DE10132522A1 - Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals - Google Patents

Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals

Info

Publication number
DE10132522A1
DE10132522A1 DE10132522A DE10132522A DE10132522A1 DE 10132522 A1 DE10132522 A1 DE 10132522A1 DE 10132522 A DE10132522 A DE 10132522A DE 10132522 A DE10132522 A DE 10132522A DE 10132522 A1 DE10132522 A1 DE 10132522A1
Authority
DE
Germany
Prior art keywords
molded body
seed crystals
superconductor
seed
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10132522A
Other languages
German (de)
Inventor
Heribert Walter
Herbert C Freyhardt
Andreas Leenders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZENTRUM fur FUNKTIONSWERKSTOF
Original Assignee
ZENTRUM fur FUNKTIONSWERKSTOF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZENTRUM fur FUNKTIONSWERKSTOF filed Critical ZENTRUM fur FUNKTIONSWERKSTOF
Priority to DE10132522A priority Critical patent/DE10132522A1/en
Publication of DE10132522A1 publication Critical patent/DE10132522A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/14Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/225Complex oxides based on rare earth copper oxides, e.g. high T-superconductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Production of superconductor molded bodies comprises: forming recesses in the surface of a molded body; inserting seed crystals; and heating the molded body with the embedded seed crystals. Production of superconductor molded bodies comprises: forming recesses in the surface of a molded body to receive seed crystals; inserting the seed crystals made from a material having two similar lattice parameters as molded body material but which melts at a higher temperature than this material; and heating the molded body with the embedded seed crystal to a temperature at which the seed material does not melt and/or is not flowable. Preferred Features: The superconductor material contains a rare earth element including lanthanum and yttrium and barium, copper and oxygen, and optionally further elements. The recesses are filled with a suitable filler material after inserting the seed crystal.

Description

Das größte Potential für die Anwendung massiver Hochtemperatursupraleiter bietet der Einsatz in berührungsfreien, selbststabilisierenden Magnetlagern. Solche Lager sind aufgebaut aus Anordnungen von Permanentmagneten und hochtemperatursupraleitenden Formkörpern. Befindet sich ein hochtemperatursupraleitender Formkörper bei einer Temperatur oberhalb seiner Sprungtemperatur Tc im Feld eines Permanentmagneten, so wird er von magnetischem Fluss durchdrungen. Wird der Supraleiter nun auf eine Temperatur unterhalb seiner Sprungtemperatur abgekühlt, so geht er in den supraleitenden Zustand über und ein Teil des magnetischen Flusses bleibt im Supraleitermaterial eingefroren. Eine Verschiebung des supraleitenden Formkörpers ist in diesem Zustand nur unter Kraftaufwendung möglich. Die Stabilität eines solchen Lagers ist dabei um so größer, je größer der im Supraleitermaterial eingefrorenen magnetischen Fluss ist. Die Remanenzinduktion, d. h. der maximal einfrierbare magnetische Fluss, ist eine Funktion sowohl der Dichte der supraleitenden Abschirmströme im HTSL-Material als auch der Größe der eindomänigen Bereiche im supraleitenden Formkörper. Da die kritische Stromdichte der HTSL-Materialien anisotrop ist, sollen die einzelnen Domänen bevorzugt kristallographisch so ausgerichtet sein, dass die Abschirmströme in den Ebenen hoher kritischer Stromdichte, d. h. den (001)-Ebenen, fließen können. Sowohl diese kristallographische Ausrichtung der Domänen als auch ein eindomäniges Wachstum der Formkörper kann in Standardformkörpern durch eine Herstellung in einem Top- Seeded-Melt-growth (TSMG) Verfahren erreicht werden. The greatest potential for the application of massive high-temperature superconductors offers the use in contact-free, self-stabilizing magnetic bearings. Such bearings are constructed from arrangements of permanent magnets and high-temperature superconducting moldings. If a high-temperature superconducting molded body is at a temperature above its transition temperature T c in the field of a permanent magnet, it is penetrated by magnetic flux. If the superconductor is now cooled to a temperature below its transition temperature, it changes to the superconducting state and part of the magnetic flux remains frozen in the superconductor material. In this state, the superconducting molded body can only be displaced with the application of force. The stability of such a bearing is greater, the greater the magnetic flux frozen in the superconductor material. The residual induction, ie the maximum freezable magnetic flux, is a function of both the density of the superconducting shielding currents in the HTSL material and the size of the single-domain areas in the superconducting molded body. Since the critical current density of the HTSL materials is anisotropic, the individual domains should preferably be oriented crystallographically in such a way that the shielding currents can flow in the levels of high critical current density, ie the (001) planes. Both this crystallographic alignment of the domains and one-domain growth of the shaped bodies can be achieved in standard shaped bodies by production in a top-seeded melt growth (TSMG) process.

Dieses Verfahren ermöglicht die Herstellung von kristallographisch eindomänigen Formkörpern mit vorgebbarer kristallographischer Orientierung durch das Aufbringen eines geeigneten Impfkristalls auf die Oberfläche des Vorläufers [1]. Der Impfkristall muss dabei aus einem Material bestehen, das auch bei Temperaturen oberhalb der peritektischen Temperatur des zu texturierenden Materials noch in kristalliner Form vorliegt. Zudem müssen für eine kontrollierbare Orientierungsvorgabe die Gitterparameter des Keimmaterials in etwa denen des zu texturierenden Materials entsprechen. This process enables the production of crystallographically single domains Shaped bodies with a predefinable crystallographic orientation by the application a suitable seed crystal on the surface of the precursor [1]. The seed crystal must be made of a material that can withstand temperatures above peritectic temperature of the material to be textured still in crystalline form is present. In addition, for a controllable orientation target Grid parameters of the seed material roughly those of the material to be textured correspond.

Im Herstellungsprozess werden die vorgesinterten YBCO-Formkörper auf eine Temperatur aufgeheizt, welche oberhalb der peritektischen Temperatur des Vorläufermaterials liegt. Diese Temperatur wird so lange gehalten, bis das gesamte Vorläufermaterial in den teilweise schmelzflüssigen Zustand, in dem die Y2BaCuO5- Phase mit einer barium- und kupferreichen Schmelze im Gleichgewicht ist, übergegangen ist. In the manufacturing process, the pre-sintered YBCO moldings are heated to a temperature which is above the peritectic temperature of the precursor material. This temperature is maintained until the entire precursor material has changed into the partially molten state, in which the Y 2 BaCuO 5 phase is in equilibrium with a barium and copper-rich melt.

Auf das Überführen des Vorläufers in den teilweise schmelzflüssigen Zustand folgt beim TSMG-Verfahren das rasche Abkühlen auf eine Temperatur unterhalb der peritektischen Temperatur des zu texturierenden Materials, bei der in direktem Kontakt zum Impfkristall bereits Nukleation und Wachstum der Y-123-Phase einsetzt, die Unterkühlung in anderen Bereichen des Formkörpers dafür aber noch nicht ausreicht. Bei dieser Temperatur wird oft ein Halteintervall in das Temperaturprofil integriert, um das Wachstum der zentralen Domäne zu stabilisieren. Die nun folgende Temperaturführung muss darauf abzielen, die entstehende Kristallisationswärme abzuführen und das stabile Wachstum der zentralen Domäne zu erhalten, und zugleich die Nukleation und das Wachstum weiterer Domänen zu unterdrücken. Dies kann durch eine ausreichend flache Abkühlrampe und/oder das Einfügen weiterer Halteintervalle erreicht werden. Following the transfer of the precursor to the partially molten state in the TSMG process, the rapid cooling to a temperature below the peritectic temperature of the material to be textured, at which in direct Contact with the seed crystal already nucleation and growth of the Y-123 phase uses, but still undercooling in other areas of the molded body not enough. At this temperature there is often a hold interval in the Temperature profile integrated to allow the growth of the central domain stabilize. The following temperature control must aim at the dissipate heat of crystallization and the stable growth of to maintain the central domain, while maintaining nucleation and growth to suppress further domains. This can be done by a sufficiently flat Cooling ramp and / or the insertion of further holding intervals can be achieved.

Die so hergestellten Proben bestehen aus einer einzigen kristallographischen Domäne mit einer Orientierung, die der durch den Impfkristall vorgegebenen entspricht. Die Substruktur dieser Domäne wird aus plattenförmigen Körnern gebildet, die durch Kleinwinkelkorngrenzen von weniger als 1° voneinander getrennt sind. The samples thus produced consist of a single crystallographic Domain with an orientation that is given by the seed crystal equivalent. The substructure of this domain is made up of plate-shaped grains formed by small-angle grain boundaries separated by less than 1 ° are.

Werden größere Formkörper oder Formkörper in komplexerer Geometrie benötigt, so können diese in einem Modifizierten TSMG Verfahren durch die Verwendung mehrerer Impfkristalle hergestellt werden [2]. If larger moldings or moldings with a more complex geometry are required, so these can be used in a modified TSMG process several seed crystals are produced [2].

Im einfachen TSMG Verfahren ist die Möglichkeit der Orientierungsvorgabe allerdings auf sehr spezielle Orientierungen beschränkt. Die Impfkristalle müssen mit klar definierbaren, ebenen Flächen auf den Formkörper aufgebracht werden. Solche Flächen sind am Impfkristall nur parallel zu niedrig indizierten Ebenen zu erreichen. Für die üblichen Impfkristalle aus Seltene Erd-123-Material (SE1Ba2Cu3O(7-x)) ist dies insbesondere die (001)-Ebene. Damit lassen sich in den Formkörpern im wesentlichen nur solche kristallographischen Orientierungen der Formkörper erzeugen, bei denen die (001)-Ebenen des texturierten Materials parallel zu einer der Oberflächen des gesinterten Vorläufers sind. Die Forderung nach einer ebenen Auflagefläche für den Impfkristall beschränkt zudem die Auswahl der mit diesem Verfahren texturierbaren Geometrien. In the simple TSMG procedure, however, the possibility of specifying the orientation is limited to very specific orientations. The seed crystals must be applied to the molded body with clearly definable, flat surfaces. Such areas on the seed crystal can only be reached parallel to low-indexed levels. For the usual seed crystals made of rare earth 123 material (SE 1 Ba 2 Cu 3 O (7-x) ), this is in particular the (001) level. This means that essentially only those crystallographic orientations of the shaped bodies in which the (001) planes of the textured material are parallel to one of the surfaces of the sintered precursor can be produced in the shaped bodies. The requirement for a flat contact surface for the seed crystal also restricts the selection of the geometries that can be textured with this method.

Es bestand daher die Aufgabe, ein Verfahren vorzuschlagen, das beliebige Orientierungen des texturierten hochtemperatursupraleitenden Materials zulässt. Als hochtemperatursupraleitende Materialien eignen sich für das erfindungsgemäße Verfahren solche, bei denen das Material des texturierten Formkörpers Phasen enthält, die ausgewählt sind aus der Gruppe von Phasen mit einer annähernden Zusammensetzung von Y1Ba2Cu3Ov, Y2Ba1Cu1Ow, Yb1Ba2Cu3Ov', Yb2Ba1Cu1Ow', Tm1Ba2Cu3Ov'', Tm2Ba1Cu1Ow'', Er1Ba2Cu3Ov''', Er2Ba1Cu1Ow''', Ho1Ba2Cu3Ov'''', Ho2Ba1Cu1Ow'''', Dy1Ba2Cu3Ov''''', Dy2Ba1Cu1Ow''''', Gd1Ba2Cu3Ov'''''', Gd2Ba1Cu1Ow'''''','', Eu1Ba2Cu3Ov''''''', Eu2Ba1Cu1Ow'''''''', Sm1Ba2Cu3Ov'''''''', Sm2Ba1Cu1Ow'''''''', Nd1Ba2Cu3Ov''''''''', Nd4Ba2CU2Ow''''''''' wobei jeweils die Lanthaniden durch ein oder mehrere andere Lanthaniden einschließlich Y substituiert sein können und wobei Pt, Ce, Ag, Ca, Zn und andere chemische Elemente auftreten können. It was therefore the task to propose a method that allows any orientation of the textured high-temperature superconducting material. Suitable high-temperature superconducting materials for the process according to the invention are those in which the material of the textured molded body contains phases which are selected from the group of phases with an approximate composition of Y 1 Ba 2 Cu 3 O v , Y 2 Ba 1 Cu 1 O w , Yb 1 Ba 2 Cu 3 O v ' , Yb 2 Ba 1 Cu 1 O w' , Tm 1 Ba 2 Cu 3 O v '' , Tm 2 Ba 1 Cu 1 O w '' , Er 1 Ba 2 Cu 3 O v ''' , Er 2 Ba 1 Cu 1 O w''' , Ho 1 Ba 2 Cu 3 O v '''' , Ho 2 Ba 1 Cu 1 O w '''' , Dy 1 Ba 2 Cu 3 O v ''''' , Dy 2 Ba 1 Cu 1 O w''''' , Gd 1 Ba 2 Cu 3 O v '''''' , Gd 2 Ba 1 Cu 1 O w '''''' , '' , Eu 1 Ba 2 Cu 3 O v''''''' , Eu 2 Ba 1 Cu 1 O w '''''''' , Sm 1 Ba 2 Cu 3 O v '''''''' , Sm 2 Ba 1 Cu 1 O w '''''''' , Nd 1 Ba 2 Cu 3 O v ''''''''' , Nd 4 Ba 2 CU 2 O w''"""""" where each of the lanthanides can be substituted by one or more other lanthanides including Y and where Pt, Ce, Ag, Ca, Zn and other chemical elements can occur.

Die Aufgabe wird gelöst durch ein Einbetten des Impfkristalls in den zu texturierenden Vorläufer. In den gepressten und gesinterten Vorläufer werden ein oder mehrere Vertiefungen zur Aufnahme des Keimes bzw. der Keime gebohrt. Die Grundfläche dieser Vertiefungen ist dabei so auszurichten, dass sie planparallel zur einer der niedrig indizierten Ebenen der gewünschten kristallographischen Orientierung des texturierten Materials liegt. In diese Vertiefung wird der Keim entsprechend der vorzugebenden Orientierung eingebracht. The task is solved by embedding the seed crystal in the texturing precursor. In the pressed and sintered precursors are a or several wells are drilled to receive the germ or germs. The The base of these depressions is to be aligned so that they are plane-parallel to the one of the low indexed levels of the desired crystallographic Orientation of the textured material lies. The germ is in this recess introduced according to the orientation to be specified.

An das Material des Impfkristalls sind für dieses im Folgenden als Embedded Seeded Melt Growth (ESMG) bezeichnete Verfahren dabei analog zum TSMG- Verfahren zwei Forderungen zu stellen. Zum einen muss ein epitaktisches Anwachsen des zu texturierenden Materials gewährleistet sein. Dazu müssen die Gitterparameter des Keimmaterials denen des zu texturierenden Materials hinreichend ähnlich sein. Weiterhin muss das Keimmaterial auch bei der höchsten im Texturierungsprozess auftretenden Temperatur noch in kristallinem Zustand vorliegen. Als Keimmaterial kommen insbesondere durch Schmelztexturierung oder Einkristallzucht hergestellte hochtemperatursupraleitende Seltene Erd-123- Verbindungen mit höherer peritektischer Temperatur als das zu texturierende Material in Betracht. Alternative Materialien, die ebenfalls die oben definierten Bedingungen erfüllen, wie z. B. MgO, können hier ebenfalls eingesetzt werden. In the following, the material of the seed crystal is embedded Processes called Seeded Melt Growth (ESMG) are analogous to the TSMG Procedure to make two demands. For one thing, an epitaxial Growth of the material to be textured can be guaranteed. To do this, the Grid parameters of the seed material are those of the material to be textured be sufficiently similar. Furthermore, the germ material must also be at the highest Temperature occurring in the texturing process is still in a crystalline state available. The seed material comes in particular through melt texturing or Single-crystal growing high-temperature superconducting rare earth 123 Compounds with a higher peritectic temperature than the one to be textured Material into consideration. Alternative materials that are also those defined above Meet conditions such as B. MgO can also be used here.

Nach Einbringung des ausgerichteten Impfkristalls wird die Vertiefung mit einem mit einem Bindemittel versetzten Pulvergemisch verfüllt. Die Komponenten des Pulvergemisches sind dabei so auszuwählen, das sich aus diesem Material im auf die Keimsetzung folgenden Texturierungsverfahren Phasen ausbilden, die mit den im Formkörper in diesem Verfahrensschritt ausgebildeten Phasen in ihren supraleitenden und strukturellen Eigenschaften vergleichbar sind. Bevorzugt können als Komponenten des Pulvergemisches solche Materialien eingesetzt werden, die auch als Ausgangsmaterial für den Formkörper besonders geeignet sind (siehe oben). Als Bindemittel können bevorzugt Ketone und höherwertige Alkohole eingesetzt werden. After introducing the aligned seed crystal, the well is marked with a filled with a binder mixed powder. The components of the Powder mixtures are to be selected so that they are based on this material the nucleation following texturing processes form phases with the phases formed in the molding in this process step in their superconducting and structural properties are comparable. Can prefer as components of the powder mixture such materials are used that are also particularly suitable as starting material for the shaped body (see above). Preferred binders are ketones and higher alcohols be used.

Anschließend werden die Formkörper mit den eingebetteten Keimen in einer Wärmebehandlung mit einem Temperaturprofil entsprechend dem eines TSMG- Prozesses texturiert. Then the moldings with the embedded germs in one Heat treatment with a temperature profile corresponding to that of a TSMG Process textured.

Dabei ergeben sich aus der erfindungsgemäßen Keimsetzung durch Einbetten des Impfkristalls (ESMG-Verfahren) wesentliche Vorteile gegenüber der konventionellen Keimsetzung durch Aufbringen des Impfkristalls auf eine der Oberflächen des zu texturierenden Formkörpers (TSMG-Verfahren). The germination according to the invention results from embedding the Seed crystal (ESMG method) significant advantages over the conventional Germination by applying the seed crystal to one of the surfaces of the Texturing molded body (TSMG process).

Durch entsprechende Ausrichtung der Grundfläche der Vertiefung zur Aufnahme des Impfkristalles ist es möglich, beliebige Orientierungen der texturierten Domänen zu erhalten. Im Standard-TSMG-Verfahren ist es dagegen nur möglich, Orientierungen vorzugeben, bei denen niedrig indizierte Ebenen (i.w.{001}-Ebenen) parallel zu einer der Oberflächen des Formkörpers ausgerichtet sind. By appropriate alignment of the base of the recess for receiving the It is possible to add any orientation of the textured domains to the seed crystal receive. In the standard TSMG procedure, on the other hand, it is only possible to use orientations to be specified for which low-indexed levels (i.e. {001} levels) parallel to one the surfaces of the molded body are aligned.

Ein weiterer Vorteil des erfindungsgemäßen Ankeimens durch Einbetten des Impfkristalls bietet sich bei der Herstellung komplexerer Formkörper. Solche Formkörper werden unter Verwendung mehrerer Impfkristalle texturiert. Im Allgemeinen stellen Korngrenzen ein starkes Hindernis für Stromtransport in HTSL- Materialien dar. Für bestimmte Korngrenzwinkel, solche mit ausgeprägtem Koinzidenzgitter, ist die Degradation der supraleitenden Eigenschaften der Formkörper aber deutlich geringer als für Korngrenzen mit beliebigem Winkel. Durch die bei der erfindungsgemäßen Keimsetzung durch Einbetten des Impfkristalls gegebene Möglichkeit der Vorgabe beliebiger Orientierungen der einzelnen eindomänigen Bereiche ist es möglich, Korngrenzen mit beliebigem Korngrenzwinkel zwischen den einzelnen Domänen zu erzeugen. Es können daher Korngrenzen mit günstigen Winkeln erzeugt werden, d. h. die Degradation der supraleitenden Eigenschaften der gesamten durch Mehrfachkeimsetzung hergestellten Formbauteile fällt beim ESMG-Verfahren im Vergleich zu in einem TSMG- Verfahren hergestellten Formbauteilen deutlich reduziert. Another advantage of germination according to the invention by embedding the Seed crystal offers itself in the production of more complex shaped bodies. Such Shaped bodies are textured using several seed crystals. in the In general, grain boundaries represent a major obstacle to electricity transportation in HTSL Materials. For certain grain boundary angles, those with a pronounced Coincidence grid, is the degradation of the superconducting properties of the Shaped bodies but significantly smaller than for grain boundaries with any angle. By the germination according to the invention by embedding the seed crystal given possibility of specifying any orientation of the individual domains it is possible to define grain boundaries with any grain boundary angle between the individual domains. There can therefore be grain boundaries favorable angles are generated, d. H. the degradation of the superconducting Properties of the whole produced by multiple germination Molded parts fall in the ESMG process compared to in a TSMG Processed molded parts significantly reduced.

Beispiel 1example 1

Ausgangsmaterial war ein Pulvergemisch bestehend aus Y2O3, BaCO3, CuO und CeO2 entsprechend einer Zusammensetzung von Y1Ba2Cu3O7-x + 25 mol% Y2O3 + 1wt% CeO2 Aus diesem Material wurde ein quaderförmiger Formkörper mit Abmessungen von 40 mm × 40 mm × 14 mm gepresst und anschließend für 4 Stunden bei 930°C gesintert. The starting material was a powder mixture consisting of Y 2 O 3 , BaCO 3 , CuO and CeO 2 corresponding to a composition of Y 1 Ba 2 Cu 3 O 7-x + 25 mol% Y 2 O 3 + 1 wt% CeO 2 cuboid shaped body with dimensions of 40 mm × 40 mm × 14 mm pressed and then sintered for 4 hours at 930 ° C.

Auf diesen Sinterling wurde das Erfindungsgemäße Verfahren wie folgt angewendet: Zunächst wurde eine 5 mm tiefe Vertiefung in eine der Grundflächen des Sinterlings gebohrt. Der Boden dieser Vertiefung war parallel zur Grundfläche des Sinterlings. In diese Vertiefung wurde ein Impfkristall aus schmelztexturiertem Sm1Ba2Cu3O7-x eingebracht. Dabei wurde der Impfkristall so ausgerichtet, dass seine kristallographische c-Achse senkrecht zur Bodenfläche der Vertiefung, und damit auch senkrecht zu den Grundflächen des Sinterlings, orientiert war. Nach Einbringung des Impfkristalls wurde die Vertiefung im Sinterling mit einem mit Isobutylmetylketon als Bindemittel versehenem Pulvergemisch der Zusammensetzung Y1Ba2Cu3O7-x + 25 mol% Y2Ba1Cu1O5 verfüllt. Diese Verfüllung wurde uniaxial homogen gepresst. The method according to the invention was applied to this sintered part as follows: First, a 5 mm deep depression was drilled in one of the base areas of the sintered part. The bottom of this depression was parallel to the base of the sinter. A seed crystal of melt-textured Sm 1 Ba 2 Cu 3 O 7-x was introduced into this well. The seed crystal was aligned in such a way that its crystallographic c-axis was oriented perpendicular to the bottom surface of the depression, and thus also perpendicular to the base surfaces of the sinter. After the seed crystal had been introduced, the recess in the sinter was filled with a powder mixture of Y 1 Ba 2 Cu 3 O 7-x + 25 mol% Y 2 Ba 1 Cu 1 O 5 provided with isobutyl methyl ketone as a binder. This backfill was pressed uniaxially homogeneously.

Der so vorbereitete Formkörper wurde gemäß dem oben beschriebenen Verfahren texturiert. Dabei wurde der Formkörper während des Texturierungsvorganges aber nicht wie im TSMG-Verfahren notwendig mit einer der Grundflächen (40 mm × 40 mm) gelagert, sondern auf einer der schmaleren Seitenflächen (40 mm × 14 mm). The shaped body prepared in this way was produced in accordance with the process described above textured. However, the molded body became during the texturing process not with one of the base areas (40 mm × 40 mm) as required in the TSMG process stored, but on one of the narrower side surfaces (40 mm × 14 mm).

Wird das ESMG-Verfahren auf diese Weise in einem Batch-Prozess angewendet, so kann die Zahl der in diesem Prozess gleichzeitig herstellbaren Formkörper deutlich erhöht werden. Für Formkörper der in diesem Beispiel beschriebenen Geometrie kann etwa die vierfache Stückzahl pro Prozess erreicht werden. If the ESMG process is applied in a batch process in this way, so can the number of moldings that can be produced simultaneously in this process be significantly increased. For moldings described in this example Geometry can achieve four times the number of pieces per process.

Beispiel 2Example 2

Ausgangsmaterial war ein Pulvergemisch bestehend aus Y2O3, BaCO3, CuO und CeO2 entsprechend einer Zusammensetzung von Y1Ba2Cu3O7-x + 25 mol%Y2O3 + 1wt% CeO2. Aus diesem Material wurde ein ringförmiger Formkörper mit einem äußeren Durchmesser von 110 mm, einem inneren Durchmesser von 85 mm und einer Höhe von 30 mm gepresst und anschließend für 12 Stunden bei 925°C gesintert. The starting material was a powder mixture consisting of Y 2 O 3 , BaCO 3 , CuO and CeO 2 corresponding to a composition of Y 1 Ba 2 Cu 3 O 7-x + 25 mol% Y 2 O 3 + 1 wt% CeO 2 . An annular shaped body with an outer diameter of 110 mm, an inner diameter of 85 mm and a height of 30 mm was pressed from this material and then sintered at 925 ° C. for 12 hours.

Auf diesen Sinterling wurde das erfindungsgemäße Verfahren wie folgt angewendet: In der Mitte der inneren Mantelfläche des Ringes wurden 12 Vertiefungen in gleichmäßigen Abständen gebohrt. Der Boden dieser Vertiefungen war senkrecht zur radialen Achse des Ringes ausgerichtet. In diese Vertiefungen wurde jeweils ein Impfkristall aus schmelztexturiertem Sm1Ba2Cu3O7-x eingebracht. Dabei wurden die Impfkristalle so ausgerichtet, dass ihre kristallographische c-Achse senkrecht zur Bodenfläche der Vertiefung, und damit parallel zur radialen Achse des Ringes, orientiert war. Nach Einbringung der Impfkristalle wurden die Bohrungen im Sinterling mit einem mit Hexyl-Alkohol (C6H14O) als Bindemittel versehenem Pulvergemisch der Zusammensetzung Y1Ba2Cu3O7-x + 25 mol% Y2Ba1Cu1O5 verfüllt. Diese Verfüllung wurde uniaxial homogen gepresst. The method according to the invention was applied to this sintered article as follows: 12 depressions were drilled at regular intervals in the middle of the inner circumferential surface of the ring. The bottom of these recesses was oriented perpendicular to the radial axis of the ring. A seed crystal of melt-textured Sm 1 Ba 2 Cu 3 O 7-x was introduced into each of these wells. The seed crystals were aligned so that their crystallographic c-axis was oriented perpendicular to the bottom surface of the depression, and thus parallel to the radial axis of the ring. After the seed crystals had been introduced, the drillings in the sintering were made with a powder mixture of Y 1 Ba 2 Cu 3 O 7-x + 25 mol% Y 2 Ba 1 Cu 1 O 5 provided with hexyl alcohol (C 6 H 14 O) as a binder filled. This backfill was pressed uniaxially homogeneously.

Der so vorbereitete Formkörper wurde gemäß dem oben beschriebenen Verfahren texturiert. Der so hergestellte HTSL-Ring weist nach der Texturierung die geforderte radiale Orientierung der C-Achse auf. Die Exaktheit bzw. Homogenität dieser Orientierung wird dabei durch die Zahl der Verwendeten Impfkristalle (im Beispiel 12) bestimmt. Zitierte Nichtpatentliteratur [1] M. Morita, S. Takebayashi, M. Tanaka, K. Kimura, K. Miyamoto, K. Sawano, Advances in Superconductivity III, Springer-Verlag, Tokio (1993), 733
[2] A. Leenders, H. Walter, B. Bringmann, M. P. Delamare, Ch. Jooss, H. C. Freyhardt, IEEE Transactions on Applied Superconductivity Vol. 11 No. 1 (2001), 3728
The shaped body prepared in this way was textured in accordance with the method described above. The HTSL ring produced in this way has the required radial orientation of the C axis after texturing. The exactness or homogeneity of this orientation is determined by the number of seed crystals used (in Example 12). Non-patent literature cited [1] M. Morita, S. Takebayashi, M. Tanaka, K. Kimura, K. Miyamoto, K. Sawano, Advances in Superconductivity III, Springer-Verlag, Tokyo (1993), 733
[2] A. Leenders, H. Walter, B. Bringmann, MP Delamare, Ch. Jooss, HC Freyhardt, IEEE Transactions on Applied Superconductivity Vol. 11 No. 1 (2001), 3728

Claims (6)

1. Verfahren zum Ankeimen von Formkörpern aus einem Supraleitermaterial dadurch gekennzeichnet, dass in mindestens eine Oberfläche des Formkörpers mindestens eine Vertiefung zur Aufnahme eines Impfkristalls geschaffen wird und wobei in jede Vertiefung ein Impfkristall eingebracht wird, der aus einem Material besteht, das mindestens zwei ähnliche Gitterparameter wie das Formkörpermaterial aufweist, aber bei einer höheren Temperatur als dieses Material schmilzt und wobei der Formkörper mit dem eingebetteten Keimmaterial auf eine Temperatur aufgeheizt wird, bei der das Keimmaterial noch nicht schmilzt oder/und noch nicht fließfähig ist, aber bei der das Formkörpermaterial im zumindest teilweise aufgeschmolzenen Zustand ist. 1. A method for germinating moldings made of a superconductor material, characterized in that at least one recess for receiving a seed crystal is created in at least one surface of the molded body and a seed crystal is introduced into each recess, which consists of a material that has at least two similar lattice parameters as the molded body material, but melts at a higher temperature than this material and wherein the molded body with the embedded seed material is heated to a temperature at which the seed material has not yet melted and / or is not yet flowable, but at least at which the molded body material partially melted state. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Supraleitermaterial mindestens ein Selteneerdelement einschließlich Lanthan und Yttrium sowie mindestens Barium, Kupfer und Sauerstoff und gegebenenfalls weitere Elemente enthält. 2. The method according to claim 1, characterized in that the Superconductor material at least one rare earth element including lanthanum and yttrium and at least barium, copper and oxygen and optionally contains other elements. 3. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der texturierte Formkörper Phasen enthält, die ausgewählt sind aus der Gruppe von Phasen entsprechend einer annähernden Zusammensetzung von Y1Ba2Cu3Ov, Y2Ba1Cu1Ow, Yb1Ba2Cu3Ov', Yb2Ba1Cu1Ow', Tm1Ba2Cu3Ov'', Tm2Ba1Cu1Ow'', Er1Ba2Cu3Ov''', Er2Ba1Cu1Ow''', Ho1Ba2Cu3Ov'''', Ho2Ba1Cu1Ow'''', Dy1Ba2Cu3Ov''''', Dy2Ba1Cu1Ow''''', Gd1Ba2Cu3Ov'''''', Gd2Ba1Cu1Ow'''''','', Eu1Ba2Cu3Ov''''''', Eu2Ba1Cu1Ow'''''''', Sm1Ba2Cu3Ov'''''''', Sm2Ba1Cu1Ow'''''''', Nd1Ba2Cu3Ov''''''''', Nd4Ba2Cu2Ow wobei jeweils die Lanthaniden durch ein oder mehrere andere Lanthaniden einschließlich Y substituiert sein können und wobei Pt, Ce, Ag, Ca, Zn und andere chemische Elemente auftreten können. 3. The method according to at least one of the preceding claims, characterized in that the textured molded body contains phases which are selected from the group of phases corresponding to an approximate composition of Y 1 Ba 2 Cu 3 O v , Y 2 Ba 1 Cu 1 O w , Yb 1 Ba 2 Cu 3 O v ' , Yb 2 Ba 1 Cu 1 O w' , Tm 1 Ba 2 Cu 3 O v '' , Tm 2 Ba 1 Cu 1 O w '' , Er 1 Ba 2 Cu 3 O v ''' , Er 2 Ba 1 Cu 1 O w''' , Ho 1 Ba 2 Cu 3 O v '''' , Ho 2 Ba 1 Cu 1 O w '''' , Dy 1 Ba 2 Cu 3 O v ''''' , Dy 2 Ba 1 Cu 1 O w''''' , Gd 1 Ba 2 Cu 3 O v '''''' , Gd 2 Ba 1 Cu 1 O w '''''' , '' , Eu 1 Ba 2 Cu 3 O v ''''''' , Eu 2 Ba 1 Cu 1 O w'''''''' , Sm 1 Ba 2 Cu 3 O v'''''''' , Sm 2 Ba 1 Cu 1 O w'''''''' , Nd 1 Ba 2 Cu 3 O v''''''''' , Nd 4 Ba 2 Cu 2 O w where each Lanthanides can be substituted by one or more other lanthanides including Y and where Pt, Ce, Ag, Ca, Zn and other chemical elements can occur. 4. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die an der Formkörperoberfläche geschaffene Vertiefung nach Einbringen des Impfkristalls mit einem geeigneten Füllmaterial verfüllt wird. 4. The method according to at least one of the preceding claims, characterized characterized in that the depression created on the molded body surface after the seed crystal has been introduced, it is filled with a suitable filling material. 5. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Füllmaterial mindestens ein Selteneerdelement einschließlich Lanthan und Yttrium und gegebenenfalls weitere Elemente enthält. 5. The method according to at least one of the preceding claims, characterized characterized in that the filling material at least one rare earth element including lanthanum and yttrium and optionally other elements. 6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Formkörper des Supraleitermaterials im wesentlichen in Form von Platten, Vollzylindern, Hohlzylindern, Ringen, Scheiben, Stäben, oder Rohren hergestellt wird. 6. The method according to at least one of the preceding claims, characterized characterized in that a molded body of the superconductor material essentially in the form of plates, solid cylinders, hollow cylinders, rings, disks, rods, or pipes is manufactured.
DE10132522A 2001-07-10 2001-07-10 Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals Ceased DE10132522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10132522A DE10132522A1 (en) 2001-07-10 2001-07-10 Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10132522A DE10132522A1 (en) 2001-07-10 2001-07-10 Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals

Publications (1)

Publication Number Publication Date
DE10132522A1 true DE10132522A1 (en) 2003-02-13

Family

ID=7690657

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10132522A Ceased DE10132522A1 (en) 2001-07-10 2001-07-10 Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals

Country Status (1)

Country Link
DE (1) DE10132522A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614775A (en) * 2013-11-29 2014-03-05 上海交通大学 Method for growing REBCO (Rare Earth Barium Copper Oxygen) standard single crystal in embedded seeded growth mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308843A (en) * 1996-01-05 1997-07-09 Univ Princeton Single crystals of ceramic superconductors
DE19841925A1 (en) * 1998-09-14 2000-03-16 Aventis Res & Tech Gmbh & Co Cracks are filled in ceramic articles, for transformers, circuit breakers, current supplies and magnetic components, using a low melting and/or flow temperature filler containing crystallizable non-metallic compounds
DE19841663A1 (en) * 1998-09-11 2000-04-13 Karlsruhe Forschzent Production of volume samples from melt textured high temperature superconducting material comprises molding powder into open vessel and applying seed crystal
DE19623050C2 (en) * 1996-06-10 2000-05-31 Dresden Ev Inst Festkoerper Process for the production of high-temperature superconducting, melt-textured solid materials
DE19908597A1 (en) * 1999-02-27 2000-09-14 Aventis Res & Tech Gmbh & Co Process for tempering a superconductor material with high remanence induction, tempered superconductor material and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308843A (en) * 1996-01-05 1997-07-09 Univ Princeton Single crystals of ceramic superconductors
DE19623050C2 (en) * 1996-06-10 2000-05-31 Dresden Ev Inst Festkoerper Process for the production of high-temperature superconducting, melt-textured solid materials
DE19841663A1 (en) * 1998-09-11 2000-04-13 Karlsruhe Forschzent Production of volume samples from melt textured high temperature superconducting material comprises molding powder into open vessel and applying seed crystal
DE19841925A1 (en) * 1998-09-14 2000-03-16 Aventis Res & Tech Gmbh & Co Cracks are filled in ceramic articles, for transformers, circuit breakers, current supplies and magnetic components, using a low melting and/or flow temperature filler containing crystallizable non-metallic compounds
DE19908597A1 (en) * 1999-02-27 2000-09-14 Aventis Res & Tech Gmbh & Co Process for tempering a superconductor material with high remanence induction, tempered superconductor material and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614775A (en) * 2013-11-29 2014-03-05 上海交通大学 Method for growing REBCO (Rare Earth Barium Copper Oxygen) standard single crystal in embedded seeded growth mode
CN103614775B (en) * 2013-11-29 2015-11-25 上海交通大学 The method of the accurate single crystal of a kind of embedded seeded growth REBCO

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
DE3887478T2 (en) Method of manufacturing an oxide superconductor.
DE3855025T2 (en) Process for the production of a superconducting part and arrangements and systems which have this part
DE69114445T2 (en) OXIDE SUPER LADDER AND THEIR PRODUCTION.
DE3871833T2 (en) SUPER-CONDUCTIVE MIXTURE OF OXIDE CERAMICS.
DE3854358T2 (en) Superconducting oxide.
DE69012731T2 (en) OXYD SUPER LADDER AND METHOD FOR PRODUCING THE SAME.
DE60224418T2 (en) METHOD FOR CONNECTING SUPERIORS AND A VERBUNDSUPRALEITER
DE3853900T2 (en) Superconducting material and process for its manufacture.
DE2163607B2 (en) Magneto-optical storage layer
EP1159767B1 (en) Method for coating a superconductor material having high remanent induction and the use thereof
DE10132522A1 (en) Production of superconductor molded bodies used in self-stabilizing magnetic devices comprises forming recesses in the surface of a molded body, inserting seed crystals, and heating the molded body with the embedded seed crystals
DE68926316T2 (en) Process for producing a superconductor from superconducting ceramics
US5217944A (en) Crystal making method
EP0874787B1 (en) PROCESS FOR PRODUCING OPTIMIZED MELT-TEXTURED VOLUME PROBES BASED ON THE HIGH-TEMPERATURE SUPERCONDUCTOR YBa2Cu3O7 (YBCO)
DE3825710A1 (en) Superconducting permanent-magnetic bodies
EP0964943B1 (en) METHOD FOR GROWING MONOCRYSTALS OF HIGH-TEMPERATURE SUPRACONDUCTORS MADE OF RARE EARTH-CUPRATES OF FORM SE1+xBa2-xCu3O7-delta
DE3932423C2 (en)
DE3820809A1 (en) Preparation of oriented layers of the Bi-Sr-Ca-Cu oxide high-temperature superconductor
DE19817875C2 (en) Process for the production of optimized, melt-textured volume samples based on the high-temperature superconductor Y¶1¶Ba¶2¶Cu¶3¶O¶7¶
EP1143531B1 (en) Permanent magnet comprising superconducting ceramic material
DE19623050A1 (en) Process for the production of high temperature superconducting solid materials
USH1399H (en) Process for transforming pure Y2 BaCuO5 into a superconducting matrix of YBa2 Cu3 O7-x with fine and homogeneously dispersed Y2 BaCuO5 inclusions
DE4236369C2 (en) Ceramic molded part made of a high-temperature superconductor, process for its production and use of the molded part
DE10241759B4 (en) Method for producing a high-temperature superconducting component

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection