DE102004055636A1 - Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process - Google Patents

Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process Download PDF

Info

Publication number
DE102004055636A1
DE102004055636A1 DE200410055636 DE102004055636A DE102004055636A1 DE 102004055636 A1 DE102004055636 A1 DE 102004055636A1 DE 200410055636 DE200410055636 DE 200410055636 DE 102004055636 A DE102004055636 A DE 102004055636A DE 102004055636 A1 DE102004055636 A1 DE 102004055636A1
Authority
DE
Germany
Prior art keywords
alinn
growth
layer
indium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410055636
Other languages
German (de)
Inventor
Armin Dr. Dadgar
Alois Prof.Dr. Krost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azzurro Semiconductors AG
Original Assignee
Azzurro Semiconductors AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azzurro Semiconductors AG filed Critical Azzurro Semiconductors AG
Priority to DE200410055636 priority Critical patent/DE102004055636A1/en
Publication of DE102004055636A1 publication Critical patent/DE102004055636A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/28Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using variation of intensity or distance of source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

Production of semiconductor elements comprises growing epitaxial AlInN layers in connection with GaN, AlN or AlGaN layers and reducing the Al:In ratio and/or raising substrate temperature during growth of the first 1-200 nm of the layer or pre-streaming indium before the Al process to grow the AlInN layer. An independent claim is also included for a semiconductor element formed as above.

Description

Verfahren zur Herstellung von Halbleiterbauelementen und daraus hergestellte Halbleiterbauelemente.method for the manufacture of semiconductor devices and made therefrom Semiconductor devices.

AlInN ist ein idealer Halbleiter für die Realisierung von GaN/AlInN Braggreflektoren und von Hochleistungstransistoren. AlInN mit ca. 18% In kann gitterangepaßt auf GaN aufgewachsen werden, so dass im Gegensatz zum System GaN/AlGaN das rißfreie Wachstum von dicken Braggreflektoren [Car03], die die Grundlage von RCLEDs [Dor04] oder VCSELn bilden, ermöglicht wird. Zum anderen ist es geeignet, um Transistoren mit hohen Kanalströmen zu realisieren oder sogar zur Herstellung von p-Kanal Transistoren für Hochtemperaturlogikschaltungen auf GaN-Basis [ DE 102004034341.1 ].AlInN is an ideal semiconductor for the realization of GaN / AlInN Bragg reflectors and high power transistors. AlInN with approx. 18% In can be grown on GaN lattice-matched so that in contrast to the system GaN / AlGaN the crack-free growth of thick Bragg reflectors [Car03], which form the basis of RCLEDs [Dor04] or VCSELs, is made possible. On the other hand, it is suitable for realizing transistors with high channel currents or even for producing p-channel transistors for high-temperature logic circuits based on GaN [ DE 102004034341.1 ].

Dabei ist für eine gute Bauelementleistung das Wachstum der AlInN Schicht wesentlich. Im Gegensatz zu Untersuchungen an GaN und InGaN gibt es in der Literatur verhältnismäßig wenige Wachstumsuntersuchungen zum AlInN [Dor04, Hig04, Kos01, Kou00, Onu03, Yam01]. Eigene Untersuchungen ergaben, daß sich AlInN in der metallorganischen Gasphasenepitaxie (MOVPE) am besten bei für Al-haltige Nitride relativ niedrigen Temperaturen unterhalb von 900°C, statt von ca. 1050°C für GaN bzw. AlN, und niedrigen Drücken unter Stickstoffträgergas wachsen läßt. In der Molekularstrahlepitaxie (MBE) sind ebenfalls relativ niedrige Temperaturen notwendig, um Indium in den Kristall einzubauen. Dabei tritt jedoch immer ein deutlich inhomogener Einbau von Indium auf, der die Eigenschaften der Schichten nachteilig beeinflußt. So führt eine Änderung des Indium Gehalts und somit des Brechungsindex in der AlInN Schicht von Braggreflektoren dazu, daß die Reflektivität reduziert wird, was durch die Minderung in der Güte des Spiegels zu einer notwendigen Erhöhung der Spiegelpaarzahl führt.there is for a good device performance is essential to the growth of AlInN layer. In contrast to studies on GaN and InGaN, there are in the literature relatively few Growth Studies on AlInN [Dor04, Hig04, Kos01, Kou00, Onu03, Yam01]. Our own investigations showed that AlInN in the organometallic Gas phase epitaxy (MOVPE) is best for Al-containing nitrides relative low temperatures below 900 ° C, instead of about 1050 ° C for GaN or AlN, and low pressures under nitrogen carrier gas grow. In the Molecular Beam Epitaxy (MBE) are also relatively low temperatures necessary to incorporate indium into the crystal. However, it occurs always a significantly inhomogeneous incorporation of indium on the properties the layers adversely affected. This leads to a change in the indium content and thus the refractive index in the AlInN layer of Bragg reflectors to that the reflectivity is reduced, which by the reduction in the quality of the mirror to a necessary Increase the Mirror pair number leads.

Bei Transistoren mit einer GaN/AlInN Grenzfläche führt die Inhomogenität im Indium Einbau zu einer meist ungünstigen Abnahme der Bandlücke zur Oberfläche hin und damit zu einer erhöhten Gatespannung, um den Transistor voll in Durchlaß zu Schalten. Auch kann der inhomogene Indium Einbau zu einem parasitären leitfähigen Kanal an der Oberfläche der AlInN Schicht einer Transistorstruktur führen. Dabei findet beim epitaktischen Wachstum von AlInN mit konstanten Wachstumsbedingungen wie z.B. Partialdrücken der Metallorganika und des Ammoniakprecursors, der Temperatur, des Gesamtdruck, etc. am Anfang des AlInN Wachstums immer ein reduzierter Indium Einbau, der meist in einer Schicht von ca. 10–150 nm auf einen Sättigungswert ansteigt, statt. Der Sättigungswert kann dabei mehr als das Doppelte des Anfangswerts betragen. Diese Inhomogenität im Indium Einbau behindert daher den Einsatz des AlInN im Bauelementbereich, da die erzielbaren Bauelementleistungen nicht den Anforderungen, wie einer hohen Reflektivität bei Bragg-Spiegeln bzw. einem frühen Aufsteuern von Transistoren, genügen.at Transistors with a GaN / AlInN interface cause inhomogeneity in the indium Installation to a mostly unfavorable Decrease in band gap to the surface towards and therefore to an increased Gate voltage to turn the transistor fully on. Also, the Inhomogeneous indium incorporation into a parasitic conductive channel on the surface of the AlInN lead layer of a transistor structure. It takes place in the epitaxial Growth of AlInN with constant growth conditions, e.g. partial pressures organometallic and ammonia precursor, the temperature of the Total pressure, etc. at the beginning of AlInN growth is always a reduced Indium incorporation, usually in a layer of about 10-150 nm to a saturation value rises, instead. The saturation value can be more than twice the initial value. These inhomogeneity in indium incorporation therefore hinders the use of AlInN in the device sector, because the achievable device performance does not meet the requirements like a high reflectivity at Bragg mirrors or an early one Control of transistors, suffice.

Die Erfindung ermöglicht die Herstellung hochwertiger AlInN-haltiger Halbleiterbauelemente nach Anspruch 1 durch eine Reduktion des verzögerten Indiumeinbaus. Dies wird durch eine kontinuierliche Anpassung der Wachstumsparameter während der ersten ca. 1–200 nm der AlInN Schicht bzw. direkt vor dem Beginn des eigentlichen AlInN Wachstums bewirkt. Diese Methoden zielen auf eine In-Abreicherung in der Gasphase, ein Abdampfen einer sich während des Wachstums ausbildenden Indiumanreicherung auf der Kristalloberfläche oder auf eine Indiumanreicherung der Kristalloberfläche vor dem eigentlichen AlInN Wachstum ab. Sie können je nach Wachstumsbedingungen einzeln oder auch in Kombination angewendet werden. Erst durch diese Methoden wird ein homogener Indiumeinbau in der gesamten AlInN Schicht ermöglicht. Im Detail kann dies dadurch erfolgen, daß nach Anspruch 2 am Anfang des Schichtwachstums mehr Indium angeboten wird und dieses Angebot mit wachsender Schicht auf einen niedrigeren Basiswert reduziert wird. Auch eine Erhöhung der Temperatur nach Anspruch 3 hat einen entsprechenden Effekt, da der Indium Einbau mit ansteigender Temperatur durch das Abdampfen von Indium reduziert wird. Nach Anspruch 4 kann ein homogener Indiumeinbau aber auch dadurch erfolgen, daß vor dem AlInN Wachstum die Indiumzufuhr gestartet wird. Die dadurch erfolgende Indiumanreicherung auf dem Substrat ermöglicht nun ab dem Zeitpunkt des Aluminiumangebots das Wachsen einer AlInN Schicht, welche bei ausreichendem weiteren Indiumzufluß ohne weitere Maßnahmen mit homogener Komposition über der Dicke wächst. Auch möglich, aber zumindest in der MOVPE deutlich schwerer zu kontrollieren, ist das Steigern des Aluminiumangebots nach Anspruch 5 um den Indiumeinbau konstant zu halten.The Invention allows the production of high quality AlInN-containing semiconductor devices according to claim 1 by a reduction of the delayed indium incorporation. This is through continuous adjustment of growth parameters while the first about 1-200 nm of AlInN layer or directly before the beginning of the actual AlInN causes growth. These methods aim at in-depletion in the gas phase, an evaporation of a forming during growth Indium enrichment on the crystal surface or on an indium enrichment the crystal surface before the actual AlInN growth. They can vary depending on growth conditions individually or in combination. Only through this Methods will be a homogeneous indium incorporation throughout the AlInN layer allows. In detail, this can be done by that according to claim 2 in the beginning of the layer growth more Indium is offered and this offer reduced to a lower base value with a growing layer becomes. Also an increase the temperature according to claim 3 has a corresponding effect, since the indium incorporation with increasing temperature by evaporation is reduced by indium. According to claim 4, a homogeneous Indiumeinbau but also be done by that before the AlInN growth the indium feed is started. The result Indium enrichment on the substrate is now possible from the time of the aluminum supply, the growth of an AlInN layer, which with sufficient further Indiumzufluß without further measures with homogeneous composition over the thickness grows. Also possible, but at least in the MOVPE much harder to control, is the increase of the aluminum supply according to claim 5 to the Indiumeinbau to keep constant.

Bei Braggspiegeln wie sie für Bauelemente nach Anspruch 13 benötigt werden läßt sich so z.B. eine Erhöhung der Reflektivität für 10 Spiegelpaare von 70 auf 80% bei einer Zentralwellenlänge von 390 nm bewerkstelligen. Bei Transistorbauelementen, die z.B. auf zweidimensionalen Elektronen- oder Löchergasen nach Anspruch 14 basieren, führt eine Homogenisierung des Indiumgehalts zu einer Reduktion der notwendigen Gatespannung, um den Transistor völlig in Durchlaß aufzuschalten.In Bragg mirrors as required for components according to claim 13, for example, an increase in reflectivity for 10 mirror pairs from 70 to 80% at a central wavelength of 390 nm accomplish. In transistor devices, for example, on two-dimensional electron or hole gases are based on claim 14, a homogenization of the indium content leads to a reduction of the necessary gate voltage in order to turn on the transistor completely in passage.

Das Problem der notwendigen hohen positiven Gatespannung zum Aufschalten des Transistors kann noch effektiver als nach Anspruch 1 durch das Wachstum einer AlInN Schicht mit zunehmender Bandlücke also abnehmendem Indiumgehalt nach Anspruch 6 umgangen werden. Weiterhin ist nach Anspruch 7 für Transistoren das Wachstum einer dünnen AlN Schicht vor der AlInN Schicht geeignet, um z.B. die Ladungsträgerstreuung an den Potentialfluktuationen des AlInN zu verhindern. Ein entsprechender Effekt wurde von Smorchova et al. [Smo01] für AlGaN/GaN Transistoren gezeigt. Nach Anspruch 8 kann eine dünne AlN Deckschicht z.B. Indium Anreicherungen und deren Oxidation an der Oberfläche des AlInN vermeiden. Die Wirkung des AlN an der GaN Grenzfläche zum AlInN ist dabei stärker als beim AlGaN, da die Potentialstreuungen am AlInN stärker sind, als beim AlGaN. Die AlN Schichten nach den Ansprüchen 7 und 8 sind ebenfalls für Braggreflektoren wie z.B. für Bauelemente nach Anspruch 13 geeignet um die Grenzflächen schärfer zu definieren und somit höhere Spiegelgüten zu erzielen.The Problem of the necessary high positive gate voltage for switching on of the transistor can be even more effective than that according to claim 1 by the Growth of an AlInN layer with increasing band gap, then decreasing Indiumgehalt be circumvented according to claim 6. Farther is according to claim 7 for Transistors the growth of a thin AlN layer in front of AlInN Layer suitable for e.g. the charge carrier scattering at the potential fluctuations to prevent the AlInN. A corresponding effect was created by Smorchova et al. [Smo01] for AlGaN / GaN transistors shown. According to claim 8, a thin AlN Cover layer e.g. Indium enrichments and their oxidation at the surface avoid the AlInN. The effect of AlN at the GaN interface to the AlInN is stronger than the AlGaN, as the potential scattering at the AlInN is stronger, as the AlGaN. The AlN layers according to claims 7 and 8 are also for Bragg reflectors such as. For Components according to claim 13 suitable for the interfaces sharper define and thus higher mirror grades to achieve.

Im folgenden wird ein Ausführungsbeispiel für das Wachstum einer RCLED mit hochwertigen Braggreflektoren nach Anspruch 13 in der MOVPE beschrieben. Dazu wird auf Saphir eine GaN Pufferschicht mit Trimethylgallium und Ammoniak gewachsen und während einer Wachstumsunterbrechung zum Wachstum von AlInN die Temperatur auf 840°C gesenkt. Dann werden unter Stickstoffträgergas und Ammoniakangebot Trimethylaluminium und Trimethylindium gleichzeitig in den Reaktor geleitet. Während des anschließenden Wachstums der ca. 42 nm dicken Lambda/4-AlInN Schicht wird dabei die Wachstumstemperatur von 840 auf 850°C erhöht, was zu einer AlInN Schicht mit ca. 15% Indium führt. Die Dauer und Höhe der Temperaturrampe ist dabei von den Wachstumsbedingungen abhängig. Sie kann bei den hier verwendeten Schichtdicken über die gesamte gewachsene AlInN Dicke erfolgen und bewirkt einen homogenen Indium Einbau über der Schichtdicke. Ähnliches läßt sich auch nach Ansprüchen 2 und 4 bzw. durch Kombinationen mit diesen Methoden erzielen. Die Temperaturrampe sorgt somit für den angestrebten homogenen Indium Einbau. Nach dem AlInN Wachstum wird das Wachstum durch Abschalten des Trimethylaluminium- und Trimethylindiumangebots unterbrochen, die Temperatur auf ca. 1050°C erhöht und dann wieder GaN für den zweiten Lambda/4 Spiegel des Bragg-Reflektors gewachsen. Dieser Vorgang wird mehrere Male wiederholt und dann nach einer Lambda/2 dicken GaN Schicht ein InGaN Quantumwell mit einer Emissionswellenlänge um 470 nm, gefolgt von einer weiteren Lambda/2 GaN Schicht, gewachsen. Die obere Schicht ist dabei möglichst p-leitend ausgelegt, um eine Strominjektion zu ermöglichen. Soll auch oben ein Braggreflektor aufgebracht werden, so muß die AlInN Schicht wie z.B. in den Ansprüchen 11 und 12 beschrieben p-dotiert werden. Möglich ist aber auch ein Tunnelübergang von der p-dotierten Lambda/2 GaN Schicht zu einer n-dotierten AlInN Schicht nach Ansprüchen 9 und 10, wie es auch für den unteren Teil der Struktur zur Dotierung bzw. Stromleitung notwendig ist.in the The following will be an embodiment for the Growth of a RCLED with high quality Bragg reflectors according to claim 13 described in the MOVPE. This is done on sapphire a GaN buffer layer grown with trimethylgallium and ammonia and during one Growth interruption to the growth of AlInN the temperature up Lowered 840 ° C. Then under nitrogen carrier gas and ammonia offer trimethylaluminum and trimethylindium simultaneously directed into the reactor. While the subsequent growth The approximately 42 nm thick lambda / 4-AlInN layer becomes the growth temperature from 840 to 850 ° C elevated, resulting in an AlInN layer with about 15% indium. The duration and height of the temperature ramp is depending on the growth conditions. She can with the here used layer thicknesses over the entire grown AlInN thickness is made and causes a homogeneous Indium installation over the layer thickness. something similar let yourself also according to claims 2 and 4 or by combinations with these methods achieve. The Temperature ramp thus ensures the desired homogeneous indium incorporation. After AlInN growth Growth is achieved by switching off the trimethylaluminum and trimethylindium offer interrupted, the temperature increased to about 1050 ° C and then again GaN for the second Lambda / 4 mirrors of the Bragg reflector grown. This process is repeated several times and then thickens to a lambda / 2 GaN layer an InGaN quantum well with an emission wavelength around 470 nm, followed by another lambda / 2 GaN layer grown. The upper layer is possible p-type designed to allow a current injection. If a Bragg reflector is also to be applied above, the AlInN Layer such as e.g. in the claims 11 and 12 described p-doped. But it is also possible a tunnel crossing from the p-doped lambda / 2 GaN layer to an n-doped AlInN Layer according to claims 9 and 10, as well as for the lower part of the structure for doping or power line necessary is.

Die Ansprüche schließen AlInN Schichten mit geringen Mengen eines anderen Gruppe-III Elements wie Gallium oder Bor bzw. Legierungen wie AlInGaN auch in Verbindung mit GaN Schichten die geringe Mengen von In, Al oder B enthalten bzw. in Verbindung mit AlGaN oder InGaN mit ein.The claims shut down AlInN layers containing small amounts of another group III element such as Gallium or boron or alloys such as AlInGaN also in conjunction with GaN layers containing small amounts of In, Al or B. or in conjunction with AlGaN or InGaN with.

Abkürzungen:Abbreviations:

  • FETFET
    FeldeffekttransistorField Effect Transistor
    LEDLED
    Metallorganische GasphasenepitaxieOrganometallic vapor phase epitaxy
    MM
    OVPE Light Emitting DiodeOVPE Light Emitting diode
    MBEMBE
    Molekularstrahlepitaxiemolecular beam epitaxy
    RCLEDRCLED
    Resonant Cavity LEDResonant Cavity LED
    VCSELVCSEL
    Vertical Cavity Surface Emitting LaserVertical Cavity Surface Emitting laser

Referenzen:References:

  • [Car03] J.-F. Carlin und M. Ilegems, High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN, Applied Physics Letters 83, 668 (2003)[Car03] J.-F. Carlin and M. Ilegems, High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN, Applied Physics Letters 83, 668 (2003)
  • [Dor04] J. Dorsaz, J.F. Carlin, C.M. Zellweger, S. Gradecak und M. Ilegems, InGaN/GaN resonant-cavity LED including an AlInN/GaN bragg mirror, Physica Status Solidi (a) 201, 2675 (2004)[Dor04] J. Dorsaz, J.F. Carlin, C.M. Zellweger, S. Gradecak and M. Ilegems, InGaN / GaN resonant-cavity LED including AlInN / GaN bragg mirror, Physica Status Solidi (a) 201, 2675 (2004)
  • [Hig04] M. Higashiwaki und T. Matsui, InAlN/GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy, Japanese Journal of Applied Physics 43, L768 (2004).[Hig04] M. Higashiwaki and T. Matsui, InAlN / GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular Beam Epitaxy, Japanese Journal of Applied Physics 43, L768 (2004).
  • [Kos01] M. Kosaki, S. Mochizuki, T. Nakamura, Y. Yukawa, S. Nitta, S. Yamaguchi, H. Amano und I. Akasaki, Metalorganic Vapor Phase Epitaxial Growth of High-Quality AlInN/AlGaN Multiple Layers on GaN, Japanese Journal of Applied Physics 40, L420 (2001).[Kos01] M. Kosaki, S. Mochizuki, T. Nakamura, Y. Yukawa, S. Nitta, S. Yamaguchi, H. Amano and I. Akasaki, Metalorganic Vapor Phase Epitaxial Growth of High-Quality AlInN / AlGaN Multiple Layers on GaN, Japanese Journal of Applied Physics 40, L420 (2001).
  • [Kou00] A. Koukitu, Y. Kumagai und H. Seki, Thermodynamic analysis of the MOVPE growth of InAlN, Physica Status Solidi (a) 180, 115 (2000) [Kou00] A. Koukitu, Y. Kumagai and H. Seki, Thermodynamic analysis of the MOVPE Growth of InAlN, Physica Status Solidi (a) 180, 115 (2000)
  • [Lee04] S.H. Lee, H.H. Lee, J.J. Jung, Y.B. Moon, T.H. Kim, J.H. Baek und Y.M. Yu, Growth of high quality GaN epilayer on AlInN/GaN/AlInN/GaN multilayer buffer and its device characteristics, Physica Status Solidi (a) 201, 2795 (2004)[Lee04] S.H. Lee, H.H. Lee, J.J. Jung, Y.B. Moon, T.H. Kim, J.H. Baek and Y.M. Yu, Growth of high quality GaN epilayer on AlInN / GaN / AlInN / GaN multilayer buffer and its device characteristics, Physica status Solidi (a) 201, 2795 (2004)
  • [Smo01 ] I. P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck und U. K. Mishra, AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecularbeam epitaxy, J. Appl. Phys. 90, 5196 (2001).[Smo01] I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, Moran, S. Keller, S.P. DenBaars, J.S. Speck and U.K. Mishra, AlN / GaN and (Al, Ga) N / AlN / GaN two-dimensional electron gas structures grown by plasma-assisted molecular beam epitaxy, J. Appl. Phys. 90, 5196 (2001).
  • [Onu03] T. Onuma, S. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano und I. Akasaki, Recombination dynamics of localized excitons in AlIxInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy, Journal of Applied Physics 94, 2449 (2003)[Onu03] T. Onuma, S. Chichibu, Y. Uchinuma, T. Sota, S. Yamaguchi, S. Kamiyama, H. Amano and I. Akasaki, Recombination dynamics of localized excitons in AlIxInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy, Journal of Applied Physics 94, 2449 (2003)
  • [Yam01 ] S. Yamaguchi, M. Kosaki, Y. Watanabe, S. Mochizuki, T. Nakamura, Y. Yukawa, S. Nitta, H. Amano und I. Akasaki, Crystal Growth of High-Quality AlInN/GaN Superlattices and of Crack-Free AlN on GaN: Their Possibility of High Electron Mobility Transistor, Physica Status Solidi (a), 188, 895 (2001).[Yam01] S. Yamaguchi, M. Kosaki, Y. Watanabe, S. Mochizuki, T. Nakamura, Y. Yukawa, S. Nitta, H. Amano and I. Akasaki, Crystal Growth of High-Quality AlInN / GaN Superlattices and of Crack-Free AlN on GaN: Their Possibility of High Electron Mobility Transistor, Physica Status Solidi (a), 188, 895 (2001).

Claims (14)

Verfahren zur Herstellung von Halbleiterbauelementen, gekennzeichnet durch eine oder mehrere epitaktisch gewachsene AlInN Schichten in Verbindung mit mindestens einer GaN, AlN bzw. AlGaN Schicht und einer Verringerung des Indium zu Aluminium Verhältnisses und/oder einer Erhöhung der Substrattemperatur während des Wachstums der ersten 1–200 Nanometer der AlInN Schicht und/oder einem Vorströmen von Indium vor dem Beginn der Aluminiumzufuhr zum Wachstum der AlInN Schicht.Method of manufacturing semiconductor devices, characterized by one or more epitaxially grown AlInN Layers in conjunction with at least one GaN, AlN or AlGaN Layer and a reduction of indium to aluminum ratio and / or an increase the substrate temperature during the growth of the first 1-200 Nanometer of AlInN layer and / or a pre-flow of Indium before the onset of aluminum intake to the growth of AlInN Layer. Verfahren nach Anspruch 1, gekennzeichnet durch ein abnehmendes Indiumangebot in der Gasphase während des Wachstums des AlInN.Method according to claim 1, characterized by decreasing indium supply in the gas phase during the growth of AlInN. Verfahren nach Anspruch 1 und/oder 2, gekennzeichnet durch eine zunehmende Substrattemperatur während der gesamten oder dem ersten Teil der Wachstumsdauer der AlInN Schicht.A method according to claim 1 and / or 2, characterized by an increasing substrate temperature during the whole or the first part of the growth period of the AlInN layer. Verfahren nach Anspruch 1, 2 und/oder 3, gekennzeichnet durch einen Beginn der Indiumdeposition mehrere Sekunden vor dem Zuführen des Aluminiums und dem damit beginnenden Wachstumstart der AlInN Schicht.A method according to claim 1, 2 and / or 3, characterized by a beginning of Indiumdeposition several seconds before the Respectively of aluminum and the commencement of growth of AlInN coating. Verfahren nach Anspruch 1, 2, 3 und/oder 4, gekennzeichnet durch ein zunehmendes Aluminiumangebot in der Gasphase während des Wachstums des AlInN.A method according to claim 1, 2, 3 and / or 4, characterized by an increasing availability of aluminum in the gas phase during the Growth of AlInN. Verfahren nach Anspruch 1 bis 4 und/oder 5, gekennzeichnet durch eine abnehmende In Konzentration in der AlInN Schicht mit zunehmender Schichtdicke.Process according to Claims 1 to 4 and / or 5 by decreasing in concentration in the AlInN layer with increasing layer thickness. Verfahren nach Anspruch 1 bis 5 und/oder 6, gekennzeichnet durch das Wachstum einer wenige Monolagen dicken AlN Schicht vor dem Wachstum des AlInN.Process according to Claims 1 to 5 and / or 6 through the growth of a few monolayer thick AlN layer the growth of AlInN. Verfahren nach Anspruch 1 bis 6 und/oder 7, gekennzeichnet durch das Wachstum einer wenige Monolagen dicken AlN Schicht nach dem Wachstum des AlInN.Process according to Claims 1 to 6 and / or 7 by growing a few monolayers thick AlN layer after the growth of AlInN. Verfahren nach Anspruch 1 bis 7 und/oder 8, gekennzeichnet durch das Dotieren von Teilen oder der gesamten AlInN Schicht mit einem Donator.A method according to claim 1 to 7 and / or 8, characterized by doping parts or the entire AlInN layer with a donor. Verfahren nach Anspruch 1 bis 7 und/oder 8 und 9, gekennzeichnet durch das Dotieren mit Silizium oder Germanium.Method according to claims 1 to 7 and / or 8 and 9, characterized by doping with silicon or germanium. Verfahren nach Anspruch 1 bis 9 und/oder 10, gekennzeichnet durch das Dotieren von Teilen oder der gesamten AlInN Schicht mit einem Akzeptor.The method of claim 1 to 9 and / or 10, characterized by doping parts or the entire AlInN layer with an acceptor. Verfahren nach Anspruch 1 bis 9 und/oder 10 und 11, gekennzeichnet durch das Dotieren mit Magnesium, Beryllium oder Zink.The method of claim 1 to 9 and / or 10 and 11, characterized by doping with magnesium, beryllium or Zinc. Halbleiterbauelement nach Anspruch 1 bis 11 und/oder 12, gekennzeichnet durch einen Braggreflektor einer Schichtenfolge mit Lambda/4 Schichten aus Ga(Al,In)N und AlIn(Ga)N.Semiconductor component according to Claims 1 to 11 and / or 12, characterized by a Bragg reflector of a layer sequence with lambda / 4 layers of Ga (Al, In) N and AlIn (Ga) N. Halbleiterbauelement nach Anspruch 1 bis 11 und/oder 12, gekennzeichnet durch ein zweidimensionales Elektronen- oder Löchergas an einem Heteroübergang von Ga(Al,In)N und AlIn(Ga)N.Semiconductor component according to Claims 1 to 11 and / or 12, characterized by a two-dimensional electron or gas holes on a heterojunction of Ga (Al, In) N and AlIn (Ga) N.
DE200410055636 2004-11-12 2004-11-12 Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process Withdrawn DE102004055636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200410055636 DE102004055636A1 (en) 2004-11-12 2004-11-12 Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410055636 DE102004055636A1 (en) 2004-11-12 2004-11-12 Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process

Publications (1)

Publication Number Publication Date
DE102004055636A1 true DE102004055636A1 (en) 2006-05-24

Family

ID=36013379

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410055636 Withdrawn DE102004055636A1 (en) 2004-11-12 2004-11-12 Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process

Country Status (1)

Country Link
DE (1) DE102004055636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030305B3 (en) * 2006-06-26 2007-12-13 Azzurro Semiconductors Ag Semiconductor device, useful e.g. in field-effect transistors, comprises an aluminum-gallium-indium-nitrogen layer, aluminum-gallium-nitrogen intermediate layer, and another aluminum-gallium-indium-nitrogen layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302847A (en) * 1992-03-27 1994-04-12 Bell Communications Research, Inc. Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange
EP1061564A2 (en) * 1999-06-12 2000-12-20 Sharp Kabushiki Kaisha MBE growth of group III-nitride semiconductor layers
WO2003049193A1 (en) * 2001-12-03 2003-06-12 Cree, Inc. Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302847A (en) * 1992-03-27 1994-04-12 Bell Communications Research, Inc. Semiconductor heterostructure having a capping layer preventing deleterious effects of As-P exchange
EP1061564A2 (en) * 1999-06-12 2000-12-20 Sharp Kabushiki Kaisha MBE growth of group III-nitride semiconductor layers
WO2003049193A1 (en) * 2001-12-03 2003-06-12 Cree, Inc. Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
Carlin, J.-F. et al.: "High-quality AllnN Jor high index contrast Bragg mirrors lattice matched to GaN, IN: Applied Physics Letters 83, 668 (2003)
Carlin, J.-F. et al.: "High-quality AllnN Jor highindex contrast Bragg mirrors lattice matched to GaN, IN: Applied Physics Letters 83, 668 (2003) *
Dorsaz, J. et al.: " InGaN/GaN resonantcavity LED including an AllnN/GaN bragg mirror", IN: Physica Status Solidi (a) 201, 2675 (2004) *
Higashiwaki, M. et al.: "InAIN/GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy", IN: Japanese Journal of Applied Physics 43, L768 (2004)
Higashiwaki, M. et al.: "InAIN/GaN HeterostructureField-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy", IN: Japanese Journal of Applied Physics 43, L768 (2004) *
Kosaki, M. et al.: "Metalorganic Vapor Phase Epi- taxial Growth oJ High-Quality AllnN/AIGaN Multiple Layers on GaN", IN: Japanese Journal of Applied Physics 40, L420 (2001)
Kosaki, M. et al.: "Metalorganic Vapor Phase Epi- taxial Growth oJ High-Quality AllnN/AIGaN MultipleLayers on GaN", IN: Japanese Journal of Applied Physics 40, L420 (2001) *
Kouitu, A. et al.: "Thermodynamic analysis oJthe MOVPE growth of InAIN", IN: Physica Status Solidi (a) 180, 115 (2000) *
Lee, S.H. et al.: "Growth of high quality GaN epi- layer on AllnN/GaN/AllnN/GaN multilayer buffer and its device characteristics", IN: Physica Status
Lee, S.H. et al.: "Growth of high quality GaN epi-layer on AllnN/GaN/AllnN/GaN multilayer buffer andits device characteristics", IN: Physica Status *
Onuma, T. et al.: "Recombination dynamics of lo- calized excitons in AI(1-x)InxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy", IN: Journal of Applied Physics 94, 2449 (2003)
Smorchkova, I.P. et al.: "AIN/GaN and (AI, Ga)N/ AIN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy", IN: J. Appl. Phys.90, 5196 (2001)
Solidi (a) 201, 2795 (2004)
Yamaguchi, S. et al.: "Crystal Growth of High- Quality AllnN/GaN Superlattices and of Crack-Free AiN on GaN: Their Possibility of High Electron Mobility Transistor", IN: Physica Status Solidi (a), 188, 895 (2001)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006030305B3 (en) * 2006-06-26 2007-12-13 Azzurro Semiconductors Ag Semiconductor device, useful e.g. in field-effect transistors, comprises an aluminum-gallium-indium-nitrogen layer, aluminum-gallium-nitrogen intermediate layer, and another aluminum-gallium-indium-nitrogen layer

Similar Documents

Publication Publication Date Title
DE19905516C2 (en) Doped interfacial layer light emitting diode for controlling contaminants and methods of making the same
TWI489668B (en) Method for heteroepitaxial growth of high-quality n-face gan, inn, and aln and their alloys by metal organic chemical vapor deposition
US9502509B2 (en) Stress relieving semiconductor layer
DE10392313B4 (en) Gallium nitride based devices and manufacturing processes
US7491626B2 (en) Layer growth using metal film and/or islands
DE10223797B4 (en) Low-driving light-emitting III-nitride devices and manufacturing method therefor
JP4189386B2 (en) Method for growing nitride semiconductor crystal layer and method for producing nitride semiconductor light emitting device
DE112006002430B4 (en) Method for producing superlattices using alternating high and low temperature layers for blocking parasitic current paths
EP1908099B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
US7687814B2 (en) Group III-nitride semiconductor thin film, method for fabricating the same, and group III-nitride semiconductor light emitting device
DE102011114665B4 (en) Method for producing an optoelectronic nitride compound semiconductor component
US20040023427A1 (en) Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
DE112007000313T5 (en) A method of growing gallium nitride-based semiconductor heterostructures
DE102015112153A1 (en) UV light emitting diode and method of making the same
WO2009124317A2 (en) Mocvd growth technique for planar semipolar (al, in, ga, b)n based light emitting diodes
DE19715572A1 (en) Selective epitaxy of III-V nitride semiconductor layers
DE10196361B4 (en) Process for the preparation of a Group III nitride semiconductor crystal
Lai et al. GaN-based ultraviolet light emitting diodes with ex situ sputtered AlN nucleation layer
DE102017103879B4 (en) Semiconductor components with aluminum silicon nitride layers
WO2011032546A1 (en) Semi-polar, wurtzite-type, group iii nitride based semiconductor layers and semiconductor components based thereon
DE102004055636A1 (en) Production of semiconductor elements for Bragg reflector involves growing epitaxial aluminum indium nitride layers, and changing aluminum-to-indium ratio during growth process
DE102017102121B4 (en) Semiconductor component with a multilayer nucleation body
DE102011108080B4 (en) Group III nitride-based layer sequence, their use and method of their preparation
Alexeev et al. Features and benefits of III-N growth by ammonia-MBE and plasma assisted MBE
DE112012000868T5 (en) III-V semiconductor structures with reduced pit defects and methods of forming the same

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee