DE10133738A1 - Process for producing a plasma-polymerized polymer electrolyte membrane - Google Patents

Process for producing a plasma-polymerized polymer electrolyte membrane

Info

Publication number
DE10133738A1
DE10133738A1 DE10133738A DE10133738A DE10133738A1 DE 10133738 A1 DE10133738 A1 DE 10133738A1 DE 10133738 A DE10133738 A DE 10133738A DE 10133738 A DE10133738 A DE 10133738A DE 10133738 A1 DE10133738 A1 DE 10133738A1
Authority
DE
Germany
Prior art keywords
plasma
electrolyte membrane
producing
conducting electrolyte
polymerized ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10133738A
Other languages
German (de)
Inventor
Joerg Mueller
Laurent Mex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10133738A priority Critical patent/DE10133738A1/en
Priority to EP02762348A priority patent/EP1497882A2/en
Priority to KR10-2003-7016749A priority patent/KR20040014572A/en
Priority to PCT/EP2002/007734 priority patent/WO2003007411A2/en
Priority to CNA028121287A priority patent/CN1610984A/en
Priority to CA002448447A priority patent/CA2448447A1/en
Priority to AU2002328339A priority patent/AU2002328339A1/en
Priority to JP2003513069A priority patent/JP2005520001A/en
Publication of DE10133738A1 publication Critical patent/DE10133738A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Polymer-Elektrolytmembranen mittels plasmaunterstützter Abscheidung aus der Gasphase, welches durch die Wahl seiner Ausgangsstoffe, Kohlenstoff- bzw. Fluor-Kohlenstoff-Verbindungen und Wasser, eine gegenüber dem Stand der Technik deutliche Vereinfachung erzielt.The invention relates to a process for the production of polymer electrolyte membranes by means of plasma-assisted deposition from the gas phase, which, through the choice of its starting materials, carbon or fluorocarbon compounds and water, achieves a significant simplification compared to the prior art.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Polymer-Elektrolytmembranen mittels plasmaunterstützter Abscheidung aus der Gasphase, welches durch die Wahl seiner Ausgangsstoffe eine gegenüber dem Stand der Technik deutliche Vereinfachung erzielt. The invention relates to a method for producing polymer electrolyte membranes by means of plasma-assisted deposition from the gas phase, which by the choice of its Starting materials achieved a significant simplification compared to the prior art.

Plasmapolymerisierte Schichten besitzen einen i. a. hohen und zudem einstellbaren Vernetzungsgrad, der zu einer hohen chemischen und thermischen Beständigkeit führt (s. z. B.: R. Hartmann: "Plasmapolymodifizierung von Kunststoffoberflächen", Techn. Rundschau 17 (1988), Seiten 20-23; A. Brunold et al.: "Modifizierung von Polymeren im Niederdruckplasma", Teil 2, mo 51 (1997), Seiten 81-84). Durch die Verwendung von Monomeren, die zum Einbau ionenleitender Gruppen (Sulfonsäure-, Phosphonsäure- oder Carbonsäure- Gruppen) führen, können mit diesem Verfahren ionenleitende Polymermembranen hergestellt werden, welche sich durch ihre Beständigkeit und infolge des hohen Vernetzungsgrades durch ihre Sperrwirkung bezüglich Gas- bzw. Flüssigkeits-Permeation für den Einsatz in Brennstoffzellen, insbesondere Direkt Methanol Brennstoffzellen, oder Elektrolysezellen anbieten. Zudem wird durch die verwendete Abscheidetechnologie die Herstellung dünner Membranen (wenige 10 nm bis einige 10 µm) ermöglicht, welche insbesondere für den Einsatz in miniaturisierten Brennstoffzellensystemen für portable Anwendungen (s. z. B.: DE 196 24 887 A1, DE 199 14 681 A1) oder als Sperrschichten abgeschieden auf herkömmlichen Membranen (DE 199 14 571 A1), wie Phosphorsäure dotierte Polybenzimidazole- Membranen oder Sulfonsäure enthaltende Membranen, von Interesse sind. Plasma polymerized layers have an i. a. high and also adjustable Degree of crosslinking, which leads to a high chemical and thermal resistance (see e.g. R. Hartmann: "Plasma polymodification of plastic surfaces", Techn. Rundschau 17 (1988), pages 20-23; A. Brunold et al .: "Modification of polymers in Niederdruckplasma ", Part 2, mo 51 (1997), pages 81-84). By using monomers that for incorporating ion-conducting groups (sulfonic acid, phosphonic acid or carboxylic acid Groups) can use this method to conduct ion-conducting polymer membranes are produced, which are characterized by their durability and due to the high Degree of crosslinking due to its barrier effect with regard to gas or liquid permeation for use in fuel cells, especially direct methanol fuel cells, or electrolysis cells to offer. In addition, the technology used makes the production thinner Membranes (a few 10 nm to a few 10 µm), which are particularly suitable for Use in miniaturized fuel cell systems for portable applications (see e.g .: DE 196 24 887 A1, DE 199 14 681 A1) or deposited as barrier layers conventional membranes (DE 199 14 571 A1), such as polybenzimidazoles doped with phosphoric acid Membranes or membranes containing sulfonic acid are of interest.

Bereits bekannte plasmapolymerisierte ionenleitende Schichten werden aus verschiedenen Fluorkohlenstoffen in Verbindung mit Trifluormethansulfonsäure (z. B. DE 195 13 292 C1, US 57 50 013 A), Verbindungen mit Carboxylgruppen (DE 196 24 887 A1) oder Vinylphosphonsäure (DE 199 14 681 A1) hergestellt. Bei der Verwendung von Trifluormethansulfonsäure kommt es im Plasma aufgrund der vergleichbaren Bindungsenergien zwischen der Kohlenstoff/Schwefel-Bindung und den Bindungen in der Sulfonsäure auch zur Fragmentierung der Sulfonsäure. Hierdurch entstehen entweder hochvernetzte Polymere mit sehr geringer Ionenleitfähigkeit oder Polymere mit hinreichender Ionenleitfähigkeit aber geringem Vernetzungsgrad und hohem Anteil nicht kovalent an das Polymergerüst gebundener Trifluormethansulfonsäure und damit nicht langzeitstabile Elektrolyte (siehe dazu: Ber. Bunsenges. Phys. Chem., Bd 98 (1994), Seite 631 bis 635). Bei allen erwähnten Säure-Verbindungen ist für die Plasmapolymerisation eine Verdampfung notwendig, welches neben dem nachteiligen Umgang mit gesundheitsgefährdenden Materialien einen erhöhten apparativen Aufwand bedeutet. Already known plasma-polymerized ion-conducting layers are made from different Fluorocarbons in combination with trifluoromethanesulfonic acid (e.g. DE 195 13 292 C1, US 57 50 013 A), compounds with carboxyl groups (DE 196 24 887 A1) or Vinylphosphonic acid (DE 199 14 681 A1) produced. When using Trifluoromethanesulfonic acid occurs in plasma due to the comparable binding energies between the carbon / sulfur bond and the bonds in the sulfonic acid too for the fragmentation of sulfonic acid. This creates either highly networked Polymers with very low ionic conductivity or polymers with sufficient ionic conductivity but low degree of crosslinking and high proportion not covalently to the polymer structure bound trifluoromethanesulfonic acid and thus not long-term stable electrolytes (see on this: Ber. Bunsenges. Phys. Chem., Vol 98 (1994), pages 631 to 635). With all mentioned Acid compounds require evaporation for plasma polymerization, which in addition to the disadvantageous handling of health-endangering materials means increased equipment expenditure.

Eine deutliche Vereinfachung in der Prozessführung und eine deutliche Kostensenkung in der Herstellung bietet die erfindungsgemäße Plasmapolymerisation ionenleitender Schichten mit der Verwendung von Kohlenstoffverbindungen, vorzugsweise Alkene und Alkine, oder Fluorkohlenstoffverbindungen, vorzugsweise fluorierte Alkene, in Kombination mit Wasser. Die Fragmentation des Wassers im Plasma führt zur Bildung von OH-Radikalen, wodurch erst während des Schichtwachstums die für die Ionenleitfähigkeit notwendigen Carboxylgruppen gebildet werden. Durch die Verwendung handelsüblicher Flüssigkeitsmassenflussregler entfällt der bei anderen Säureverbindungen notwendige Verdampfer. Der hohe Dampfdruck des Wassers erlaubt zudem eine Abscheidung bei Raumtemperatur, während bei den erwähnten Säureverbindungen eine Beheizung der Gaszufuhr vom Verdampfer zum Reaktor und der Elektroden notwendig ist, um eine Kondensation der Säureverbindungen in diesen Bereichen zu verhindern. A significant simplification in litigation and a significant cost reduction in The production of the plasma polymerization according to the invention is more ion-conductive Layers with the use of carbon compounds, preferably alkenes and alkynes, or fluorocarbon compounds, preferably fluorinated alkenes, in combination with Water. The fragmentation of water in the plasma leads to the formation of OH radicals, whereby the necessary for the ionic conductivity only during the layer growth Carboxyl groups are formed. By using commercially available The liquid mass flow controller eliminates the evaporator necessary for other acid compounds. The high water vapor pressure also allows separation at room temperature, while with the acid compounds mentioned heating the gas supply from Evaporator to the reactor and the electrodes is necessary to condense the To prevent acid compounds in these areas.

Für die Anwendung dieser neuartigen plasmapolymerisierten Elektrolytmembranen in Brennstoffzellen, insbesondere miniaturisierten Brennstoffzellen, bietet sich für deren Herstellung die Kombination mit in Dünnschichtverfahren (z. B. Kathodenzerstäubung oder Plasmaunterstützte Abscheidung aus der Gasphase) hergestellten Katalysatorschichten und gegebenenfalls porösen leitfähigen Kontaktschichten an (DE 199 14 681 A). Diese Abscheidungen können in einem geeigneten Reaktor, der sowohl Sputterverfahren als auch die Abscheidung aus der Gasphase erlaubt, oder in miteinander verbundenen separaten Reaktoren, in denen jeweils eine Komponente der Membran Elektroden Einheit in Dünnschichtverfahren abgeschieden wird und ein Transport zwischen den Reaktoren im Vakuum erfolgt, durchgeführt werden. Je nach verwendeten Substraten kann dafür ein stationärer Abscheideprozeß der plasmapolymerisierten Elektrolyte, z. B. für die Beschichtung einzelner geeignet strukturierter Glas- oder Siliziumsubstrate, oder ein Durchlaufprozeß, im Falle hoher Stückzahlen oder bei der Abscheidung auf einer geeigneten Folie, vorteilhaft sein. For the application of these new plasma polymerized electrolyte membranes in Fuel cells, in particular miniaturized fuel cells, are suitable for them Manufacture in combination with thin film processes (e.g. sputtering or Plasma-assisted deposition from the gas phase) produced catalyst layers and optionally porous conductive contact layers on (DE 199 14 681 A). This Depositions can be carried out in a suitable reactor that uses both sputtering methods and separation from the gas phase allowed, or in interconnected separate ones Reactors, each in which a component of the membrane electrode unit in Thin film process is deposited and a transport between the reactors in the Vacuum is carried out. Depending on the substrates used, a stationary deposition process of the plasma polymerized electrolytes, e.g. B. for the coating individually suitably structured glass or silicon substrates, or a continuous process, in In case of large quantities or when depositing on a suitable film, advantageous his.

Claims (10)

1. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran dadurch gekennzeichnet, daß diese mittels einer plasmaunterstützten Co- Polymerisation mit einer matrix-bildenden Komponente, vorzugsweise Kohlenstoff- bzw. Fluor-Kohlenstoff-Verbindungen, und Wasser hergestellt werden. 1. A method for producing a plasma-polymerized ion-conducting electrolyte membrane, characterized in that it is produced by means of a plasma-assisted copolymerization with a matrix-forming component, preferably carbon or fluorine-carbon compounds, and water. 2. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach Anspruch 1 dadurch gekennzeichnet, daß als Präkursoren für die matrixbildende Komponente fluorierte Alkene, vorzugsweise Tetrafluorethylen, eingesetzt werden. 2. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to claim 1, characterized in that as precursors for the Matrix-forming component fluorinated alkenes, preferably tetrafluoroethylene become. 3. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach Anspruch 1 dadurch gekennzeichnet, daß als Präkursoren für die matrixbildende Komponente Alkene, vorzugsweise Ethylen, eingesetzt werden. 3. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to claim 1, characterized in that as precursors for the Matrix-forming component alkenes, preferably ethylene, are used. 4. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach Anspruch 1 dadurch gekennzeichnet, daß als Präkursoren für die matrixbildende Komponente Alkine, vorzugsweise Acetylen, eingesetzt werden. 4. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to claim 1, characterized in that as precursors for the Matrix-forming component alkynes, preferably acetylene, are used. 5. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach einem oder mehreren der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß die Schichten in einem Parallelplatten-Plasmareaktor abgeschieden werden. 5. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to one or more of claims 1 to 4, characterized in that the layers are deposited in a parallel plate plasma reactor. 6. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß die Beschichtung stationär erfolgt. 6. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to claim 1 to 5, characterized in that the coating is stationary he follows. 7. Verfahren zur Herstellung einer plasmapolymerisierten ionenleitenden Elektrolytmembran nach Anspruch 1 bis 5 dadurch gekennzeichnet, daß die Beschichtung im Durchlaufprozeß erfolgt. 7. Process for producing a plasma-polymerized ion-conducting Electrolyte membrane according to claim 1 to 5, characterized in that the coating in Continuous process takes place. 8. Verwendung der nach einem oder mehreren der Ansprüche 1 bis 7 hergestellten plasmapolymerisierten ionenleitenden Elektrolytmembranen in einer Brennstoffzelle. 8. Use of the produced according to one or more of claims 1 to 7 Plasma-polymerized ion-conducting electrolyte membranes in a fuel cell. 9. Verwendung der nach einem oder mehreren der Ansprüche 1 bis 7 hergestellten plasmapolymerisierten ionenleitenden Elektrolytmembranen als dünne Sperrschicht bzgl. Gas- oder Flüssigkeits-Permeation auf einer nicht mittels Plasmapolymerisation hergestellten Polymer-Elektrolytmembran. 9. Use of the produced according to one or more of claims 1 to 7 Plasma-polymerized ion-conducting electrolyte membranes as a thin barrier layer Gas or liquid permeation on a non-plasma polymerization manufactured polymer electrolyte membrane. 10. Verwendung der nach einem oder mehreren der Ansprüche 1 bis 7 hergestellten plasmapolymerisierten ionenleitenden Elektrolytmembranen in einer Elektrolysezelle. 10. Use of the produced according to one or more of claims 1 to 7 Plasma-polymerized ion-conducting electrolyte membranes in an electrolytic cell.
DE10133738A 2001-07-11 2001-07-11 Process for producing a plasma-polymerized polymer electrolyte membrane Withdrawn DE10133738A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10133738A DE10133738A1 (en) 2001-07-11 2001-07-11 Process for producing a plasma-polymerized polymer electrolyte membrane
EP02762348A EP1497882A2 (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
KR10-2003-7016749A KR20040014572A (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
PCT/EP2002/007734 WO2003007411A2 (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
CNA028121287A CN1610984A (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
CA002448447A CA2448447A1 (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
AU2002328339A AU2002328339A1 (en) 2001-07-11 2002-07-11 Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
JP2003513069A JP2005520001A (en) 2001-07-11 2002-07-11 Method for producing plasma polymerized polymer electrolyte membrane and polyazole membrane coated by plasma polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10133738A DE10133738A1 (en) 2001-07-11 2001-07-11 Process for producing a plasma-polymerized polymer electrolyte membrane

Publications (1)

Publication Number Publication Date
DE10133738A1 true DE10133738A1 (en) 2003-02-06

Family

ID=7691424

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10133738A Withdrawn DE10133738A1 (en) 2001-07-11 2001-07-11 Process for producing a plasma-polymerized polymer electrolyte membrane

Country Status (8)

Country Link
EP (1) EP1497882A2 (en)
JP (1) JP2005520001A (en)
KR (1) KR20040014572A (en)
CN (1) CN1610984A (en)
AU (1) AU2002328339A1 (en)
CA (1) CA2448447A1 (en)
DE (1) DE10133738A1 (en)
WO (1) WO2003007411A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209419A1 (en) 2002-03-05 2003-09-25 Celanese Ventures Gmbh Process for producing a polymer electrolyte membrane and its use in fuel cells
WO2003074597A1 (en) 2002-03-06 2003-09-12 Pemeas Gmbh Proton conducting electrolyte membrane having reduced methanol permeability and the use thereof in fuel cells
ATE480874T1 (en) 2002-04-25 2010-09-15 Basf Fuel Cell Gmbh MULTI-LAYER ELECTROLYTE MEMBRANE
DE10230477A1 (en) 2002-07-06 2004-01-15 Celanese Ventures Gmbh Functionalized polyazoles, processes for their preparation and their use
CA2494530A1 (en) 2002-08-02 2004-02-19 Pemeas Gmbh Proton-conducting polymer membrane comprising a polymer with sulphonic acid groups and use thereof in fuel cells
DE10239701A1 (en) 2002-08-29 2004-03-11 Celanese Ventures Gmbh Production of polymer membrane, used in membrane electrode unit for fuel cell, uses phosphorus and/or sulfur oxy-acid in liquid for hydrolyzing membrane made by heating mixture of polyphosphoric acid and polyazole or precursors
JP2005537384A (en) * 2002-08-29 2005-12-08 ペメアス ゲーエムベーハー Proton conducting polymer membrane manufacturing method, improved polymer membrane and use thereof in fuel cells
DE10242708A1 (en) * 2002-09-13 2004-05-19 Celanese Ventures Gmbh Proton-conducting membranes and their use
DE10246459A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane for use, e.g. in fuel cells, obtained by heating a mixture of phosphonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane
DE10246372A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Catalyst-coated polymer electrolyte membrane for use, e.g. in fuel cells, obtained by processing a mixture of polyphosphoric acid and polyazole to form a self-supporting membrane which is then coated with catalyst
DE10246373A1 (en) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Polymer electrolyte membrane for use, e.g. in fuel cells, manufactured by heating a mixture of sulfonated aromatic polyazole monomers in polyphosphoric acid and then processing to form a self-supporting membrane
US7820314B2 (en) 2003-07-27 2010-10-26 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
CN100449829C (en) * 2004-06-30 2009-01-07 Tdk株式会社 Direct alcohol fuel cell and method for producing same
KR100727216B1 (en) * 2004-11-19 2007-06-13 주식회사 엘지화학 Novel sulphonated copolymer and electrolyte membrane using the same
KR100706067B1 (en) * 2005-01-25 2007-04-11 한양대학교 산학협력단 Acid or base-doped porous proton conducting polymer, preparation method thereof, polymer membrane using the same and fuel cell using the same
DE102006040749A1 (en) * 2006-08-31 2008-03-06 Daimler Ag Oxidation-stabilized polymer electrolyte membranes for fuel cells
FR2908558B1 (en) * 2006-11-13 2008-12-19 Commissariat Energie Atomique SILICY ELECTROLYTE MATERIAL FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, AND FUEL CELL USING SUCH MATERIAL.
FR2928227B1 (en) * 2008-02-29 2010-04-02 Commissariat Energie Atomique PROCESS FOR MANUFACTURING ION CONDUCTION POLYMERIC MEMBRANE FOR FUEL CELL.
WO2012015072A1 (en) * 2010-07-28 2012-02-02 住友化学株式会社 Polymer electrolyte composition, polymer electrolyte and sulfur-containing heterocyclic aromatic compound
JP2012049118A (en) * 2010-07-28 2012-03-08 Sumitomo Chemical Co Ltd Polymer electrolyte, polymer electrolyte film and polyarylene compound
WO2017217628A1 (en) * 2016-06-14 2017-12-21 충남대학교산학협력단 Method for producing metal nanoparticle-polymer composite thin film
CN111621208B (en) * 2020-05-18 2021-11-05 江苏菲沃泰纳米科技股份有限公司 Waterproof membrane layer and preparation method, application and product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712490A1 (en) * 1986-04-11 1987-10-15 Applied Membrane Tech PORE SIZE CONTROL USING PLASMA POLYMERIZATION PROCESS
DE4234521C1 (en) * 1992-10-13 1994-02-24 Carbone Ag Process for producing a composite plasma membrane and its use
DE19901378A1 (en) * 1999-01-15 2000-07-20 Fraunhofer Ges Forschung Process for producing a polymer membrane, in particular a polymer electrolyte membrane for methanol fuel cells, and such a membrane
DE19914571A1 (en) * 1999-03-31 2001-01-04 Joerg Mueller Plasma deposition of polymer to reduce fuel permeability and increase stability of ion-conducting polymer membrane useful in fuel cell uses highly crosslinked polymer of independent composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032440A (en) * 1975-11-18 1977-06-28 The United States Of America As Represented By The Secretary Of The Interior Semipermeable membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712490A1 (en) * 1986-04-11 1987-10-15 Applied Membrane Tech PORE SIZE CONTROL USING PLASMA POLYMERIZATION PROCESS
DE4234521C1 (en) * 1992-10-13 1994-02-24 Carbone Ag Process for producing a composite plasma membrane and its use
DE19901378A1 (en) * 1999-01-15 2000-07-20 Fraunhofer Ges Forschung Process for producing a polymer membrane, in particular a polymer electrolyte membrane for methanol fuel cells, and such a membrane
DE19914571A1 (en) * 1999-03-31 2001-01-04 Joerg Mueller Plasma deposition of polymer to reduce fuel permeability and increase stability of ion-conducting polymer membrane useful in fuel cell uses highly crosslinked polymer of independent composition

Also Published As

Publication number Publication date
CA2448447A1 (en) 2003-01-23
WO2003007411A2 (en) 2003-01-23
WO2003007411A3 (en) 2004-11-04
JP2005520001A (en) 2005-07-07
AU2002328339A1 (en) 2003-01-29
CN1610984A (en) 2005-04-27
KR20040014572A (en) 2004-02-14
EP1497882A2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
DE10133738A1 (en) Process for producing a plasma-polymerized polymer electrolyte membrane
US9136545B2 (en) Low cost fuel cell bipolar plate and process of making the same
US5468574A (en) Fuel cell incorporating novel ion-conducting membrane
DE2713677C3 (en) Hydraulically impermeable cation exchange membrane
DE102006043279B4 (en) Fluid distribution element, process for its preparation and fuel cell with fluid distribution element
DE102014016186A1 (en) Bipolar plate for electrochemical cells and method for producing the same
Mannarino et al. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications
DE19914571C2 (en) Process for producing a plasma-polymerized ion-conducting barrier layer for polymer electrolyte membranes
DE102013220383A1 (en) Metal separator for a fuel cell and manufacturing method therefor
DE19914661C2 (en) Process for the production of an integrated interconnected polymer electrolyte membrane fuel cell
CN101404336A (en) Stable hydrophilic coating for fuel cell collector plates
Ramya et al. Methanol permeability studies on sulphonated polyphenylene oxide membrane for direct methanol fuel cell
DE102006054737A1 (en) Use of an ionic liquid based on fluorinated or partially fluorinated alkyl phosphorus/phosphine, phosphonic- or alkyl sulfonic-acid, or di- or triacid derivatives as an electrolyte to prepare fuel cell membrane or its electrode assemblies
Lue et al. Surface modification of perfluorosulfonic acid membranes with perfluoroheptane (C7F16)/argon plasma
DE102012217434A1 (en) Polymethyl methacrylate additive for a polyelectrolyte membrane
DE4207422C2 (en) Process for the production of thin, microporous, conductive polymer layers
KR20130074342A (en) Polymer electrolyte membrane fuel cell separator using graphene and preparation method thereof
EP2582451B1 (en) Method for preparing a composite material comprising a polymer matrix and a filler consisting of inorganic ion-exchange particles
DE102006062251A1 (en) Membrane electrode unit for high temperature gas cell, comprises polymer membrane impregnated with electrolytes, and cathodic- and anodic gas diffusion electrodes placed at cathode- and anode lateral membrane surfaces respectively
DE3541721C2 (en)
DE19901378A1 (en) Process for producing a polymer membrane, in particular a polymer electrolyte membrane for methanol fuel cells, and such a membrane
DE112004001818T5 (en) Base polymers grafted trifluorostyrene-containing compounds and their use as polymer electrolyte membranes
DE19911413B4 (en) Preparation of cation exchange membrane thin films
DE102018119851B4 (en) Process for producing a stainless steel substrate
EP4296299A1 (en) Method for preparing an ion exchange membrane

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal