DE102004038573A1 - Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer - Google Patents
Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer Download PDFInfo
- Publication number
- DE102004038573A1 DE102004038573A1 DE200410038573 DE102004038573A DE102004038573A1 DE 102004038573 A1 DE102004038573 A1 DE 102004038573A1 DE 200410038573 DE200410038573 DE 200410038573 DE 102004038573 A DE102004038573 A DE 102004038573A DE 102004038573 A1 DE102004038573 A1 DE 102004038573A1
- Authority
- DE
- Germany
- Prior art keywords
- group iii
- iii nitride
- intermediate layer
- electronic
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
Das epitaktische Wachstum von Gruppe-III-Nitrid Schichten, wie sie für moderne optoelektronische und elektronische Bauelemente Verwendung finden, auf Silizium oder SiC führt je nach Methode und Wachstumstemperatur beim Abkühlen auf Raumtemperatur zur Ausbildung von Rissen aufgrund der stark verschiedenen thermischen Ausdehnungskoeffizienten dieser Materialien.The epitaxial growth of group III nitride layers, as they are modern optoelectronic and electronic components are used, on silicon or SiC leads depending on the method and growth temperature during cooling to room temperature Formation of cracks due to the very different thermal Expansion coefficients of these materials.
Eine Möglichkeit ist es, nur dünne Schichten oder bei einer niedrigen Temperatur abzuscheiden. Aufgrund der vorhandenen Gitterfehlanpassung kann damit jedoch nur sehr defektreiches Material erzielt werden. Erst dickere Schichten bei höheren Wachstumstemperaturen erfüllen Ansprüche, die für moderne optoelektronische und elektronische Bauelemente wichtig sind, wie eine mikroskopisch glatte Oberfläche und niedrige Versetzungsdichten.A possibility it is, only thin Layers or at a low temperature. by virtue of However, the existing lattice mismatch can thus only very rich in defects Material can be achieved. First thicker layers at higher growth temperatures fulfill Claims, the for modern ones Optoelectronic and electronic components are important, such as a microscopically smooth surface and low dislocation densities.
Dadgar et al. [Dadgar 2000] haben gezeigt, dass das Einbringen von Niedertemperatur AIN-Zwischenschichten das Wachstum von rissfreien, ca. 1.3 μm dicken GaN Schichten auf Si im Gegensatz zu der sonst üblichen maximal 1 μm Schichtdicke erlaubt. Hauptproblem dieses Verfahrens ist der zeitaufwendige Abkühl- und Aufheizprozess für diese Zwischenschichten. Es wurde auch gezeigt [Dadgar 2004], dass gleichdicke AIN Schichten, die bei hohen Temperaturen gewachsen werden keinen entsprechenden Effekt auf die Rissvermeidung haben. Die Ursache für die Rissvermeidung durch Niedertemperatur AIN Zwischenschichten wurde untersucht und es wurde festgestellt [Dadgar 2004], dass ein relaxiertes Aufwachsen von AIN bei Temperaturen unterhalb von ca. 1000°C Wachstumstemperatur auftritt, wahrscheinlich da AIN dann eine Tendenz zum polykristallinen Wachstum besitzt. Feltin et al. [Feltin 2001] haben gezeigt, dass sich mit AIN/GaN Übergitterstrukturen eine kompressive Verspannung erzeugen lässt, die sich erst nach dem Wachstum von 2.5 μm GaN verbraucht hat, d.h. erst oberhalb dieser Schichtdicke bilden sich Risse aus. Sie haben auch gezeigt, dass die tensile Verspannung des GaN mit zunehmender Schichtdicke wächst. Dieses Verfahren der AIN/GaN Übergitterstrukturen ist jedoch recht aufwendig und lässt sich nicht für beliebig dicke Schichtpakete anwenden, da es nur im unteren Teil der Pufferschicht funktioniert, wo es eine entsprechende Druckkomponente zur Kompensation der thermischen Zugverspannung erzeugt.Dadgar et al. [Dadgar 2000] have shown that the introduction of low temperature AIN interlayer growth of crack-free, about 1.3 microns thick GaN layers on Si in contrast to the usual maximum 1 micron layer thickness allowed. The main problem of this process is the time-consuming cooling and heating process for these intermediate layers. It was also shown [Dadgar 2004] that same-thickness AIN layers, which are grown at high temperatures are not appropriate Have an effect on the crack prevention. The cause of the crack prevention low temperature AIN interlayers was investigated and it was found [Dadgar 2004] that a relaxed growing up of AIN at temperatures below about 1000 ° C growth temperature occurs, probably since AIN then has a tendency to polycrystalline growth. Feltin et al. [Feltin 2001] have shown that with AIN / GaN superlattice structures create a compressive tension, which only after the Growth of 2.5 μm GaN has consumed, i. only form above this layer thickness cracks out. They also showed that the tensile strain of GaN grows with increasing layer thickness. This method of AIN / GaN superlattice structures is quite expensive and leaves not for yourself Apply as thick layer packages as it is only in the lower part of the Buffer layer works where there is a corresponding pressure component generated to compensate for the thermal tensile stress.
Das Verfahren nach Anspruch 1 bewirkt durch das Wachstum einer ausreichend dicken Al-haltigen Zwischenschicht, dass diese mindestens teilweise relaxiert. Die Relaxation findet bei diesem Material dabei meist durch Rissbildung in der Zwischenschicht statt. Das darauf aufgewachsene GaN wird dann kompressiv vorgespannt und diese kompressive Vorspannung kompensiert die tensile Verspannung beim Abkühlen. Durch die Rissbildung und das dadurch erfolgende teilweise facettierte Wachstum der Zwischenschicht können auch sehr effektiv Versetzungen an der Grenzfläche zu der darauf aufwachsenden Schicht abgebaut werden wie beim FACELO Wachstum [Honda 2001]. Wichtig dabei ist, dass dieses Verfahren keinen Abkühlprozess benötigt und durch die bessere Qualität der Hochtemperatur AIN Schicht auch zu einer höheren Qualität der GaN Schicht führt.The The method of claim 1 causes by the growth of a sufficient thick Al-containing interlayer that these at least partially relaxes. The relaxation usually occurs with this material by cracking in the interlayer instead. The grown up on it GaN is then preloaded compressively and this compressive bias compensates for the tensile stress during cooling. By the cracking and the resulting partially faceted growth of the intermediate layer can also very effective dislocations at the interface to the growing on it Layer are degraded as in FACELO growth [Honda 2001]. Important it is that this process does not require a cooling process and through the better quality The high temperature AIN layer also leads to a higher quality of GaN Layer leads.
Die beste Dicke bei Verwendung von reinem AIN beträgt dabei, wie in Anspruch 2 genannt, je nach Schichtsystem mehr als 15 bis maximal 200 nm. Wichtig ist dabei, die Schicht nur so dick zu machen, dass diese Zwischenschicht nicht selbst beim Abkühlen reißt, d.h. sie muss so dünn sein, dass die aufgebaute Zugverspannung unterhalb des kritischen Wertes für ein Reißen liegt. Dieses Reißen geschieht auch bei während des Wachstums vollständig relaxierten Schichten, wenn diese sehr dick sind und führt auch bei einer kompressiven Vorspannung der darauf abgeschiedenen Schicht wiederum zu einem Reißen des gesamten Schichtpakets.The Best thickness when using pure AlN is thereby, as in claim 2 called, depending on the layer system more than 15 to a maximum of 200 nm. Important is going to make the layer just so thick that this interlayer not even when cooling tears, i.e. she has to be so skinny be that the tensile stress built up below the critical Value for a tearing lies. This tearing happens also during during of growth completely relaxed layers, if they are very thick and leads too at a compressive bias of the deposited layer turn to a tearing of the entire layer package.
Durch das wiederholte Anwenden solch vorgespannter Zwischenschichten nach Anspruch 3 wird das Wachstum sehr dicker rissfreier GaN Schichten ermöglicht.By the repeated application of such prestressed interlayers Claim 3 will be the growth of very thick crack-free GaN layers allows.
Eine geringfügige Absenkung der Wachstumstemperatur um 10-20°C zum Wachsen der AIN Zwischenschicht ist zwar nicht sinnvoll, da damit tendenziell schlechtere Schichtqualitäten erzielt werden. Trotzdem ist solch eine geringe Absenkung der Wachstumstemperatur, die schnell und unproblematisch durchgeführt werden kann, auch denkbar und soll daher zum Gegenstand der Erfindung gehören.A minor Lowering the growth temperature by 10-20 ° C to grow the AIN intermediate layer does not make sense, as it tends to result in poorer coating qualities become. Nevertheless, such a small lowering of the growth temperature, which can be done quickly and easily, also conceivable and should therefore belong to the subject of the invention.
Zusätzlich zu den reinen Gruppe-III-Nitriden im System Gruppe-III-N ist das erfindungsgemäße Verfahren auch auf alle Materialien im System Metall-Stickstoff-Arsen-Phosphor, d.h. auch auf alle stickstoffreichen Halbleiter wie GaNAs, anwendbar.In addition to the pure group III nitrides in the group III-N system is the process according to the invention also to all materials in the system metal-nitrogen-arsenic-phosphorous, i. also applicable to all nitrogen-rich semiconductors such as GaNAs.
Im
Folgenden wird mit Bezug auf die schematische Darstellung der Schichtenfolge
in
In
einem MOVPE Reaktor wird zuerst eine dünne AIN-Keimschicht
AbkürzungenAbbreviations
- Alal
- Aluminiumaluminum
- Gaga
- Galliumgallium
- Gruppe-IIIGroup III
- Elemente aus der dritten Hauptgruppe des Periodensystems der ElementeElements from the third Main group of the Periodic Table of the Elements
- Gruppe-III-NGroup III-N
- Verbindungshalbleiter aus Elementen der dritten Hauptgruppe des Periodensystems der Elemente mit StickstoffCompound semiconductor from elements of the third main group of the periodic table of the elements with nitrogen
- MOVPEMOVPE
- metal organic chemical vapor phase epitaxy, metallorganische Gasphasenepitaxiemetal organic chemical vapor phase epitaxy, organometallic vapor phase epitaxy
- NN
- Stickstoffnitrogen
- SiSi
- Silizium; als Substrat sind außer gewöhnlichen Si-Substraten auch Substrate wie z. B. Silicon-on-insulator Substrate eingeschlossenSilicon; as a substrate are out of the box ordinary Si substrates also substrates such as B. Silicon-on-insulator Substrates included
- SiCSiC
- Siliziumcarbitsilicon carbide
- FACELOFACELO
- Faceted Epitaxial Lateral Overgrowth, facettiertes epitaktisches laterales ÜberwachsenFaceted epitaxial Lateral Overgrowth, faceted epitaxial lateral overgrowth
Referenzenreferences
- [Dadgar 2001] A. Dadgar et al., Jpn. J. Appl. Phys. 39, L1183 (2000)[Dadgar 2001] A. Dadgar et al., Jpn. J. Appl. Phys. 39, L1183 (2000)
- [Dadgar 2004] A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, in Advances in Solid State Physics 44, B. Kramer Herausgeber, Springer (2004)[Dadgar 2004] A. Dadgar, R. Clos, G. Strassburger, F. Schulze, P. Veit, T. Hempel, J. Bläsing, A. Krtschil, I. Daumiller, M. Kunze, A. Kaluza, A. Modlich, M. Kamp, A. Diez, J. Christen, and A. Krost, in Advances in Solid State Physics 44, B. Kramer Editor, Springer (2004)
- [Feltin 2001] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, M. Leroux, P. Gibart, Physica Status Solidi (a) 188, 531 (2001)[Feltin 2001] E. Feltin, B. Beaumont, M. Laugen, P. de Mierry, P. Vennéguès, M. Leroux, P. Gibart, Physica Status Solidi (a) 188, 531 (2001)
- [Honda 2001] Yoshiaki Honda, Yasushi Iyechika, Takayoshi Maeda, Hideto Miyake, and Kazumasa Hiramatsu, Jpn. J. Appl. Phys, Part 2 40, L309 (2001)[Honda 2001] Yoshiaki Honda, Yasushi Iyechika, Takayoshi Maeda, Hideto Miyake, and Kazumasa Hiramatsu, Jpn. J. Appl. Phys, Part 2 40, L309 (2001)
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410038573 DE102004038573A1 (en) | 2004-08-06 | 2004-08-06 | Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410038573 DE102004038573A1 (en) | 2004-08-06 | 2004-08-06 | Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102004038573A1 true DE102004038573A1 (en) | 2006-03-16 |
Family
ID=35853437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200410038573 Ceased DE102004038573A1 (en) | 2004-08-06 | 2004-08-06 | Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102004038573A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2112699A2 (en) | 2006-02-23 | 2009-10-28 | Azzuro Semiconductors AG | Nitride-based semiconductor product and method for its production |
DE102008056175A1 (en) | 2008-11-06 | 2010-05-12 | Osram Opto Semiconductors Gmbh | A method of manufacturing a radiation emitting thin film device and radiation emitting thin film device |
US7825432B2 (en) | 2007-03-09 | 2010-11-02 | Cree, Inc. | Nitride semiconductor structures with interlayer structures |
EP2538435A1 (en) * | 2010-02-16 | 2012-12-26 | NGK Insulators, Ltd. | Epitaxial substrate and method for producing same |
US8362503B2 (en) | 2007-03-09 | 2013-01-29 | Cree, Inc. | Thick nitride semiconductor structures with interlayer structures |
WO2013045355A1 (en) * | 2011-09-30 | 2013-04-04 | Osram Opto Semiconductors Gmbh | Method for fabricating an optoelectronic nitride compound semiconductor component |
EP2696365A3 (en) * | 2012-08-09 | 2014-02-26 | Samsung Electronics Co., Ltd | Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure |
US8946773B2 (en) | 2012-08-09 | 2015-02-03 | Samsung Electronics Co., Ltd. | Multi-layer semiconductor buffer structure, semiconductor device and method of manufacturing the semiconductor device using the multi-layer semiconductor buffer structure |
US12125938B2 (en) | 2016-07-04 | 2024-10-22 | Azur Space Solar Power Gmbh | Nitride semiconductor component and process for its production |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136333A1 (en) * | 2000-06-09 | 2003-07-24 | Fabrice Semond | Preparation method of a coating of gallium nitride |
-
2004
- 2004-08-06 DE DE200410038573 patent/DE102004038573A1/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030136333A1 (en) * | 2000-06-09 | 2003-07-24 | Fabrice Semond | Preparation method of a coating of gallium nitride |
Non-Patent Citations (1)
Title |
---|
E. Feltini, et al.:"Crack-Free Thick GnN Layw s on Silicon (111) by Metalorganic Vaper Phase Epitaxie", IN: phys. stat. sol. (a) 188, No. 2, 531-535 (2001) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3731284A1 (en) | 2006-02-23 | 2020-10-28 | AZUR SPACE Solar Power GmbH | Nitride semiconductor product |
EP3731283A1 (en) | 2006-02-23 | 2020-10-28 | AZUR SPACE Solar Power GmbH | Nitride-based semiconductor product |
EP2112699A2 (en) | 2006-02-23 | 2009-10-28 | Azzuro Semiconductors AG | Nitride-based semiconductor product and method for its production |
US9054017B2 (en) | 2007-03-09 | 2015-06-09 | Cree, Inc. | Thick nitride semiconductor structures with interlayer structures and methods of fabricating thick nitride semiconductor structures |
US7825432B2 (en) | 2007-03-09 | 2010-11-02 | Cree, Inc. | Nitride semiconductor structures with interlayer structures |
US8324005B2 (en) | 2007-03-09 | 2012-12-04 | Cree, Inc. | Methods of fabricating nitride semiconductor structures with interlayer structures |
US8362503B2 (en) | 2007-03-09 | 2013-01-29 | Cree, Inc. | Thick nitride semiconductor structures with interlayer structures |
DE102008056175A1 (en) | 2008-11-06 | 2010-05-12 | Osram Opto Semiconductors Gmbh | A method of manufacturing a radiation emitting thin film device and radiation emitting thin film device |
US8420439B2 (en) | 2008-11-06 | 2013-04-16 | Osram Opto Semiconductors Gmbh | Method of producing a radiation-emitting thin film component and radiation-emitting thin film component |
EP2538435A4 (en) * | 2010-02-16 | 2013-12-04 | Ngk Insulators Ltd | Epitaxial substrate and method for producing same |
EP2538435A1 (en) * | 2010-02-16 | 2012-12-26 | NGK Insulators, Ltd. | Epitaxial substrate and method for producing same |
US9184051B2 (en) | 2011-09-30 | 2015-11-10 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic nitride compound semiconductor component |
WO2013045355A1 (en) * | 2011-09-30 | 2013-04-04 | Osram Opto Semiconductors Gmbh | Method for fabricating an optoelectronic nitride compound semiconductor component |
US8946773B2 (en) | 2012-08-09 | 2015-02-03 | Samsung Electronics Co., Ltd. | Multi-layer semiconductor buffer structure, semiconductor device and method of manufacturing the semiconductor device using the multi-layer semiconductor buffer structure |
EP2696365A3 (en) * | 2012-08-09 | 2014-02-26 | Samsung Electronics Co., Ltd | Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure |
US9136430B2 (en) | 2012-08-09 | 2015-09-15 | Samsung Electronics Co., Ltd. | Semiconductor buffer structure, semiconductor device including the same, and method of manufacturing semiconductor device using semiconductor buffer structure |
US12125938B2 (en) | 2016-07-04 | 2024-10-22 | Azur Space Solar Power Gmbh | Nitride semiconductor component and process for its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100453210B1 (en) | METHOD FOR PRODUCING GaN-BASED COMPOUND SEMICONDUCTOR AND GaN-BASED COMPOUND SEMICONDUCTOR DEVICE | |
US8525230B2 (en) | Field-effect transistor with compositionally graded nitride layer on a silicaon substrate | |
CA2392041C (en) | Pendeoepitaxial growth of gallium nitride layers on sapphire substrates | |
US7128786B2 (en) | Process for depositing III-V semiconductor layers on a non-III-V substrate | |
US20070278622A1 (en) | Gallium Nitride Device Substrate Contaning A Lattice Parameter Altering Element | |
DE102005041643A1 (en) | Semiconductor method for producing an isolated semiconductor substrate uses a masking layer with holes and an output layer | |
Jang et al. | High-quality GaN/Si (1 1 1) epitaxial layers grown with various Al0. 3Ga0. 7N/GaN superlattices as intermediate layer by MOCVD | |
Frayssinet et al. | Growth of thick GaN layers on 4‐in. and 6‐in. silicon (111) by metal‐organic vapor phase epitaxy | |
KR100895654B1 (en) | Growth of nitride semiconductor crystals | |
WO2005053042A1 (en) | Method for fabricating gan-based nitride layer | |
WO2003054929A2 (en) | Method for depositing iii-v semiconductor layers on a non-iii-v substrate | |
DE19725900A1 (en) | Process for the epitaxy of gallium nitride on silicon substrates | |
DE10320160A1 (en) | Production of semiconductor bodies for e.g. optoelectronic components comprises forming a mask layer on the substrate or on an initial layer having windows to the substrate, back-etching, and further processing | |
JP2007502546A (en) | Fabrication of gallium nitride substrates by lateral growth through a mask and devices fabricated therefrom. | |
DE102004038573A1 (en) | Epitaxially growing thick tear-free group III nitride semiconductor layers used in the production of modern opto-electronic and electronic components comprises using an aluminum-containing group III nitride intermediate layer | |
DE112014000633B4 (en) | Semiconductor layer sequence and method for producing a semiconductor layer sequence | |
Acord et al. | In situ stress measurements during MOCVD growth of AlGaN on SiC | |
McAleese et al. | Strain effects of AlN interlayers for MOVPE growth of crack-free AlGaN and AlN/GaN multilayers on GaN | |
DE60303014T2 (en) | Intermediate for the production of optical, electronic or optoelectronic components | |
WO2011032546A1 (en) | Semi-polar, wurtzite-type, group iii nitride based semiconductor layers and semiconductor components based thereon | |
DE102012204553B4 (en) | Process for producing a template, template produced in this way, its use, process for producing III-N single crystals, process for producing III-N crystal wafers, their use and use of mask materials | |
DE10219223A1 (en) | Gaseous formation of thick III-V semiconductor layers on non-III-V substrate, especially silicon, comprises deposition of thin intermediate layer between two III-V layers | |
JP4545389B2 (en) | Dislocation reduction method for epitaxial substrate and group III nitride layer group | |
RU2750295C1 (en) | Method for producing heteroepitaxial layers of iii-n compounds on monocrystalline silicon with 3c-sic layer | |
DE102011011043B4 (en) | Semiconductor layer system with a semipolar or m-planar group III nitride layer system and a semiconductor component based thereon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |