a maximum concentration 5 atomic percent, maximum 3 atomic percent, maximum 1 atomic percent maximum 0.1 atomic percent and a maximum of 0.01 atomic percent capped.
Nachfolgend werden bevorzugte Ausführungsbeispiele anhand von Figuren näher erläutert. Es zeigen:following become preferred embodiments on the basis of figures closer explained. It demonstrate:
Es
versteht sich, dass in den vorstehend beschriebenen Ausführungsbeispielen
zusätzliche Schichten
insbesondere zur Kontaktierung der Elektroden
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005021803A DE102005021803A1 (en) | 2004-05-04 | 2005-05-04 | Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004023135 | 2004-05-04 | ||
DE102004023135.4 | 2004-05-04 | ||
DE102004032661.4 | 2004-07-01 | ||
DE102004032661 | 2004-07-01 | ||
DE102005021803A DE102005021803A1 (en) | 2004-05-04 | 2005-05-04 | Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005021803A1 true DE102005021803A1 (en) | 2005-12-29 |
Family
ID=35455160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102005021803A Ceased DE102005021803A1 (en) | 2004-05-04 | 2005-05-04 | Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102005021803A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051573A1 (en) * | 2005-06-17 | 2006-12-28 | IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik | Electronic device with metal-insulator-metal (MIM) or metal-insulator-semiconductor (MIS) structure, has layer of succession of MIM or MIS materials that includes insulator layer containing or consisting of praseodymium titanate |
EP2680376A1 (en) * | 2011-02-22 | 2014-01-01 | ZTE Corporation | Rotary usb interface device |
-
2005
- 2005-05-04 DE DE102005021803A patent/DE102005021803A1/en not_active Ceased
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051573A1 (en) * | 2005-06-17 | 2006-12-28 | IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik | Electronic device with metal-insulator-metal (MIM) or metal-insulator-semiconductor (MIS) structure, has layer of succession of MIM or MIS materials that includes insulator layer containing or consisting of praseodymium titanate |
DE102005051573B4 (en) * | 2005-06-17 | 2007-10-18 | IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik | MIM / MIS structure with praseodymium titanate as insulator material |
EP2680376A1 (en) * | 2011-02-22 | 2014-01-01 | ZTE Corporation | Rotary usb interface device |
EP2680376A4 (en) * | 2011-02-22 | 2014-08-13 | Zte Corp | Rotary usb interface device |
US9142898B2 (en) | 2011-02-22 | 2015-09-22 | Zte Corporation | Rotary USB interface device with capacitive coupling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60023573T2 (en) | Method for producing a capacitor with tantalum pentoxide in an integrated circuit | |
DE60220230T2 (en) | METHOD OF MANUFACTURING A SEMICONDUCTOR COMPONENT | |
DE69531070T2 (en) | Capacitor for an integrated circuit and its manufacturing process | |
DE19817486C2 (en) | Chemical cleaning and etching solution for the production of semiconductor devices and a method for producing semiconductor devices by means of the same | |
EP1410442A1 (en) | Electronic component and method for producing an electronic component | |
DE3841588A1 (en) | DYNAMIC VERTICAL SEMICONDUCTOR STORAGE WITH OPTIONAL ACCESS AND METHOD FOR THE PRODUCTION THEREOF | |
DE102007054064A1 (en) | Method for producing a semiconductor device | |
DE2704626A1 (en) | PROCESS FOR THE FORMATION OF A CONNECTION ZONE IN A SILICON SUBSTRATE IN THE PRODUCTION OF N-CHANNEL SILICON GATE COMPONENTS IN INTEGRATED MOS TECHNOLOGY | |
DE102009015715A1 (en) | Maintaining the integrity of a high-k gate stack through an offset spacer used to determine a deformation-inducing semiconductor alloy spacing | |
DE2527621C3 (en) | Field effect semiconductor component | |
DE3618128A1 (en) | METHOD FOR PRODUCING A MOS CONDENSER | |
DE102007003450A1 (en) | Semiconductor device with various capacitors and manufacturing processes | |
DE3122437A1 (en) | METHOD FOR PRODUCING A MOS COMPONENT | |
DE19681430B4 (en) | Method for producing a semiconductor component | |
DE3785699T2 (en) | SEMICONDUCTOR ARRANGEMENT WITH TWO ELECTRODES SEPARATED BY AN INSULATION LAYER. | |
DE102007030321B4 (en) | Semiconductor device with gate structure and manufacturing method of the semiconductor device | |
DE102005021803A1 (en) | Capacitor structure used in an electrical insulator comprises an insulating layer containing praseodymium oxide mixed with titanium or titanium nitride arranged between a first electrode and a second electrode | |
EP1114451A1 (en) | Microelectronic structure, production method and utilization of the same | |
DE10306315B4 (en) | Semiconductor device and corresponding manufacturing method | |
DE10256713B4 (en) | A method of fabricating a storage node of a stacked capacitor | |
DE60030386T2 (en) | Method of Making Field Effect Devices and Thin Film Dielectric Capacities and Devices so Produced | |
EP1113488A2 (en) | Method of manufacturing a structured metal oxide containing layer | |
DE2422970C3 (en) | Process for the chemical deposition of silicon dioxide films from the vapor phase | |
DE3033535A1 (en) | SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION | |
DE4140173C2 (en) | DRAM and method for its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |