DE10148132A1 - Ion conducting membranes based on aromatic polyimide- or copolyimide polymers useful for electrochemical applications, especially fuel cells - Google Patents

Ion conducting membranes based on aromatic polyimide- or copolyimide polymers useful for electrochemical applications, especially fuel cells

Info

Publication number
DE10148132A1
DE10148132A1 DE10148132A DE10148132A DE10148132A1 DE 10148132 A1 DE10148132 A1 DE 10148132A1 DE 10148132 A DE10148132 A DE 10148132A DE 10148132 A DE10148132 A DE 10148132A DE 10148132 A1 DE10148132 A1 DE 10148132A1
Authority
DE
Germany
Prior art keywords
membrane
copolyimide
electrochemical applications
general formula
membrane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10148132A
Other languages
German (de)
Other versions
DE10148132A9 (en
DE10148132B4 (en
Inventor
Yolanda Alvarez-Gallego
Suzana Pereira Nunes
Javier De Abajo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Priority to DE10148132A priority Critical patent/DE10148132B4/en
Publication of DE10148132A1 publication Critical patent/DE10148132A1/en
Publication of DE10148132A9 publication Critical patent/DE10148132A9/en
Application granted granted Critical
Publication of DE10148132B4 publication Critical patent/DE10148132B4/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Ion conducting membranes for electrochemical applications, especially fuel cells, and based on aromatic polyimide- or copolyimide polymers containing units which can be the same or different are new. Ion conducting membranes for electrochemical applications, especially fuel cells, and based on aromatic polyimide- or copolyimide polymers containing units which can be the same or different and of formula (I). Independent claims are included for the following: (1) preparation of the membrane by direct reaction of a diamine, diaminopyridine, and/or diaminopyrimidine with naphthalene-1,4,5,8-tetracarboxylic acid dianhydride, a bis-(nahthalenic acid anhydride) and/or a diacid-dialkyl ester or diacyl chloride-dialkylester derivative of this dianhydride; and (2) preparation of the membrane by cast-blocking (sic) of polyimide- or copolyimide polymer. B = at least one optionally substituted heterocyclic compound of formula (II); R = H, phenyl, a phosphonic acid group or at least one chain containing a phosphonic acid group; and A = one of naphthalene containing groups of formula (III), and forms 6-atom rings with the adjacent imide groups.

Description

Die Erfindung betrifft eine ionenleitende Membran für elektrochemische Anwendungen auf Basis eines aromatischen Polyimid- und Copolymid- Polymers sowie deren Verwendung. The invention relates to an ion-conducting membrane for electrochemical Applications based on an aromatic polyimide and copolymid Polymers and their use.

Derzeit wird intensiv daran gearbeitet, Brennstoffzellen, die eine sehr vielversprechende Alternative für die Energieumwandlung darstellen, zur Marktreife zu entwickeln. Für die mobile Anwendung hat sich die sogenannte Polyelektrolyt-Membran-Brennstoffzelle (Polyelectrolyte membrane fuel cell; PEFC) als besonders geeignet herausgestellt, man vergleiche F. R. Kalhammer, P. R. Prokopius, V. P. Roan, G. E. Voecks, Status and Prospects of Fuel Cells as Automobile Engines, State of California Air Resources Board, 1998. Ein wesentliches Kriterium, diese Technologie zur Marktreife zu bringen, ist die Verfügbarkeit geeigneter Membrane mit einer hohen Protonenleitfähigkeit, einer niedrigen Brennstoff- bzw. Energieträgerpermeabilität (Wasserstoff oder Methanol) und einer hohen chemischen Stabilität, die jedoch preisgünstig herzustellen sind. Currently, intensive work is being done on fuel cells, which is a very represent a promising alternative for energy conversion Develop market maturity. For mobile applications, the so-called polyelectrolyte membrane fuel cell (polyelectrolyte membrane fuel cell; PEFC) was found to be particularly suitable, one see F.R. Kalhammer, P.R. Prokopius, V.P. Roan, G.E. Voecks, Status and Prospects of Fuel Cells as Automobile Engines, State of California Air Resources Board, 1998. A key criterion, this Bringing technology to market is the availability more appropriate Membrane with a high proton conductivity, a low one Fuel or energy carrier permeability (hydrogen or methanol) and high chemical stability, which, however, is inexpensive are to be produced.

Für Brennstoffzellen wurden bisher sogenannte Nation®-Membranen, bei denen es sich um fluorierte Membranen von Du Pont handelt, oder ähnlichen Membranen, die von Dow und Asahi in den Handel gebracht wurden, intensiv eingesetzt [O. Savadogo. J. New Materials for Electrochemical Systems 1 (1998) 47]. So-called Nation® membranes have been used for fuel cells which are Du Pont fluorinated membranes, or similar membranes commercialized by Dow and Asahi were used intensively [O. Savadogo. J. New Materials for Electrochemical Systems 1 (1998) 47].

Einer der wesentlichen Nachteile dieser Nation®-Membranen ist deren Kosten. Daher wurden verschiedene nicht-fluorierte Membranen in den letzten Jahren in Brennstoffzellen getestet. Die meisten von ihnen basieren auf sulfonierten Polymeren und Copolymeren. Membranen aus sulfoniertem Polysulfon, sulfoniertem Polyetheretherketon, sulfoniertem Polyphosphazen und sulfonierten Polyamiden sind an verschiedenen Stellen beschrieben, man vergleiche Q. Guo, P. N. Pintauro, H. Tang, S. O'Connor, Sulfonated and crosslinked polyphosphazene-based proton- exchange membranes. J. Membrane Sci. 154 (1999) 175; E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier and M. Pineri. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. J. Membrane Sci. 160 (1999) 127; S. Faure, M. Pineri, P. Aldebert, R. Mercier, B. Sillion, US 6245881 B1. One of the major disadvantages of these Nation® membranes is their Costs. Therefore, various non-fluorinated membranes were used in the tested in fuel cells in recent years. Most of them are based on sulfonated polymers and copolymers. Membranes sulfonated polysulfone, sulfonated polyether ether ketone, sulfonated Polyphosphazene and sulfonated polyamides are different Passages described, compare Q. Guo, P.N. Pintauro, H. Tang, S. O'Connor, Sulfonated and crosslinked polyphosphazene-based proton- exchange membranes. J. Membrane Sci. 154 (1999) 175; E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier and M. Pineri. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H + / Mz + by electrodialysis comparison with a perfluorosulfonic membrane. J. Membrane Sci. 160 (1999) 127; S. Faure, M. Pineri, P. Aldebert, R. Mercier, B. Sillion, US 6245881 B1.

Ein weiterer Nachteil der Nafion®-Membranen liegt in der Abnahme der Protonenleitfähigkeit oberhalb von 100°C aufgrund des Wasserentzuges. Ein Betrieb in einem Temperaturbereich von 100-150°C wäre jedoch vorteilhaft, um die Vergiftung des Katalysators durch CO zu reduzieren. Ein Polymer von dem angenommen wird, dass es in diesem Temperaturbereich eingesetzt werden kann, stellt Polybenzimidazol dar, das gewöhnlich mit Phosphorsäure gedopt wird [R. F. Savinell, M. H. Litt. Proton conducting polymers prepared by direct acid casting. US-A-5716727]. Another disadvantage of Nafion® membranes is the decrease in Proton conductivity above 100 ° C due to water deprivation. However, operation in a temperature range of 100-150 ° C would be advantageous to reduce the poisoning of the catalyst by CO. A polymer that is believed to be in this Temperature range can be used, represents polybenzimidazole, which is usually doped with phosphoric acid [R. F. Savinell, M.H. Litt. Proton conducting polymers prepared by direct acid casting. US-A-5716727].

Polybenzimidazol (PBI) wurde auch durch Sulfonierung modifiziert, um die Leitfähigkeit unterhalb von 100°C zu erhöhen [D. J. Jones and J. Rozière. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel applications. J. Membrane Sci. 185 (2001) 41]. Der basische Charakter der Imidazolgruppen spielt hier eine wesentliche Rolle bei dem Transport von Protonen in PBI-Membranen und bei deren guter Leistung oberhalb von 100°C. Polybenzimidazole (PBI) was also modified by sulfonation to increase the conductivity below 100 ° C [D. J. Jones and J. Rozière. Recent advances in the functionalization of polybenzimidazole and polyether ketones for fuel applications. J. Membrane Sci. 185 (2001) 41]. The basic character of the imidazole groups plays a role here essential role in the transport of protons in PBI membranes and with their good performance above 100 ° C.

Auch sulfonierte Polyimide wurde bereits auf ihren Einsatz in Brennstoffzellen untersucht [C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri. Soluble sulfonated naphtalenic polyimides as materials for proton exchange membranes. Polymer 42 (2001) 359-373; C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel. M. Pineri. Stability study of sulfonated phtalic and naphtalenic polyimide structures in aqueous medium. Polymer 42 (2001) 5097-5105]. Die Synthesemöglichkeiten sind zwar sehr flexibel, und es kann eine Vielzahl von Strukturen erhalten werden. Gleichwohl sind die bisher untersuchten Membranen in vielerlei Hinsicht unzureichend. Sulfonated polyimides have also been used in Fuel cells examined [C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri. Soluble sulfonated naphtalenic polyimides as materials for proton exchange membranes. Polymer 42 (2001) 359-373; C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel. M. Pineri. Stability study of sulfonated phtalic and naphtalenic polyimide structures in aqueous medium. Polymer 42 (2001) 5097-5105]. The Synthesis options are very flexible, and there can be many be maintained by structures. Nevertheless, the ones examined so far Membranes are inadequate in many ways.

Aufgabe der vorliegenden Erfindung ist es daher, eine verbesserte Membran bereitzustellen, die für elektrochemische Anwendungen und insbesondere in Brennstoffzellen eingesetzt werden kann. The object of the present invention is therefore an improved To provide membrane for electrochemical applications and can be used in particular in fuel cells.

Gelöst wird diese Aufgabe durch eine ionenleitende Membran gemäß der Lehre der Ansprüche. This task is solved by an ion conducting membrane according to the Teaching claims.

Die erfindungsgemäße Membran wird hergestellt aus Polyimid- oder Copolyimid-Polymeren, die in ihrer Struktur heterozyklische Gruppen, insbesondere Imidazol-, Pyridin- und/oder Pyrimidingruppen enthalten. Diese heterezyklischen Gruppen können Teil der Hauptkette sein oder können als Seitenkette unterschiedlicher Größe daran angeknöpft sein. The membrane of the invention is made of polyimide or Copolyimide polymers, the structure of which is heterocyclic groups, in particular contain imidazole, pyridine and / or pyrimidine groups. These heterocyclic groups can be part of the main chain or can be attached to it as a side chain of different sizes.

Die Polyimid- bzw. Copolyimid-Polymere enthalten Einheiten, die gleich oder verschieden sein können und die der folgenden allgemeinen Formel I entsprechen:


The polyimide or copolyimide polymers contain units which can be the same or different and which correspond to the following general formula I:


In dieser allgemeinen Formel I bedeutet der Rest B mindestens einen ggf. substituierten aromatischen Heterozyklus der folgenden allgemeinen Formel II:


In this general formula I, the radical B denotes at least one optionally substituted aromatic heterocycle of the following general formula II:


Dabei steht der Rest R für ein Wasserstoffatom, einen Phenyl-Rest, eine Phosphonsäure-Gruppe oder eine mindestens eine Phosphonsäure- Gruppe enthaltende Kette. The radical R here represents a hydrogen atom, a phenyl radical, one Phosphonic acid group or at least one phosphonic acid group Chain containing group.

Die Gruppe A in der allgemeinen Formel I steht für eine der folgenden, mindestens eine Naphtalin-Einheit enthaltenden Gruppen, der allgemeinen Formel III:


Group A in general formula I stands for one of the following groups, containing at least one naphthalene unit, of general formula III:


Die Gruppe A bildet mit den benachbarten Imid-Gruppen (man vergleiche die allgemeine Formel I) Ringe mit 6 Atomen. Group A forms with the neighboring imide groups (compare the general formula I) rings with 6 atoms.

Vorzugsweise sind die Polymere, aus denen die erfindungsgemäßen Membranen aufgebaut sind, aus wiederkehrenden Einheiten der allgemeinen Formel I aufgebaut. Preferred are the polymers from which the invention Membranes are constructed from recurring units of the general formula I built.

Die zu Herstellung der erfindungsgemäßen Membran eingesetzten Polymere werden vorzugsweise durch direkte Umsetzung von Diaminen (insbesondere 4,5-di(3-Aminophenyl)imidazol und 5-(2-Benzimidazol)- 1,3-phenylenediamin, Diaminopyridinen und/oder Diaminopyrimidinen mit Naphtalin-1,4,5,8-tetracarbonsäuredianhydrid (NTCDA) oder bis(Naphtalinsäureanhydriden) sowie den Disäuren-dialkylester- oder Diacylchlorid-dialkylester-Derivaten dieser Dianhydride. The used to manufacture the membrane of the invention Polymers are preferably made by direct reaction of diamines (especially 4,5-di (3-aminophenyl) imidazole and 5- (2-benzimidazole) - 1,3-phenylenediamine, diaminopyridines and / or diaminopyrimidines with Naphtalene-1,4,5,8-tetracarboxylic dianhydride (NTCDA) or bis (naphthalic anhydrides) and the diacid dialkyl ester or Diacyl chloride dialkyl ester derivatives of these dianhydrides.

Das Polymer kann zudem durch Einführung von anderen Gruppen modifiziert sein. Dazu zählen Säuren im allgemeinen und insbesondere Phosphonsäuregruppen, welche unter anderem die Protonenleitfähigkeit erhöhen können. Die Membranen werden vorzugsweise durch Gießen der Lösung des Polymers hergestellt. Ferner ist es möglich, die Membran mit Säuren Oder anorganischen Substanzen zu modifizieren, beispielsweise mit Phosphaten, um die Leitfähigkeit zu verbessern. The polymer can also by introducing other groups be modified. These include acids in general and in particular Phosphonic acid groups, which include proton conductivity can increase. The membranes are preferably cast by pouring the Solution of the polymer made. It is also possible to use the membrane Modify acids or inorganic substances, for example with phosphates to improve conductivity.

Die Erfindung wird im folgenden anhand von Beispielen näher erläutert, welche bevorzugte Ausführungsformen betreffen. The invention is explained in more detail below with the aid of examples, which relate to preferred embodiments.

Beispiel 1example 1

Ein 250 ml Dreihalskolben, der mit einem mechanischen Rührer, einem Einlaß für ein Inertgas (Argon) und einem Dean-Stark System mit einem Kühler und einem Trockenröhrchen an dessen Spitze ausgestattet war, wurde mit 0,4365 g (4 mmol), 2,6-Diaminopyridin, 1,601 g (8 mmol) bis- (4-Aminophenyl)-ether, 3,2182 g (12 mmol) Naphthalin-1,4,5,8- tetracarbonsäuredianhydrid, 7,82 g (64 mmol) Benzoesäure und 45 g m-Kresol beladen. Diese Mischung (dunkelrot gefärbte Lösung) wurde in einem thermostatisierten Silikonölbad 8 h bei 80°C und 24 h bei 190°C erhitzt und gerührt. Dann wurden 10 g m-Kresol hinzugegeben, und die Reaktionsmischung wurde auf Raumtemperatur abgekühlt und in Ethylacetat gegossen. Das hellbraune Präzipitat wurde abfiltriert, mit Ethylacetat und danach mit Ethanol gewaschen und im Vakuum bei 80°C getrocknet. A 250 ml three-necked flask equipped with a mechanical stirrer, a Inlet for an inert gas (argon) and a Dean-Stark system with one Cooler and a drying tube at the top, was mixed with 0.4365 g (4 mmol), 2,6-diaminopyridine, 1.601 g (8 mmol) (4-aminophenyl) ether, 3.2182 g (12 mmol) naphthalene-1,4,5,8- tetracarboxylic acid dianhydride, 7.82 g (64 mmol) of benzoic acid and 45 g Load m-cresol. This mixture (dark red colored solution) was in a thermostated silicone oil bath for 8 h at 80 ° C and 24 h at 190 ° C heated and stirred. Then 10 g of m-cresol was added, and the Reaction mixture was cooled to room temperature and in Poured ethyl acetate. The light brown precipitate was filtered off with Ethyl acetate and then washed with ethanol and in vacuo at 80 ° C dried.

Beispiel 2Example 2

In einem 100 ml Dreihalskolben, der mit einem mechanischem Rührer, einem Einlaß für ein Inertgas (Argon) und einem Trockenröhrchen ausgestattet war, wurden 0,1882 g (1 mmol) 2,4-Diaminobenzolsulfonsäure und 0,17 ml (1,2 mmol) trockenes Triethylamin gegeben und bei Raumtemperatur für einige Minuten gerührt. Danach wurden 0,1091 g (1 mmol) 2,6-Diaminopyridin, 0,2002 g (1 mmol) bis-(4-Aminophenyl)- ether, 0,80454 g (3 mmol) Naphthalin-1,4,5,8-tetracarbonsäuredianhydrid und 18 g Benzoesäure hinzugegeben; diese Mischung wurde in einem thermostatisierten Silikonölbad auf 140°C erhitzt. Nach Schmelzen der Benzoesäure wurde der Rührer angestellt. Die Temperatur wurde auf 160°C erhöht und die Mischung wurde über Nacht bei dieser Temperatur gerührt. Nach Kühlen auf Raumtemperatur wurde Aceton zu der Mischung hinzugegeben, um Benzoesäure zu lösen und diese danach zu entfernen. Der hellbraune Rückstand wurde abfiltriert, mit Aceton gewaschen und im Vakuum bei 70°C getrocknet. In a 100 ml three-necked flask, which is equipped with a mechanical stirrer, an inlet for an inert gas (argon) and a drying tube 0.1882 g (1 mmol) of 2,4-diaminobenzenesulfonic acid and 0.17 ml (1.2 mmol) of dry triethylamine added and at Room temperature stirred for a few minutes. Thereafter, 0.1091 g (1 mmol) 2,6-diaminopyridine, 0.2002 g (1 mmol) bis- (4-aminophenyl) - ether, 0.80454 g (3 mmol) Naphthalene-1,4,5,8-tetracarboxylic dianhydride and 18 g benzoic acid added; this mixture was heated to 140 ° C in a thermostated silicone oil bath. To The stirrer was started to melt the benzoic acid. The Temperature was raised to 160 ° C and the mixture was left overnight stirred at this temperature. After cooling to room temperature Add acetone to the mixture to dissolve benzoic acid and remove them afterwards. The light brown residue was filtered off, washed with acetone and dried in vacuo at 70 ° C.

Beispiel 3Example 3

In einen 250 ml Dreihalskolben, der mit einem mechanischen Rührer, einem Einlaß für ein Inertgas (Argon) und einem Dean-Stark System mit einem Kühler und einem Trockenröhrchen an der Spitze davon ausgestattet war, wurden 1,7941 g (8 mmol) 5-(2-Benzimidazol)-1,3- phenylendiamin, 0,8001 g (4 mmol) bis-(4-Aminophenyl)-ether, 3,2182 g (12 mmol) Naphthalin-1,4,5,8-tetracarbonsäuredianhydrid, 2,56 g (21 mmol) Benzoesäure und 45 g m-Kresol gegeben. Diese Mischung wurde unter Rühren in einem thermostatisierten Silikonölbad 4 h auf 80°C und 20 h auf 190°C erwärmt. Dann wurden 10 g m-Kresol hinzugefügt, und die Mischung wurde auf Raumtemperatur gekühlt und in Ethylacetat gegossen. Das Präzipitat wurde abfiltriert, mit Ethylacetat und dann mit Ethanol gewaschen und im Vakuum bei 80°C getrocknet. In a 250 ml three-necked flask, which is equipped with a mechanical stirrer, an inlet for an inert gas (argon) and a Dean-Stark system with a cooler and a drying tube at the top of it 1.7941 g (8 mmol) of 5- (2-benzimidazole) -1,3- phenylenediamine, 0.8001 g (4 mmol) bis (4-aminophenyl) ether, 3.2182 g (12 mmol) naphthalene-1,4,5,8-tetracarboxylic dianhydride, 2.56 g (21 mmol) benzoic acid and 45 g of m-cresol. This mix was stirred in a thermostated silicone oil bath at 80 ° C for 4 h and heated to 190 ° C for 20 h. Then 10 g of m-cresol added and the mixture was cooled to room temperature and in Poured ethyl acetate. The precipitate was filtered off with ethyl acetate and then washed with ethanol and dried in vacuo at 80 ° C.

Zur Herstellung der erfindungsgemäßen Membranen wird eine Lösung der in den Beispielen 1 bis 3 beschriebenen Polymere hergestellt. Daraus werden die Membranen auf per se bekannte Weise durch Gießen dieser Polymerlösung geformt. A solution is used to produce the membranes according to the invention of the polymers described in Examples 1 to 3. from that the membranes are cast in a manner known per se Polymer solution shaped.

Claims (8)

1. Ionenleitende Membran für elektrochemische Anwendungen auf Basis eines aromatischen Polyimid- oder Copolyimid-Polymers, welches Einheiten, die gleich oder verschieden sein können, der folgenden allgemeinen Formel I enthält:


worin der Rest B mindestens einen gegebenenfalls substituierten aromatischen Heterozyklus der folgenden allgemeinen Formel II bedeutet:


R für H, einen Phenyl-Rest, eine Phosphonsäure-Gruppe oder eine mindestens eine Phosphonsäure-Gruppe enthaltende Kette steht, und
A für eine der folgenden, mindestens eine Napthalin-Einheit enthaltenden Gruppen der allgemeinen Formel III steht:


und mit den benachbarten Imid-Gruppen Ringe mit 6 Atomen bildet.
1. Ion-conducting membrane for electrochemical applications based on an aromatic polyimide or copolyimide polymer which contains units, which may be the same or different, of the following general formula I:


in which the radical B denotes at least one optionally substituted aromatic heterocycle of the following general formula II:


R represents H, a phenyl radical, a phosphonic acid group or a chain containing at least one phosphonic acid group, and
A represents one of the following groups of the general formula III which contain at least one naphthalene unit:


and forms rings with 6 atoms with the neighboring imide groups.
2. Membran nach Anspruch 1, dadurch gekennzeichnet, dass das Polymer aus wiederkehrenden Einheiten der allgemeinen Formel I aufgebaut ist. 2. membrane according to claim 1, characterized in that the polymer of repeating units of the general Formula I is built. 3. Membran nach Anspruch 1 oder 2, dadurch erhältlich, dass mindestens ein Diamin, Diaminopyridin und/oder Diaminopyrimidin mit Napthalin-1,4,5,8-tetracarbonsäuredianhydrid, einem bis- (Naphtalin-säureanhydrid) und/oder einem Disäure-dialkylester- oder Diacylchlorid-dialkylester-Derivat dieser Dianhydride direkt umgesetzt wird. 3. Membrane according to claim 1 or 2, obtainable in that at least one diamine, diaminopyridine and / or diaminopyrimidine with naphthalene-1,4,5,8-tetracarboxylic acid dianhydride, a bis- (Naphtalic anhydride) and / or a diacid dialkyl ester or diacyl chloride dialkyl ester derivative of these dianhydrides directly is implemented. 4. Membran nach Anspruch 3, dadurch erhältlich, dass als Diamin ein 4,5-di(3-Aminophenyl)imidazol und/oder 5-(2- Benzimidazol)-1,3-phenylendiamin eingesetzt wird. 4. Membrane according to claim 3, obtainable in that a 4,5-di (3-aminophenyl) imidazole and / or 5- (2- Benzimidazole) -1,3-phenylenediamine is used. 5. Membran nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polymer durch Einführen einer anderen Gruppe, insbesondere einer Phosphonsäure-Gruppe, modifiziert ist und/oder die Membran mit einer Säure oder einem anorganischen Modifikator gedopt ist. 5. Membrane according to one of claims 1 to 4, characterized in that the polymer by introducing another group, in particular a phosphonic acid group, is modified and / or the membrane is doped with an acid or an inorganic modifier. 6. Membran nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mit Hilfe einer Gießlösung der Polyimid- bzw. Copolyimid- Polymers hergestellt wird. 6. membrane according to one of the preceding claims, characterized in that them with the help of a casting solution of the polyimide or copolyimide Polymers is produced. 7. Verwendung einer Membran nach einem der vorhergehenden Ansprüche für elektrochemische Anwendungen. 7. Use of a membrane according to one of the preceding Requirements for electrochemical applications. 8. Verwendung nach Anspruch 7, wobei die Membran in einer Brennstoffzelle eingesetzt wird. 8. Use according to claim 7, wherein the membrane in one Fuel cell is used.
DE10148132A 2001-09-28 2001-09-28 Use of an ion-conducting membrane based on an aromatic polyimide or copolyimide polymer Expired - Fee Related DE10148132B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10148132A DE10148132B4 (en) 2001-09-28 2001-09-28 Use of an ion-conducting membrane based on an aromatic polyimide or copolyimide polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10148132A DE10148132B4 (en) 2001-09-28 2001-09-28 Use of an ion-conducting membrane based on an aromatic polyimide or copolyimide polymer

Publications (3)

Publication Number Publication Date
DE10148132A1 true DE10148132A1 (en) 2003-05-22
DE10148132A9 DE10148132A9 (en) 2004-09-09
DE10148132B4 DE10148132B4 (en) 2006-07-13

Family

ID=7700794

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10148132A Expired - Fee Related DE10148132B4 (en) 2001-09-28 2001-09-28 Use of an ion-conducting membrane based on an aromatic polyimide or copolyimide polymer

Country Status (1)

Country Link
DE (1) DE10148132B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055129A1 (en) * 2004-11-16 2006-05-18 Volkswagen Ag Production of polymer electrolyte membrane for fuel cells based on liquid electrolyte containing polymer
WO2016100058A1 (en) * 2014-12-17 2016-06-23 Uop Llc Super high selectivity aromatic block copolyimide membranes for separations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401005A1 (en) * 1989-06-01 1990-12-05 E.I. Du Pont De Nemours And Company Amine-modified polyimide membranes
DE69006786T2 (en) * 1989-07-05 1994-06-01 Mitsubishi Chem Ind Aromatic polyimide separation membrane.
US6248480B1 (en) * 1998-06-29 2001-06-19 Sri International High temperature polymer electrolytes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401005A1 (en) * 1989-06-01 1990-12-05 E.I. Du Pont De Nemours And Company Amine-modified polyimide membranes
DE69006786T2 (en) * 1989-07-05 1994-06-01 Mitsubishi Chem Ind Aromatic polyimide separation membrane.
US6248480B1 (en) * 1998-06-29 2001-06-19 Sri International High temperature polymer electrolytes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055129A1 (en) * 2004-11-16 2006-05-18 Volkswagen Ag Production of polymer electrolyte membrane for fuel cells based on liquid electrolyte containing polymer
WO2016100058A1 (en) * 2014-12-17 2016-06-23 Uop Llc Super high selectivity aromatic block copolyimide membranes for separations

Also Published As

Publication number Publication date
DE10148132A9 (en) 2004-09-09
DE10148132B4 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1076676B1 (en) Engineering ionomeric blends and engineering ionomeric blend membranes
CN100528310C (en) Novel membranes having improved mechanical properties, for use in fuel cells
DE102009020181B4 (en) Sulfonated perfluorocyclobutane block copolymers and proton-conducting polymer membranes
DE102005056564B4 (en) Polymer electrolyte membrane with coordination polymer, process for its preparation and use in a fuel cell
EP1427517B1 (en) Proton-conducting membrane and coating
EP1073690B1 (en) Acid-base polymer blends and their use in membrane processes
EP1379573B1 (en) Proton-conducting membrane and use thereof
EP1519981B1 (en) Proton-conducting membrane and the use thereof
EP1527494B1 (en) Proton-conducting polymer membrane comprising a polymer with sulphonic acid groups and use thereof in fuel cells
EP1527490B1 (en) Membrane electrode unit comprising a polyimide layer
DE10117687A1 (en) Proton-conducting membrane and its use
EP1554032A2 (en) Proton conducting polymer membrane comprising phoshphonic acid groups containing polyazoles and the use thereof in fuel cells
DE10209784A1 (en) Oligomers and polymers containing sulfinate groups and process for their preparation
DE112006000037B4 (en) Branched multiblock polybenzimidazole benzamide copolymer and method of making the same, electrolyte membrane and paste / gel made therefrom
DE602004009603T2 (en) MONOMER COMPOUND, GRAFT COPOLYMER COMPOUND, PROCESS FOR THE PRODUCTION THEREOF, POLYMER ELECTROLYTE MEMBRANE AND FUEL CELL
DE10148132B4 (en) Use of an ion-conducting membrane based on an aromatic polyimide or copolyimide polymer
DE112009000971T5 (en) Fuel cell electrolyte membrane
EP1420037B1 (en) Ion conducting membrane for electrochemical applications
US6869715B2 (en) Ion conductive membrane for electrochemical application
DE10019732A1 (en) Acid base polymer membrane for use as fuel cells membrane for e.g. hydrogen or direct methanol fuel cells, comprises at least one polymeric acid or polymer base with specified proton conductivity
DE10131919A1 (en) Polymer electrolyte membrane for fuel cells
DE10235356A1 (en) Proton conducting polymer membrane, useful for the production of fuel cells, is prepared by mixing an aromatic tetra-amino compound with an aromatic carboxylic acid in vinyl containing sulfonic acid
WO2012025380A1 (en) Porous polymer films based on nitrogenous aromatic polymers
DE10142573A1 (en) Bulk or surface sulfinated polymer, oligomer or crosslinked polymer, used e.g. in membrane fuel cell, battery, electrochemical or electrolysis cell or membrane process, is obtained by reducing sulfonyl halide, sulfonate or sulfonamide
WO2012163782A1 (en) Polyazole-based polymer films

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8181 Inventor (new situation)

Inventor name: JAKOBY, KAI, 40237 DUESSELDORF, DE

Inventor name: ABAJO, JAVIER DE, PROF., MADRID, ES

Inventor name: ALVAREZ-GALLEGO, YOLANDA, 21502 GEESTHACHT, DE

Inventor name: NUNES, SUZANA PEREIRA, 21502 GEESTHACHT, DE

8197 Reprint of an erroneous patent document
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATE, DE

R081 Change of applicant/patentee

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATE, DE

Free format text: FORMER OWNER: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH, 21502 GEESTHACHT, DE

Effective date: 20110208

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee