DE102004024601A1 - Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas - Google Patents

Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas Download PDF

Info

Publication number
DE102004024601A1
DE102004024601A1 DE102004024601A DE102004024601A DE102004024601A1 DE 102004024601 A1 DE102004024601 A1 DE 102004024601A1 DE 102004024601 A DE102004024601 A DE 102004024601A DE 102004024601 A DE102004024601 A DE 102004024601A DE 102004024601 A1 DE102004024601 A1 DE 102004024601A1
Authority
DE
Germany
Prior art keywords
strip
temperature
selenium
sodium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004024601A
Other languages
German (de)
Inventor
Klaus Dr. Kalberlah
Klaus Prof. Dr. Jacobs
Klaus Dr. Schlemper
Thomas Dr. Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PVFLEX SOLAR GMBH, 15517 FUERSTENWALDE, DE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102004024601A priority Critical patent/DE102004024601A1/en
Publication of DE102004024601A1 publication Critical patent/DE102004024601A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Selenizing flexible strip-like CIS (copper-indium/gallium-selenium/sulfur) cells comprises maintaining a continuous strip having a copper and indium/gallium layer at a constant low temperature, feeding through a condensation zone and passing the strip through an inert carrier gas which has already been fed over a temperature-regulated selenium source.

Description

Unter den bekannten Technologien zur Herstellung von Dünnschicht-Solarzellen nimmt die sogenannte CIS-Zelle (Kupfer-Indium/Gallium-Selen/Schwefel) insofern eine besondere Stellung ein, als derartige Zellen potentiell degradationsfrei, mit hohem Wirkungsgrad, mit günstigen Kosten und umweltfreundlich hergestellt werden können. Es sind sowohl Prozesse zur Aufbringung der sogenannten Precursor-Schichten (Kupfer, Indium/Gallium, Selen/Schwefel) im Hochvakuum durch Sputtern oder Aufdampfen wie auch Non-Vakuum-Verfahren bekannt geworden, z.B. die elektrochemische Deposition der genannten Elemente oder deren Legierungen (Kupferselenid, Indiumselenid, Galliumselenid) oder des Verbindungshalbleiters (Kupferindiumselenid = ternäre Abscheidung, Kupfer-Indium-Gallium-Selenid = quaternäre Abscheidung). Im Labormaßstab produziert wurden auch CIS-Zellen, deren Precursor-Schicht durch mechanischen Auftrag einer Dispersion von Nanopartikeln der genannten Substanzen auf das sogenannte Substrat (Trägermaterial plus Anpass-, Sperr- und Kontaktschicht) hergestellt wird.Under takes the known technologies for the production of thin-film solar cells the so-called CIS cell (copper indium / gallium selenium / sulfur) a special position insofar as such cells are potentially low-degradation, high efficiency, low cost and environmentally friendly can be produced. There are both processes for applying the so-called precursor layers (Copper, indium / gallium, selenium / sulfur) in a high vacuum by sputtering or vapor deposition as well as non-vacuum method has become known e.g. the electrochemical deposition of said elements or their alloys (copper selenide, indium selenide, gallium selenide) or the compound semiconductor (copper indium selenide = ternary deposition, Copper indium gallium selenide = quaternary deposition). Produced on a laboratory scale were also CIS cells whose precursor layer by mechanical Application of a dispersion of nanoparticles of said substances on the so-called substrate (substrate plus Fitting, barrier and contact layer) is produced.

In aller Regel wird die Selenisierung, d.h. die Zuführung von Selen innerhalb vom vollständigen CIS-Zellen-Aufbau, dadurch bewerkstelligt, dass die unvollständige, d.h. Selen noch nicht enthaltende Zelle dem Temperprozess, der üblicherweise im Vakuum abläuft, unterworfen wird, wobei sich gleichzeitig im Temperofen eine auf 200°C bis 300°C erhitzte Selenquelle befindet.In In general, selenization, i. the delivery of selenium within the complete CIS cell construction, accomplished by the incomplete, i. Selenium not yet containing cell subjected to the annealing process, which usually takes place in a vacuum is at the same time in the annealing oven heated to 200 ° C to 300 ° C source of selenium located.

Bei der Band-Abscheidung von CIS enthält diese Vorgehensweise vier Nachteile

  • (1) Temperprozess und Selenabscheidung sind „vernetzt", sodass die Steuerungsparameter der beiden Prozesse nicht einzeln zugreifbar und optimierbar sind
  • (2) die Ein- und Ausschleusung des Bandes ins Vakuum stellt einen beherrschbaren, jedoch nicht geringfügigen apparativen Mehraufwand dar. Der Prozess-Schritt „Selenisierung" wird somit quasi doppelt mit Mehrkosten (gegenüber preiswerten non-Vakuum-Anlagen) belastet.
  • (3) es entsteht eine „gemischt-rassige" Fertigungsanlage, d.h. eine Aufeinanderfolge von non-Vakuum-Schritten (galvanische Cu- und In-Abscheidung), der genannten, klassischen Selenisierung im Hochvakuum und nachfolgenden Normaldruck-Verfahren (CdS-CBD). Eine der derartige Anlagentechnik ist problematisch und sicherlich nicht als „low tech" einzustufen.
  • (4) die Selenmenge, welche auf den Precursor gelangt, lässt sich nur schwer kontrollieren. In der Regel wird daher mit einem Selen-Überschuss gearbeitet, was einen nachfolgenden Ätzschritt (KCN, toxisch) erforderlich macht.
In tape deposition of CIS, this approach has four disadvantages
  • (1) annealing process and selenium deposition are "networked", so that the control parameters of the two processes are not individually accessible and optimized
  • (2) the feeding and discharging of the strip into the vacuum represents a manageable, but not negligible additional expenditure on equipment. The process step "selenization" is therefore burdened almost twice with additional costs (compared to inexpensive non-vacuum systems).
  • (3) a "mixed-race" production plant is created, ie a succession of non-vacuum steps (galvanic Cu and In deposition), the mentioned classic selenization under high vacuum and subsequent normal pressure process (CdS-CBD). One of such systems engineering is problematic and certainly not classified as "low tech".
  • (4) the amount of selenium which reaches the precursor is difficult to control. As a rule, a selenium excess is used, which requires a subsequent etching step (KCN, toxic).

Es ist auch versucht worden, Selen als sequentielle Schicht auf Kupfer und Indium durch elektrochemische Deposition abzuscheiden. Bei einem Halbleiter mit mehreren Modifikationen wie Selen ist dies erwartungsgemäss schwierig; die bisher bekannt gewordenen Abscheide-Ergebnisse waren als solche gut, jedoch konnten CIS-Zellen mit einem brauchbaren solaren Wirkungsgrad der Licht/Stromumwandlung hiermit nicht hergestellt werden. Dies legt die Vermutung nahe, dass ein galvanischer Selen-Abscheidungsprozess für CIS-Zellen wenig geeignet ist oder einer erheblichen Optimierungsarbeit bedarf.It Selenium has also been tried as a sequential layer on copper and to deposit indium by electrochemical deposition. For a semiconductor with several modifications like selenium this is expected to be difficult; the previously announced deposition results were as such well, however, could CIS cells with a useful solar efficiency the light / power conversion is not made hereby. This sets the suggestion that a galvanic selenium deposition process for CIS cells is poorly suited or requires considerable optimization work.

Ein weiteres, wenig vorteilhaftes Verfahren zur Selenisierung ausserhalb des Vakuums ist die Verwendung von Selenwasserstoff. Da H2S hochgradig toxisch ist, wird diese Vorgehensweise speziell für ein roll-to-roll-Verfahren, d.h. ein durchlaufendes Zellenband, nicht in Betracht gezogen.One Another, less advantageous method for selenization outside the vacuum is the use of hydrogen selenide. Because H2S is high grade is toxic, this approach is specific to a roll-to-roll process, i.e. a continuous cell belt, not considered.

Ebenfalls bekannt geworden ist ein Verfahren der Selenisierung bzw. Sulfurisierung, indem Schutzgas über eine erhitzte Schwefelquelle geführt wird und Schwefeldampf mit der Oberfläche der erhitzten CIS-Bandzelle in Reaktion gebracht wird. ( DE 196 34 580 Institut für Solartechnologien, Frankfurt(Oder)).Also known has been a method of selenization or sulfurization by passing inert gas over a heated sulfur source and reacting sulfur vapor with the surface of the heated CIS belt cell. ( DE 196 34 580 Institute of Solar Technologies, Frankfurt (Oder)).

Der entscheidende Unterschied zur vorliegenden. Erfindungsidee liegt in dem Umstand, dass bei der in DE 196 34 580 bekannt gewordenen Vorgehensweise die CIS-Zelle erhitzt wird, d.h. eine Reaktion des Schwefels mit der Kupfer-/Indiumschicht stattfindet und stattfinden soll. Demgegenüber ist bei der vorliegenden Erfindung lediglich eine Kondensation des Selen- oder Schwefeldampfes auf der CIS-Zelle beabsichtigt, die chemische Reaktion der Bildung von Kupfer-Indium-Diselenid aus Kupfer, Indium und Selen bleibt ausdrücklich und gezielt dem nächstfolgenden Prozess-Schritt, d.h. dem RTP-Ofen vorbehalten.The decisive difference to the present. Invention idea lies in the fact that in the in DE 196 34 580 become known procedure, the CIS cell is heated, that is, a reaction of sulfur with the copper / indium layer takes place and is to take place. In contrast, in the present invention, only a condensation of the selenium or sulfur vapor on the CIS cell is intended, the chemical reaction of the formation of copper indium diselenide from copper, indium and selenium remains explicitly and specifically the next process step, ie the RTP oven reserved.

In der Praxis wirkt sich die in DE 196 34 580 genannte Methode der Sulfurisierung, bei welcher über einen konvexen Graphitblock Wärme in die durchlaufende Bandzelle eingetragen wird, so aus, dass sich unter Einwirkung des Schwefeldampfes zwar Kupfer-Indium-Sulfid bildet, jedoch (je nach der lokal auf dem Band herrschenden Reaktionsbedingungen wie Temperatur, Dampfdruck und Zeitdauer) auch andere Phasen, möglicherweise auch Kupfersulfid oder andere, unerwünschte Verbindungen. Beim erfindungsgemässen Vorgehen wird durch Kontrolle der CIS-Bandtemperatur auf einen Wert unter 100°C dafür gesorgt, dass lediglich eine Kondensation, nicht jedoch eine chemische Reaktion abläuft.In practice, the affects in DE 196 34 580 mentioned method of sulfurization, in which via a convex graphite block heat is introduced into the continuous band cell, so that forms under the action of sulfur sulfur copper indium sulfide, but (depending on the local conditions on the band reaction conditions such as temperature, Vapor pressure and time), other phases, possibly also copper sulfide or other unwanted compounds. In the procedure according to the invention, by controlling the CIS strip temperature to a value below 100 ° C., it is ensured that only a condensation, but not a chemical reaction, takes place.

Die Verwendung eines RTP-Temperofens („rapid thermal process") hat den Sinn, den Temperaturbereich zwischen 100°C und 300°C zu meiden bzw. möglichst rasch zu durchlaufen. In genau diesem Sinn wird erfindungsgemäss die CIS-Bandtemperatur unter 100°C gehalten, während die Kondensation von Selendampf auf der Bandzelle stattfindet. Das erfindungsgemässe Verfahren bezweckt also, analog zu galvanischen Depositionsverfahren, ausschliesslich den Transport/ die Deposition der Substanz Selen (bzw. Schwefel) auf die Zelle, ist also keine „Selenisierung" im üblichen Sinn. Eine derartige Vorgehensweise ist bisher bei der CIS-Zellen-Herstellung nicht bekannt geworden, während ansonsten die Gasphasen-Epitaxie, beispielsweise zur Abscheidung isolierender Oberflächen-Schichten auf kristallinen Silizium-Solarzellen, eine durchaus bekannte Technologie darstellt.The Using a RTP tempering furnace ("rapid thermal process") has the meaning, the Temperature range between 100 ° C and 300 ° C to avoid or as possible to go through quickly. In exactly this sense, according to the invention, the CIS belt temperature below 100 ° C kept while the condensation of selenium vapor takes place on the ribbon cell. The invention The purpose of the method is thus, analogously to galvanic deposition methods, exclusively the transport / deposition of the substance selenium (or sulfur) on the cell, so is not a "selenization" in the usual Sense. Such a procedure has hitherto been used in CIS cell production not known while otherwise the gas phase epitaxy, for example for deposition insulating surface layers on crystalline silicon solar cells, a well-known technology represents.

Der Vollständigkeit halber sei vermerkt, dass sich übliche PVD-Verfahren zur Deposition von Selen auch wegen den ihren eigentümlichen, geringen Abscheideraten für die Beschichtung rasch durchlaufender CIS-Zellenbänder weniger eignen: die benötigte Schichtdicke von Selen und/oder Schwefel liegt mit 0,5 bis 0,8 μm verhältnismässig hoch.Of the completeness half note that usual PVD process for the deposition of selenium also because of their peculiar, low deposition rates for the coating of rapidly passing CIS cell bands less suitable: the needed Layer thickness of selenium and / or sulfur is relatively high at 0.5 to 0.8 microns.

Bekannt ist, dass die Zufügung von 2-5 At% Natrium den Wirkungsgrad von CIS-Zellen verbessert, wobei dieses Natrium, sofern es nicht aus dem Glassubstrat in die CIS-Schicht eindiffundiert, in einem separaten Hochvakuumschritt durch Verdampfen von beispielsweise Natriumfluorid eingebracht wird. Erfindungsgemäss ist vorgesehen, dass in der Quellzone eine zweite, getrennt temperaturgeregelte Quelle mit einem Natriumsalz aufgestellt wird.Known is that the infliction from 2-5 at% sodium improves the efficiency of CIS cells, this sodium, unless it is from the glass substrate in the CIS layer diffused in, in a separate high vacuum step by evaporation of, for example Sodium fluoride is introduced. According to the invention, it is provided that in the source zone a second, separately temperature-controlled source with a sodium salt is placed.

Es erscheint zunächst naheliegend, hierfür Natriumselenid, Natriumsulfid oder Natriumpolysulfid zu verwenden, jedoch haben diese Substanzen Nachteile gezeigt. Letztere lassen sich vermeiden, wenn ein organisches Natriumsalz verwendet wird, das sich bei niedrigen Temperaturen aufspaltet unter Freisetzung flüchtiger Bestandteile (beispielsweise CO2), beispielsweise Natriumformiat, Natriumoxalat oder Natriumacetat.It appears first obvious, for this sodium selenide, To use sodium sulfide or sodium polysulfide, however these substances show disadvantages. The latter can be avoided if an organic sodium salt is used which is at low Temperatures split with release of volatile constituents (for example CO2), for example, sodium formate, sodium oxalate or sodium acetate.

Zur Erhöhung der Zellenspannung und damit des Wirkungsgrades der CIS-Solarzelle wird ferner die Verwendung von Schwefel zusätzlich zu Selen empfohlen (sogenannte CISS-Zellen). Erfindungsgemäss erfolgt dies nicht durch sogenanntes Nachschwefeln des fertigen Absorbers, da hierfür ein weiterer Temperschritt (Nachtempern bei ca. 300°C) erforderlich wird, sondern indem zusätzlich Schwefel, vorzugsweise elementar, in der Quellzone der Selenisierungs-Einrichtung angeboten wird. Um den Schwefel-Partialdampfdruck getrennt zu einzustellen, wird eine separate Schwefelquelle mit eigener Temperatur-Regelung installiert.to increase the cell voltage and thus the efficiency of the CIS solar cell Furthermore, the use of sulfur in addition to selenium is recommended (so-called CISS cells). According to the invention this is not done by so-called desulfurization of the finished Absorbers, because of this a further annealing step (post-annealing at about 300 ° C) required is, but in addition Sulfur, preferably elemental, in the source zone of the selenization unit is offered. To the sulfur partial vapor pressure to adjust separately, with a separate source of sulfur own temperature control installed.

Die erfindungsgemässe Einrichtung zur Beschichtung von CIS-Bandzellen besteht demnach aus einem Aufbau aus Selenverträglichem und erwärmbaren Material mit 3 Zonen: der Quellenzone, in welcher zumindest die Selenquelle, vorzugsweise aber auch eine Schwefel- und/oder eine Natriumquelle einzeln beheizt./temperaturgeregelt und von dem inerten Schutzgas/Schleppgas (z.B. Argon oder Stickstoff) überströmt enthalten ist, der Transportzone, durch welche das Gas-Dampfgemisch zur Bandzelle geleitet wird und der Kondensationszone, durch welche das Zellenband, weiches bereits mit Kupfer und Indium beschichtet ist, temperaturgeregelt hindurchläuft.The invention Device for coating CIS-band cells is therefore made a structure made of selenium-compatible and heatable Material with 3 zones: the source zone, in which at least the Selenium source, but preferably also a sulfur and / or a Sodium source individually heated./temperaturgeregelt and of the inert Inert gas / entraining gas (e.g., argon or nitrogen) overflowed is, the transport zone through which the gas-vapor mixture to the belt cell and the condensation zone through which the cell belt, soft already coated with copper and indium, temperature controlled passes.

Es versteht sich, dass Vorkehrungen getroffen werden müssen, damit das Gas-Dampfgemisch das CIS-Band derart anströmt und derart auf dem Band kondensiert, dass eine homogene laterale Verteilung des Kondensates, d.h. eine sehr gleichmässige Dicke der Selenschicht gewährleistet ist. Hierzu können, ausser der bereits erwähnten, gleichmässigen Temperaturverteilung quer zur Bandlaufrichtung, die aus nasschemischen Abscheidungen bekannten Methoden angewendet werden, beispielsweise Lochblenden oder Anström-Düsen.It is understood that precautions must be taken so that the gas-vapor mixture the CIS band flows in such a way and condensed on the tape such that a homogeneous lateral Distribution of the condensate, i. a very uniform thickness the selenium layer ensured is. For this purpose, except the one already mentioned, uniform Temperature distribution transverse to the strip running direction, the wet-chemical Deposits known methods are applied, for example Aperture or stream nozzles.

Weiterhin versteht es sich, dass die Materialien, aus welchen die erfindungsgemässe Einrichtung zur Selenisierung aufgebaut ist, resistent gegen die agressive Einwirkung von Selen sein müssen. Ferner ist eine Beheizung ratsam, damit das Selen ausschliesslich auf dem CIS-Band und nicht an anderen Stellen der Quellen-, Transport- und Reaktionszone kondensiert. Hierfür bietet sich Quarzglas an, ggf. mit verminderter Transparenz, sodass die Beheizung der Begrenzungsflächen durch absorbierte Wärmestrahlung erfolgen kann.Farther it is understood that the materials from which the inventive device for Selenization is built up, resistant to the aggressive action must be from selenium. Furthermore, heating is advisable so that the selenium exclusively on the CIS volume and not elsewhere in the source, transport and and reaction zone condensed. For this purpose, quartz glass offers, possibly with reduced transparency, so that the heating of the boundary surfaces by absorbed heat radiation can be done.

Die Strömungsgeschwindigkeit bzw. Durchflussmenge des Schleppgases ist regelbar, sodass das Verdünnungsverhältnis Dampf/Trägergas und somit die Abscheidegeschwindigkeit auf dem CIS-Band einstellbar ist; eine Erwärmung des Inertgases kann erforderlich sein.The flow rate or flow rate of the towing gas is adjustable, so that the dilution ratio steam / carrier gas and thus the deposition rate is adjustable on the CIS band; a warming the inert gas may be required.

Die Temperatur-Konstanz des durchlaufenden CIS-Bandes wird in bekannter Weise durchgeführt, beispielsweise könnte das Band in innigem Kontakt zu einer rückseitigen Kühlfläche stehen; es dürfte jedoch ausreichend sein, das Inertgas vor seiner Verwendung als Schleppgas zur Temperierung des Bandes zu verwenden, indem die Bandrückseite dem (unerwärmten) Gasstrom ausgesetzt wird.The Temperature constancy of the continuous CIS band is known in the art Way, for example the tape is in intimate contact with a backside cooling surface; it might however, be sufficient to use the inert gas before its use as To use towing gas for tempering the tape by the back of the band (Unheated) Gas stream is exposed.

Soweit das dampfbeladene Schleppgas nach Durchströmen der Kondensationszone noch Selen enthält, wird dieses mittels der bekannten Kühlfallen ausgefällt und recyclet, sodass der gesamte, vorgeschlagene Selenisierungsprozess ohne umweltbelastende Emissionen verläuft.As far as the steam-laden towing gas after flowing through the condensation zone yet Contains selenium, this is precipitated by means of the known cold traps and recycled, so that the entire proposed selenization process proceeds without polluting emissions.

Claims (9)

Verfahren und Einrichtung zur Selenisierung von flexiblen, bandförmigen CIS-Zellen dadurch gekennzeichnet, dass das durchlaufende Band, bei welchem eine Kupfer- und Indium/Galliumschicht bereits aufgebracht ist, auf einer konstant niedrigen Temperatur gehalten und durch eine Kondensationszone geführt wird, wobei das Band angeströmt wird von einem inerten Schleppgas, das zuvor über eine temperatur-regulierte Selenquelle geführt wurde.Method and device for selenization of flexible, band-shaped CIS cells, characterized in that the continuous band, in which a copper and indium / gallium layer is already applied, kept at a constant low temperature and passed through a condensation zone, wherein the tape flows is from an inert towing gas, which was previously passed through a temperature-regulated selenium source. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Raumbegrenzungsflächen in der Quell-, Transport und Kondensationszone auf einer erhöhten Temperatur gehalten werden, sodass eine Kondensation von Selen an den Raumbegrenzungsflächen vermieden wird.A method according to claim 1, characterized in that the Room surfaces in the source, transport and condensation zone at an elevated temperature be kept, so that a condensation of selenium at the space boundary surfaces avoided becomes. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Raumbegrenzungsflächen aus einem wärmebeständigen, nur teilweise transparenten, glasähnlichen Material bestehen und der Eintrag von Wärmeenergie in das System durch Wärmestrahlung erfolgt, sodass ein selbstregulierender Effekt eintritt, indem sich die Wandungen um so mehr aufheizen, je geringer ihr Transmissionsgrad ist. A method according to claim 2, characterized in that the Room surfaces from a heat-resistant, only partially transparent, glass-like material and the entry of heat energy into the system by heat radiation, so that a self-regulating effect occurs by the walls the lower their transmittance is, the more they heat up. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zugleich nach dem prinzipiell gleichen Verfahren Schwefel auf dem durchlaufenden Band abgeschieden wird, indem sich in der Quellzone zusätzlich eine in ihrer Temperatur getrennt regulierbare Schwefelquelle befindet, sodass dem inerten Schleppgas Schwefeldampf zugemischt wird.A method according to claim 1, characterized in that at the same time according to the principle of the same process sulfur on the continuous Band is deposited by adding in the source zone in addition Separately adjustable sulfur source in its temperature, so that sulfur vapor is added to the inert towing gas. Verfahren nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass zugleich nach dem prinzipiell gleichen Verfahren Natrium auf dem durchlaufenden Band abgeschieden wird, indem sich in der Quellzone zusätzlich eine in ihrer Temperatur getrennt regulierbare Quelle mit einem Natriumsalz befindet.A method according to claim 1 or 4, characterized in that at the same time using the principle of the same procedure sodium on the continuous band is deposited by itself in the source zone additionally a separately adjustable in their temperature source with a Sodium salt is located. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Natriumsatz organisch ist und sich bei der gewählten Trägergas-Temperatur in elementares Natrium und einen flüchtigen Anteil aufspaltet, sodass dem inerten Schleppgas Natriumdampf zugemischt wird. A method according to claim 5, characterized in that the Sodium is organic and is at the selected carrier gas temperature in elementary Sodium and a volatile one Splits the proportion, so that the inert entrained gas sodium mixed becomes. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Quell- und Kondensationzonen sowie Transportbereiche der Selen-, Schwefel und Natrium-Abscheidung voneinander getrennt und aufeinander folgend ausgeführt sind, sodass die auf dem Band abgeschiedenen Substanzmengen jeweils unabhägig voneinander geregelt werden können.A method according to claim 4 or 5, characterized in that the swelling and condensation zones as well as transport areas of the selenium, Sulfur and sodium deposition separated from each other and each other following executed are such that the deposited on the tape substance amounts each independent of each other can be regulated. Verfahren nach Anspruch 1 oder 7, dadurch gekennzeichnet, dass eine in der Fläche homogene Verteilung der Substanzen auf dem durchlaufenden Band erreicht wird, indem das mit dem Dampf vermischte Trägergas das Band durch entsprechend angeordnete und ausgebildete Düsen oder Lochblenden anströmt.A method according to claim 1 or 7, characterized in that one in the plane achieved homogeneous distribution of the substances on the conveyor belt is, by the mixed with the steam carrier gas, the band by accordingly arranged and trained nozzles or pinhole flows. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Temperatur des durchlaufenden Bandes zeitlich und örtlich konstant auf maximal100°C geregelt wird.A method according to claim 8, characterized in that the Temperature of the continuous belt, temporally and locally constant to a maximum of 100 ° C is regulated.
DE102004024601A 2004-05-13 2004-05-13 Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas Withdrawn DE102004024601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004024601A DE102004024601A1 (en) 2004-05-13 2004-05-13 Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004024601A DE102004024601A1 (en) 2004-05-13 2004-05-13 Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas

Publications (1)

Publication Number Publication Date
DE102004024601A1 true DE102004024601A1 (en) 2005-12-01

Family

ID=35267494

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004024601A Withdrawn DE102004024601A1 (en) 2004-05-13 2004-05-13 Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas

Country Status (1)

Country Link
DE (1) DE102004024601A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2144296A1 (en) * 2008-06-20 2010-01-13 Volker Probst Method for manufacturing a semiconductive layer
WO2010092471A2 (en) 2009-02-16 2010-08-19 Centrotherm Photovoltaics Ag Method and device for coating planar substrates with chalcogens
WO2010100560A1 (en) * 2009-03-06 2010-09-10 Centrotherm Photovoltaics Ag Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery
DE102011103788A1 (en) * 2011-06-01 2012-12-06 Leybold Optics Gmbh Device for surface treatment with a process steam
US9284641B2 (en) 2008-11-28 2016-03-15 Volker Probst Processing device for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulphur

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2144296A1 (en) * 2008-06-20 2010-01-13 Volker Probst Method for manufacturing a semiconductive layer
US8846442B2 (en) 2008-06-20 2014-09-30 Volker Probst Method for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulphur, in particular flat substrates
US9082796B2 (en) 2008-06-20 2015-07-14 Volker Probst Process device for processing in particular stacked processed goods
US9284641B2 (en) 2008-11-28 2016-03-15 Volker Probst Processing device for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulphur
WO2010092471A2 (en) 2009-02-16 2010-08-19 Centrotherm Photovoltaics Ag Method and device for coating planar substrates with chalcogens
DE102009009022A1 (en) 2009-02-16 2010-08-26 Centrotherm Photovoltaics Ag Method and device for coating flat substrates with chalcogens
WO2010100560A1 (en) * 2009-03-06 2010-09-10 Centrotherm Photovoltaics Ag Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery
DE102009011496A1 (en) * 2009-03-06 2010-09-16 Centrotherm Photovoltaics Ag Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery
DE102011103788A1 (en) * 2011-06-01 2012-12-06 Leybold Optics Gmbh Device for surface treatment with a process steam

Similar Documents

Publication Publication Date Title
DE69308465T2 (en) Process for producing a thin layer of a chalcopyrite type composition
DE102009007587B4 (en) Method and device for coating substrates from the vapor phase
DE102009054677A1 (en) Linear deposition source
DE3901042A1 (en) METHOD AND DEVICE FOR PRODUCING A SEMICONDUCTOR LAYER SYSTEM
EP2341550A1 (en) Method of production of ball or grain-shaped semiconductor elements to be used in solar cells
DE112008003144T5 (en) Layer structure of CIS solar cell, integrated structure of CIS thin-film solar cell and its manufacturing process
WO2009153059A1 (en) Process device for processing in particular stacked processed goods
WO2007147184A2 (en) Method for producing photoactive layers and components comprising said layer(s)
EP2609617A1 (en) Device and method for heat-treating a plurality of multi-layer bodies
EP2108052B1 (en) Reactive magnetron sputtering for the large-scale deposition of chalcopyrite absorber layers for thin layer solar cells
DE102009011496A1 (en) Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery
DE102009053532B4 (en) Method and apparatus for producing a compound semiconductor layer
DE102011056906A1 (en) A vapor deposition apparatus and method for continuously depositing a thin film layer on a substrate
DE102004024601A1 (en) Selenizing flexible strip-like CIS cells used in the production of thin layer solar cells comprises feeding a continuous strip through a condensation zone and passing the strip through an inert carrier gas
DE102009009022A1 (en) Method and device for coating flat substrates with chalcogens
EP2009714B1 (en) Method and device for deposition of doped layers by means of OVPD or similar
EP3411513B1 (en) Method for depositing a cdte layer on a substrate
DE102008009337A1 (en) Coating a substrate with a conductive and transparent metallic oxide layer by sputtering in a continuous process, comprises moving and coating the substrate in a coating chamber at a coating source with a tubular target of metallic oxide
DE102010028277B4 (en) Method and device for producing a glass pane coated with a semiconductor material and solar cell or solar module obtainable by the process
DE3688028T2 (en) METHOD FOR THE GROWTH OF A THIN LAYER FOR A COMPOSED SEMICONDUCTOR.
DE102008030679B4 (en) Device for the diffusion treatment of workpieces
DE102012203229B4 (en) Method for mixing evaporation materials when deposited on a substrate in a vacuum
DE102009011695A1 (en) Thermal conversion of metallic precursor layer into semiconductor layer in thin layer solar cell, involves introducing chalcogen vapor/carrier gas mixture on substrate having precursor layer, heating, converting and cooling
DE102011080553A1 (en) Formation of graphene layer for electrode of e.g. emitter layer system, involves forming amorphous carbon layer on substrate by physical vapor deposition, and carrying out flash annealing in atmosphere of controlled composition
DE102009012200A1 (en) Thermal conversion of metallic precursor layer into semiconductor layer in thin layer solar cell, involves introducing chalcogen vapor/carrier gas mixture on substrate having precursor layer, heating, converting and cooling

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: PVFLEX SOLAR PRODUKTION GMBH, 15517 FUERSTENWALDE,

8127 New person/name/address of the applicant

Owner name: PVFLEX SOLAR GMBH, 15517 FUERSTENWALDE, DE

R005 Application deemed withdrawn due to failure to request examination

Effective date: 20110513