DE10143616A1 - Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms - Google Patents

Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms

Info

Publication number
DE10143616A1
DE10143616A1 DE2001143616 DE10143616A DE10143616A1 DE 10143616 A1 DE10143616 A1 DE 10143616A1 DE 2001143616 DE2001143616 DE 2001143616 DE 10143616 A DE10143616 A DE 10143616A DE 10143616 A1 DE10143616 A1 DE 10143616A1
Authority
DE
Germany
Prior art keywords
layer material
metal atoms
layer
amorphous
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2001143616
Other languages
German (de)
Inventor
Jochen Teichert
Lothar Bischoff
Tania Tsvetkova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Dresden Rossendorf eV
Original Assignee
Forschungszentrum Dresden Rossendorf eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Dresden Rossendorf eV filed Critical Forschungszentrum Dresden Rossendorf eV
Priority to DE2001143616 priority Critical patent/DE10143616A1/en
Publication of DE10143616A1 publication Critical patent/DE10143616A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/24328Carbon

Abstract

Layer material consists of amorphous hydroxided silicon carbide of the form a-SiC: H. The layer regions of high optical absorption contain metal atoms. An Independent claim is also included for a process for the production of the layer material comprising inserting local metal atoms into the layer material by ion implantation using a finely focussed ion beam. The metal atoms are gallium or tin. The layer material is arranged on a light-impermeable substrate or a reflecting substrate.

Description

Die vorliegende Erfindung betrifft ein Schichtmaterial für optische Informationsträger und Lichtmasken sowie ein Verfahren zur Herstellung des Schichtmaterials. The present invention relates to a layer material for optical information carriers and Light masks and a method for producing the layer material.

Lichtmasken zeichnen sich dadurch aus, dass sie aus lichtdurchlässigen und lichtundurchlässigen Bereichen bestehen. Damit kann ein gewünschtes Muster, z. B. von Leiterbahnen gebildet werden. Lichtmasken werden in der Mikroelektronik-Industrie zur Erzeugung der Schaltkreisstrukturen bei integrierten elektronischen Bauelementen im Prozeß der Photolithographie eingesetzt. Andere Anwendungen von Lichtmasken dienen zur Erzeugung von Interferenzmustern, als Lichtteiler oder Monochromatoren. Light masks are characterized by the fact that they consist of translucent and opaque Areas exist. So that a desired pattern, e.g. B. are formed by conductor tracks. Light masks are used in the microelectronics industry to create the circuit structures integrated electronic components used in the process of photolithography. Other Applications of light masks are used to generate interference patterns, as light splitters or Monochromators.

Optische Informationsträger können analog einer Lichtmaske aus einem lichtdurchlässigen Substrat und einer Schicht mit lokal veränderlicher Absorption aufgebaut sein. Die Information wird in Form ein schwarzweißen Pixelmusters gespeichert. Like a light mask, optical information carriers can be made of a translucent Substrate and a layer with locally variable absorption can be constructed. The information a black and white pixel pattern is saved.

Masken für die Fotolithografie in der Mikroelektronikindustrie werden üblicherweise durch Elektronenstrahlbelichtung eines Resistfilmes erzeugt, der sich auf einer Metallschicht auf einem Quarzglassubstrat befindet (B. H. Koek, T. Chrisholm, A. J. v. Run, J. Romijn and J. P. Davey, Microelectronic Engineering 23 (1994) 81). Danach werden entweder die belichteten Gebiete (Positivlack) oder die nicht belichteten Gebiete (Negativlack) durch Ätzen entfernt. Dieses Verfahren erlaubt Strukturübertragungen im Bereich einiger zehn bis 100 Nanometer, ist aber sehr aufwändig. Masks for photolithography in the microelectronics industry are usually made by Electron beam exposure of a resist film is generated, which is on a metal layer on a Quartz glass substrate (B. H. Koek, T. Chrisholm, A. J. v. Run, J. Romijn and J. P. Davey, Microelectronic Engineering 23 (1994) 81). After that, either the exposed areas (Positive varnish) or the unexposed areas (negative varnish) removed by etching. This The method allows structural transfers in the range of a few tens to 100 nanometers, but is very consuming.

Das photographische Verfahren nutzt die Erzeugung eines latenten Bildes durch die fotochemische Zersetzung von Silberhalogenid (AgX)-Kristallen (Durchmesser 0.1 . . . 1.5 µm) eingebettet in eine Emulsion. In einem folgenden nasschemischen Schritt (Entwicklung) werden die belichteten Silberhalogenidkörner zu metallischen Silber reduziert und in einem letzen Schritt (Fixierung) wird das unbelichtete AgX herausgelöst. Die Auflösung dieses Verfahrens wird von der Größe der AgX- Körner sowie deren Verteilung in der Emulsion bestimmt und erreicht wenige µm (H. Böttcher und J. Epperlein, Moderne photographische Systeme, Leipzig: Dt. Verl. für Grundstoffind., 1988). The photographic process uses the generation of a latent image by the photochemical one Decomposition of silver halide (AgX) crystals (diameter 0.1 ... 1.5 µm) embedded in an emulsion. In a subsequent wet chemical step (development), the exposed Silver halide grains are reduced to metallic silver and in a final step (fixation) the unexposed AgX released. The resolution of this process depends on the size of the AgX Grains and their distribution in the emulsion determine and reach a few µm (H. Böttcher and J. Epperlein, Moderne photographische Systeme, Leipzig: Dt. Verl. Für Grundstoffind., 1988).

Nachteilig ist hier die begrenzte laterale Auflösung sowie die umfangreiche chemische Technologie zur Darstellung der Abbildung. The disadvantage here is the limited lateral resolution and the extensive chemical Technology to display the image.

Ein weiteres Verfahren besteht in der Nutzung des Phasenübergangs "kristallin-amorph", der durch Ionenbestrahlung hervorgerufen wird (DE 35 24 184 C2). Es wird ein optisch lesbarer Aufzeichnungsträger beschrieben, der eine dünne Speicherschicht aus kristallinem Silicium (Si) enthält. Die Information wird dadurch gespeichert, dass das kristalline Si in bestimmten Bereichen dieser Schicht in die amorphe Phase umgewandelt wird. Beim Lesen wird ausgenutzt, dass sich kristallines und amorphes Si in bestimmten Spektralbereichen hinsichtlich ihres Reflexions- und Absorptionskoeffizienten unterscheiden. Das Speichern erfolgt vorzugsweise mittels eines fein fokussierten Ionenstrahls. In analoger Weise kann die kristallin-amorphe Phasenumwandlung von SiC genutzt werden (S. Kalbitzer, Appl. Phys A 71 (2000) 565-569). Das Abscheiden des SiC erfordert erheblichen Aufwand, außerdem ist eine transparente Unterlage notwendig. Another method is to use the "crystalline-amorphous" phase transition is caused by ion irradiation (DE 35 24 184 C2). It becomes an optically readable Recording medium described which has a thin storage layer made of crystalline silicon (Si) contains. The information is stored in that the crystalline Si in certain areas this layer is converted into the amorphous phase. Reading takes advantage of that crystalline and amorphous Si in certain spectral ranges with regard to their reflection and Differentiate absorption coefficients. The storage is preferably carried out using a fine focused ion beam. The crystalline-amorphous phase transformation of SiC can be used (S. Kalbitzer, Appl. Phys A 71 (2000) 565-569). The deposition of the SiC requires considerable effort, a transparent base is also necessary.

Der Erfindung liegt die Aufgabe zugrunde, ein neues Schichtmaterial für optische Informationsträger und Lichtmasken sowie ähnlich gelagerte Anwendungen vorzuschlagen. Außerdem wird ein einfaches Verfahren zur lokalen Veränderung der optischen Absorption in diesem Schichtmaterial angegeben, mit dem Strukturgrößen erreichbar sind, wie sie die fortgeschrittene Halbleiterindustrie fordert. The invention has for its object a new layer material for optical To propose information carriers and light masks as well as similar applications. In addition, a simple method for locally changing the optical absorption in this layer material specified with which structure sizes can be achieved, as they are the advanced Semiconductor industry demands.

Erfindungsgemäß wird die Aufgabe mit den in den Patentansprüchen dargelegten Merkmalen gelöst. According to the invention the object with the features set out in the claims solved.

Gegenüber der Fotografie, die auf der chemischen Reaktion von metallorganischen Verbindungen beruht, wird hier Metall in der Schicht in atomarer Form genutzt, d. h. es gibt keine physikalische Auflösungsbegrenzung. Die chemische Reaktion findet direkt bei der Implantation statt, wodurch chemische Folgeprozesse entfallen, wie sie z. B. bei der Fotolithografie unbedingt nötig sind. Das Metall wird nur dort eingebaut, wo es gebraucht wird. Compared to photography based on the chemical reaction of organometallic compounds metal in the layer is used in atomic form, i. H. there is no physical Resolution limit. The chemical reaction takes place directly during implantation, which means chemical follow-up processes are omitted, as z. B. are absolutely necessary in photolithography. The Metal is only installed where it is needed.

Die Nutzung von kristallinem Si oder SiC usw. erfordert ein geeignetes Substrat wie Saphir, um kristalline Schichten aufwachsen lassen zu können. Im Fall von amorphen SiC kann ein beliebiges Substrat, z. B. Glas, aber auch ein Substrat mit einer Reflexionsschicht genutzt werden, so dass neben der Transmission des Lichtes entsprechend auch Reflexionsmasken oder Datenträger möglich sind. Letztere sind insbesondere für die Nutzung von kurzwelligem Licht von Bedeutung. The use of crystalline Si or SiC etc. requires a suitable substrate such as sapphire to be able to grow crystalline layers. In the case of amorphous SiC, any Substrate, e.g. B. glass, but also a substrate with a reflective layer, so that in addition to the transmission of light, there are also reflection masks or data carriers possible are. The latter are particularly important for the use of short-wave light.

Das Aufbringen der amorphen Schicht kann mittels Sputtern, CVD, Bogenentladung oder ähnlichen Prozessen erfolgen. Das Beschreiben der amorphen Schicht kann vorteilhafterweise mit dem fokussierten Ionenstrahl erfolgen (vergleichbar hohe Auflösung wie der Elektronenstrahl), der mit reinen Flüssigmetallionenquellen (In, Ga) oder mit Legierungsquellen (AuGe) arbeitet. Weitere wichtige Vorteile sind die thermische Stabilität der Struktur (keine Ausheilerscheinungen), die chemische Resistenz, sowie die hohe Stabilität gegen Bestrahlung des amorphen Zustandes. Durch Variation der Dosis kann ein graduierter Absorptionskoeffizient der Schicht eingestellt werden. The amorphous layer can be applied by means of sputtering, CVD, arc discharge or similar processes take place. The description of the amorphous layer can advantageously with the focused ion beam (comparable high resolution as the electron beam) with pure liquid metal ion sources (In, Ga) or with alloy sources (AuGe). Further important advantages are the thermal stability of the structure (no healing effects) chemical resistance, as well as the high stability against radiation of the amorphous state. By A graded absorption coefficient of the layer can be set by varying the dose.

Die Erfindung wird nachstehend an je einem Ausführungsbeispiel für das Schichtmaterial und das Verfahren zu seiner Herstellung näher beschrieben. The invention is based on an embodiment of the layer material and the Process for its preparation described in more detail.

Für das Schichtmaterial:
Das Schichtmaterial befindet sich auf einem lichtdurchlässigem Substrat. Das Schichtmaterial selbst besteht aus einem amorphen, hydroxierten Siliciumkarbid der Form a-SiC:H, in das Galliumatome an den Stellen eingebracht sind, die eine hohe optische Absorption erfordern.
For the layer material:
The layer material is on a translucent substrate. The layer material itself consists of an amorphous, hydroxylated silicon carbide of the form a-SiC: H, into which gallium atoms are introduced at the points that require a high optical absorption.

Für das Verfahren:
Dünne, (100 nm) hydroxierte, amorphe Siliciumkarbid-Schichten (a-Si1-xCx:H) wurden auf transparenten Glassubstraten (Corning 7059) durch eine konventionelle 13.56 MHz Bogenentladung abgeschieden. (Prozessparameter: Temperatur: 250°C, Druck 0.13 mbar, Leistungsdichte: 113 mW/cm2, totaler Gasfluss: 40 sccm. Das Verhältnis der Gasflüsse von [SiH4] und [CH4] war r = [CH4]/([CH4] + [SiH4]) = 0.9 wodurch der Kohlenstoffanteil in der Schicht zu x = 0.15 bestimmt wurde. Durch ERD Messungen (elastic recoil detection) wurde der C-Gehalt sowie durch RBS (Rutherford back scattering) der Si-Anteil bestimmt. Die Schichtdicke wurde mit optischen Methoden gemessen. Mittels eines fokussierten Ionenstrahles wurde mit 35 keV Ga+ Ionen eine Lichtmaske in die a-SiC:H-Schicht auf Quarzglas geschrieben. Die Dosis wurde im Bereich 1 × 1015 . . . 2 × 1017 cm-2 variiert. Der Ionenstrahl, durch einen Computer gesteuert, übertrug das digitalisierte Muster auf die Schicht, wo die eingebrachten Ga-Ionen zu einer chemischen Modifikation, d. h. einer Erhöhung der Absorption (Schwärzung) führten.
For the procedure:
Thin, (100 nm) hydroxylated, amorphous silicon carbide layers (a-Si 1-x C x : H) were deposited on transparent glass substrates (Corning 7059) by a conventional 13.56 MHz arc discharge. (Process parameters: temperature: 250 ° C, pressure 0.13 mbar, power density: 113 mW / cm 2 , total gas flow: 40 sccm. The ratio of the gas flows of [SiH 4 ] and [CH 4 ] was r = [CH 4 ] / ( [CH 4 ] + [SiH 4 ]) = 0.9, which determined the carbon content in the layer as x = 0.15 The ER content (elastic recoil detection) determined the C content and RBS (Rutherford back scattering) the Si content The layer thickness was measured using optical methods. Using a focused ion beam, a light mask was written with 35 keV Ga + ions in the a-SiC: H layer on quartz glass. The dose was in the range 1 × 10 15... 2 × 10 17 cm -2 The ion beam, controlled by a computer, transferred the digitized pattern to the layer, where the introduced Ga ions led to a chemical modification, ie an increase in absorption (blackening).

Im langwelligen Spektralbereich kann der Absorptions-Koeffizient um mehr als zwei Größenordnungen erhöht werden, im kurzwelligen (blauen) Bereich beträgt der Unterschied noch eine Größenordnung. In the long-wave spectral range, the absorption coefficient can be increased by more than two Orders of magnitude increased, in the short-wave (blue) range the difference is still one Magnitude.

Claims (5)

1. Schichtmaterial für optische Informationsträger und Lichtmasken mit lateralen Bereichen geringer und hoher optischer Absorption, wobei das Schichtmaterial Siliciumkarbid enthält, dadurch gekennzeichnet, dass das Schichtmaterial aus amorphem, hydroxierten Siliciumkarbid der Form a-SiC:H besteht und dass die Schichtbereiche hoher optischer Absorption Metallatome enthalten. 1. Layer material for optical information carriers and light masks with lateral areas of low and high optical absorption, the layer material containing silicon carbide, characterized in that the layer material consists of amorphous, hydroxided silicon carbide of the form a-SiC: H and that the layer areas of high optical absorption have metal atoms contain. 2. Schichtmaterial nach Anspruch 1, dadurch gekennzeichnet, dass die Metallatome Gallium oder Zinn sind. 2. Layer material according to claim 1, characterized in that the metal atoms or gallium Are tin. 3. Schichtmaterial nach Anspruch 1 und 2, dadurch gekennzeichnet, dass es auf einem lichtdurchlässigem Substrat angeordnet ist. 3. Layer material according to claim 1 and 2, characterized in that it is on a translucent substrate is arranged. 4. Schichtmaterial nach Anspruch 1 und 2, dadurch gekennzeichnet, dass es auf einem reflektierendem Substrat angeordnet ist. 4. Layer material according to claim 1 and 2, characterized in that it is on a reflective substrate is arranged. 5. Verfahren zur Herstellung eines Schichtmaterials für optische Informationsträger und Lichtmasken, dadurch gekennzeichnet, dass lokal Metallatome durch Ionenimplantation mit einem feinfokussierten Ionenstrahl in das Schichtmaterial eingebracht werden, wobei die Metallatome aus Reinmetall- oder Legierungs-Flüssigmetallionenquellen gewonnen werden. 5. Process for producing a layer material for optical information carriers and Light masks, characterized in that locally metal atoms by ion implantation with a finely focused ion beam are introduced into the layer material, the metal atoms can be obtained from pure metal or alloy liquid metal ion sources.
DE2001143616 2001-09-06 2001-09-06 Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms Ceased DE10143616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001143616 DE10143616A1 (en) 2001-09-06 2001-09-06 Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001143616 DE10143616A1 (en) 2001-09-06 2001-09-06 Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms

Publications (1)

Publication Number Publication Date
DE10143616A1 true DE10143616A1 (en) 2003-04-03

Family

ID=7697873

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001143616 Ceased DE10143616A1 (en) 2001-09-06 2001-09-06 Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms

Country Status (1)

Country Link
DE (1) DE10143616A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065663A2 (en) * 1999-06-30 2001-01-03 Sony Corporation Optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065663A2 (en) * 1999-06-30 2001-01-03 Sony Corporation Optical recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAJ:04-069834 A *

Similar Documents

Publication Publication Date Title
DE4339481C2 (en) Absorption phase mask, manufacturing process therefor and use thereof
DE10165081B4 (en) Method of making a halftone phase shift mask
DE112018005569B4 (en) PROCESS FOR FORMING A THIN-LAYER STACK OF STRUCTURING MATERIAL WITH A METAL-CONTAINING OVERLAY FOR INCREASED SENSITIVITY IN EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY
DE3316649C2 (en)
DE60106186T2 (en) Photomask blank and photomask
CN106019808A (en) Phase shift mask blank, phase shift mask, and blank preparing method
CN1862377A (en) Phase-shift photomask-blank, phase-shift photomask and fabrication method thereof
DE3733311A1 (en) METHOD FOR PRODUCING A MASK CARRIER FROM SIC FOR X-RAY RAY LITHOGRAPHY MASKS
DE3821614A1 (en) Covering layer of amorphous carbon on a substrate, process for producing the covering layer and use of the covering layer
CN1099613C (en) Photomask blanks
EP0372645B1 (en) Process for the production of an SIC mask support for radiation lithography masks
Zhao et al. The recent development of soft x-ray interference lithography in SSRF
EP0207528B1 (en) Process of producing a photomask
DE10349087B4 (en) Method of making halftone phase shift mask blanks
EP0153854A2 (en) Process for forming a pattern film
EP0891306B1 (en) Method of reductively forming patterend coloration in a glass substrate by means of a patterned barrier film
DE10046067A1 (en) Phase shift mask and method of making the same
DE10143616A1 (en) Layer material, used for optical information carriers and light masks, consists of amorphous hydroxided silicon carbide with layer regions of high optical absorption containing metal atoms
DE3152307A1 (en) USE OF METALLIC GLASSES FOR FABRICATION OF STRUCTURES WITH SUBMICRON DIMENSIONS
DE2740180A1 (en) MASKS USED FOR ELECTRON IMAGE PROJECTION
DE3308165C2 (en)
DE3309219A1 (en) PHOTO-CONDUCTIVE ELEMENT
DE3719333C2 (en)
DE102021215088A1 (en) BLANK MASK AND PHOTO MASK WITH THIS MASK
Streblechenko et al. Magnetic nanostructures produced by electron beam patterning of direct write transition metal fluoride resists

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection