DE102004013587A1 - Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source - Google Patents

Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source Download PDF

Info

Publication number
DE102004013587A1
DE102004013587A1 DE102004013587A DE102004013587A DE102004013587A1 DE 102004013587 A1 DE102004013587 A1 DE 102004013587A1 DE 102004013587 A DE102004013587 A DE 102004013587A DE 102004013587 A DE102004013587 A DE 102004013587A DE 102004013587 A1 DE102004013587 A1 DE 102004013587A1
Authority
DE
Germany
Prior art keywords
membrane
oxygen
anode
voltage source
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102004013587A
Other languages
German (de)
Inventor
George Ajhar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102004013587A priority Critical patent/DE102004013587A1/en
Publication of DE102004013587A1 publication Critical patent/DE102004013587A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The membrane letting through oxygen ions, for purposes of ion flow regulation, is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source.

Description

Membrane, die Sauerstoff in Form von O2-Ionen leiten, sind bereits Stand der Technik. Sie werden u.a. in kommerziellen Hochtemperaturbrennstoffzellen wie der SOFC um 700 bis 1000°C verwendet. Die Verwendung solcher Membrane zur Gewinnung von Sauerstoff aus der Luft befindet sich jedoch noch im Versuchsstadium. Zu nennen sind v.a. die noch laufenden F+E-Projekte der Firmenkooperation zwischen Amaco, BP, Praxair, Statoil und Saso einerseits und der University of Missouri-Rolla und Praxair andereseits. Die verwendeten Membrane sind luftseitig mit Katalysatormaterial bestückt, die die Reduktion von Sauerstoff zu O2-Ionen bewirken. Auf der anderen Seite der Membran sorgt ein anderer Katalysator für die Oxidation der ankommenden Ionen zu elementarem Sauerstoff.Membrane, which conduct oxygen in the form of O2 ions, are already state of the art Technology. You will u.a. in commercial high-temperature fuel cells like the SOFC at 700 to 1000 ° C used. The use of such membranes for the production of oxygen from the air is still in the experimental stage. To call are v. a. the ongoing R & D projects of the company cooperation between Amaco, BP, Praxair, Statoil and Saso on the one hand and the University on the other of Missouri-Rolla and Praxair on the other hand. The membrane used Are equipped on the air side with catalyst material, the reduction of Cause oxygen to O2 ions. On the other side of the membrane another catalyst ensures the oxidation of the incoming ions to elemental oxygen.

Diesen Forschungsanstrengungen ist gemein, dass Membrane entwickelt werden, die sowohl Sauerstoff-Ionen als auch Elektronen leiten. (siehe 1) Die Elektronen werden also nicht in einem externen Stromkreis geführt. Das bedeutet, dass die treibende Kraft der Sauerstoff-Ionendiffusion durch die Membran allein der Unterschied zwischen den Sauerstoffpartialdrücken vor und hinter der Membran ist. Der Diffusionsstrom ist somit bei gegebener Membranbeschaffenheit und -abmessung eindeutig festgelegt.Common to this research is the development of membranes that conduct both oxygen ions and electrons. (please refer 1 ) So the electrons are not led in an external circuit. This means that the driving force of oxygen-ion diffusion through the membrane alone is the difference between the oxygen partial pressures in front of and behind the membrane. The diffusion current is thus clearly defined for a given membrane condition and dimension.

Dies ist bei Verwendung der Membran im instationären Betrieb wie Anfahr- oder Lastwechselprozessen nachteilig. Ebenso nachteilig ist, dass zur Extraktion von Sauerstoff aus der Luft auf die andere Seite der Membran relativ hohe Partialdruckdifferenzen notwendig sind. Dies mach die Erzeugung von Unterdruck sauerstoffseitig und Kompression der Luft luftseitig der Membran notwendig. Sowohl apparativ aufwendig als auch energieintensiv ist dieses Verfahren (siehe 2).This is disadvantageous when using the membrane in transient operation such as start-up or load change processes. It is also disadvantageous that relatively high partial pressure differences are necessary for the extraction of oxygen from the air to the other side of the membrane. This makes the generation of negative pressure on the oxygen side and compression of the air on the air side of the membrane necessary. Both expensive and energy-consuming this process is (see 2 ).

Die im Patentanspruch 1 dargelegte Erfindung, reguliert den Sauerstoff-Ionenstrom durch die Membran durch Anlegen einer Spannung (Siehe 3), d.h. im Regelfall wird der Ionenstrom erhöht, bzw. bei Bedarf jedoch auch vermindert oder gar unterbunden.The invention set forth in claim 1 regulates the oxygen ion current through the membrane by applying a voltage (See 3 ), ie, as a rule, the ion current is increased, or if necessary, however, also reduced or even prevented.

Ein Ausführungsbeispiel der Erfindung ist in 4 dargestellt.An embodiment of the invention is in 4 shown.

4 zeigt die Verwendung der Erfindung in einem Nachverbrenner. Beispielsweise könnte es sich um die Nachverbrennung von nicht-verbrauchtem Wasserstoff und Kohlenmonoxid im Anodenabgas einer SOFC (Solid Oxide Fuel Cell) handeln. Durch Anlegen einer elektrischen Spannung wird der Sauerstoffstrom reguliert, der für die Nachverbrennung notwendig ist. 4 shows the use of the invention in an afterburner. For example, it could be the post-combustion of unused hydrogen and carbon monoxide in the anode exhaust of a SOFC (Solid Oxide Fuel Cell). By applying an electrical voltage, the oxygen flow is regulated, which is necessary for the afterburning.

Nach heutigem Stand der Technik wird die Nachverbrennung des ca. 1000°C heißen Anodenabgases in einem Brenner mit Luftsauerstoff durchgeführt. Vorteilhaft ist es sicherlich, die Nachverbrennung mit reinem Sauerstoff durchzuführen, nicht zuletzt um Stickoxide NOx zu vermeiden. Gegebenenfalls soll das Anodenabgas prozessintegriert weiterverwendet werden, wobei eine Streckung mit Stickstoffebenfalls nicht vorteilhaft ist.To The current state of the art is the post-combustion of about 1000 ° C hot anode exhaust gas carried out in a burner with atmospheric oxygen. It is certainly advantageous, to perform the post combustion with pure oxygen, not last to avoid nitrogen oxides NOx. If necessary, that should Anode exhaust process integrated further be used, with a Stretching with nitrogen is also not beneficial.

5 zeigt die Verwendung der Erfindung in einem kontinuierlichem Prozess zur Extraktion von Luftsauerstoff in ein Trägerfluid, hier: Wasserdampf. Das Trägerfluid lässt sich leichter kondensieren als Lufststickstoff, womit die Gewinnung von reinem Sauerstoff erleichtert wird. Wieder erlaubt die Erfindung die Extraktion von Sauerstoff unter Zufuhr von elektrischer Energie, ohne Kompressions- und Depressionsaufwand. 5 shows the use of the invention in a continuous process for the extraction of atmospheric oxygen into a carrier fluid, here: water vapor. The carrier fluid condenses more easily than atmospheric nitrogen, thus facilitating the recovery of pure oxygen. Again, the invention allows the extraction of oxygen with the supply of electrical energy, without compression and compression effort.

Die mit der Erfindung erzielten Vorteile:

  • – Regelbare Sauerstoffextraktion aus der Atmosphäre mit einer einfachen Apparatur und niedrigen Aufwand
  • – Es ist ein regelbarer Nachverbrennungsprozess möglich, dadurch eine sauberere Nachverbrennung wie z.B. in einer SOFC Brennstoffzelle, durch die Zufuhr von Sauerstoff an den Restbrennstoff
  • – Nutzung von nicht komprimierter Luft. In konventionellen Apparaturen wird Sauerstoff durch eine hohe
  • – Druckdifferenz durch die Membran befördert. Dies ist mit dem Patentanspruch nichtnotwendig Prozessintegrierte Sauerstoffbereitstellung
The advantages achieved by the invention:
  • - Controllable oxygen extraction from the atmosphere with a simple apparatus and low effort
  • - It is a controllable post-combustion process possible, thereby a cleaner afterburning, such as in a SOFC fuel cell, by the supply of oxygen to the residual fuel
  • - Use of uncompressed air. In conventional apparatus, oxygen is replaced by a high
  • - Pressure difference transported through the membrane. This is not necessary with the claim process-integrated oxygen supply

Claims (1)

Sauerstoff-Ionen (O2-) leitende Membran nach Stand der Technik zur Extraktion von elementarem Sauerstoff O2 aus der Luft, ergänzt um eine Anordnung aus Anode einerseits und Kathode andererseits, die – miteinander über eine Spannungsquelle verbunden – eine Regulierung (Erhöhung oder Verringerung) des O2-Ionenstroms durch die Membran erlaubt.Oxygen-ion (O2) conductive membrane by state the technique for the extraction of elemental oxygen O2 from the Air, supplemented an arrangement of anode on the one hand and cathode on the other hand, the - with each other over one Voltage source connected - one Regulation (increase or reduction) of the O2 ion current allowed through the membrane.
DE102004013587A 2004-03-19 2004-03-19 Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source Ceased DE102004013587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004013587A DE102004013587A1 (en) 2004-03-19 2004-03-19 Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004013587A DE102004013587A1 (en) 2004-03-19 2004-03-19 Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source

Publications (1)

Publication Number Publication Date
DE102004013587A1 true DE102004013587A1 (en) 2005-10-06

Family

ID=34980648

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004013587A Ceased DE102004013587A1 (en) 2004-03-19 2004-03-19 Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source

Country Status (1)

Country Link
DE (1) DE102004013587A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767131B1 (en) * 1995-10-03 1999-01-07 ETS Mermier Lemarchand Reunis Mobile garden hose reel
US20010030127A1 (en) * 1999-08-12 2001-10-18 Lin-Feng Li Oxygen separation through hydroxide-conductive membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767131B1 (en) * 1995-10-03 1999-01-07 ETS Mermier Lemarchand Reunis Mobile garden hose reel
US20010030127A1 (en) * 1999-08-12 2001-10-18 Lin-Feng Li Oxygen separation through hydroxide-conductive membrane

Similar Documents

Publication Publication Date Title
DE102014108085A1 (en) electrolysis process
ITMI20090733A1 (en) SYSTEM AND PROCESS FOR THE SEPARATION OF CO2 AND RECOVERY OF FUEL FROM GAS EXHAUSTED ANODES OF CELLS A FUEL TO CARBONATES FUSI
Li et al. A highly-robust solid oxide fuel cell (SOFC): simultaneous greenhouse gas treatment and clean energy generation
KR20180078319A (en) Fuel cell system with improved CO2 capture
DE10154637B4 (en) Fuel delivery unit and its use for providing a hydrogen-containing fuel
CN105226295B (en) A kind of dielectric film and method for producing oxygen through based on air oxygen
EP2526344B1 (en) Method for operating a cogeneration plant
DE102015222635A1 (en) Fuel cell system and method for recycling water in a fuel cell system
DE4037970A1 (en) Automatic start-up of high-temp. hydrocarbon fuel cells - involves preheating of fuel and air by combustion with natural convection assistance in afterburner above stack
Sahli et al. Thermodynamic optimization of the solid oxyde fuel cell electric power
DE102004013587A1 (en) Membrane letting through oxygen ions is provided with an anode and a cathode located on opposite sides of the membrane and joined to one another by means of an adjustable voltage source
EP1357625A2 (en) Process to increase efficiency and decrease the exhaust gases from fuel cell system
WO2014135295A1 (en) Component for oxygen enrichment, component stack, device for obtaining a fluid enriched with oxygen, metal-oxygen battery and motor vehicle
JP2020186460A (en) Electrolyte film-electrode joint body, electrochemical device using the same, and hydrogen generation system using them
DE102011100839B4 (en) Fuel cell assembly
CN106207241A (en) A kind of SOFC many heaps integrated morphology
Jin et al. Novel micro-tubular high temperature solid oxide electrolysis cells
DE10156349A1 (en) Device for dosing oxygen has medium containing oxygen fed to oxygen pump electrolyte near cathode, oxygen fed in near anode depending on current set by voltage applied to electrodes
Minh et al. Electrolysis operating mode for reversible solid oxide fuel cells
US20200343561A1 (en) Anode layer activation method for solid oxide fuel cell, and solid oxide fuel cell system
JP6401106B2 (en) Cell, cell stack device, module, and module housing device
DE102014209060A1 (en) NON-HUMIDIFIED FUEL CELL
EP4179585B1 (en) Method for operating an sofc for the combined production of electricity and nitric oxide
DE102019217802A1 (en) Method for operating a fuel cell unit
DE102008034420A1 (en) Electro-chemical power source e.g. solid oxide fuel cell, operating method for electricity generation, involves utilizing oxygen-rich residual gas, where residual gas is accumulated in cryogenic air separator to produce nitrogen gas product

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8131 Rejection