DE10123280A1 - Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs - Google Patents

Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs

Info

Publication number
DE10123280A1
DE10123280A1 DE2001123280 DE10123280A DE10123280A1 DE 10123280 A1 DE10123280 A1 DE 10123280A1 DE 2001123280 DE2001123280 DE 2001123280 DE 10123280 A DE10123280 A DE 10123280A DE 10123280 A1 DE10123280 A1 DE 10123280A1
Authority
DE
Germany
Prior art keywords
copper
tin
production
applying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2001123280
Other languages
German (de)
Inventor
Peter Grambow
Marc Tornow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority to DE2001123280 priority Critical patent/DE10123280A1/en
Publication of DE10123280A1 publication Critical patent/DE10123280A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05023Disposition the whole internal layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13063Metal-Semiconductor Field-Effect Transistor [MESFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

Production of contact bumps (2) comprises applying copper (8) to a support element (4); applying tin (10') to the copper; and heating the copper and tin to a temperature at which remelting occurs when parts of the copper dissolve into the tin. Preferred Features: The support element is a semiconductor material. The process further comprises applying a further metal (6), preferably nickel, between the support material and the copper. Remelting occurs at 200-260 deg C. During the heating step, a eutectic mixture of copper and tin is produced.

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Herstellen eines Kontakthügels (Bumps) und insbesondere auf ein Verfahren, das sich zur bleifreien Herstellung eines Kon­ takthügels eignet.The present invention relates to a method for Making a bump and especially on a process that is suitable for the lead-free production of a con clock hill is suitable.

Zur Zeit werden bei der Massenherstellung in der Flip-Chip- Montage hauptsächlich PbSn-Kontakthügel bzw. -Bumps verwen­ det. Aufgrund weltweiter Einschränkungen bei der Verwendung von Blei (Verbote in Japan und Europa) müssen in Zukunft bleihaltige Stoffe durch bleifreie ersetzt werden. Um vorhan­ dene Fertigungsanlagen (z. B. Reflowöfen, Galvanikanlagen etc.) weiterverwenden zu können und voll kompatibel mit der Standard SMD-Montage zu sein, sollten die Montagetemperaturen 260°C nicht überschreiten. Bei Einhaltung dieser Begrenzung der Montagetemperaturen können darüber hinaus erhebliche Mehrkosten vermieden werden, die andernfalls entstehen, wenn eine Qualifikation von Bauelementen bei höheren Temperaturen erforderlich ist. Bisherige Materialsysteme, die nicht blei­ haltig sind, müssen jedoch bei höheren Temperaturen verarbei­ tet werden, z. B. AuSn bei ca. 330°C.Currently, mass production in the flip chip Installation mainly use PbSn contact bumps or bumps det. Due to worldwide usage restrictions of lead (bans in Japan and Europe) will have to in the future lead-containing substances can be replaced by lead-free ones. To exist production facilities (e.g. reflow ovens, electroplating systems etc.) to be able to continue to use and fully compatible with the To be standard SMD assembly, assembly temperatures should be Do not exceed 260 ° C. If this limit is observed assembly temperatures can also be significant Avoid additional costs that would otherwise arise if a qualification of components at higher temperatures is required. Previous material systems that do not lead are stable, but must be processed at higher temperatures be tet, z. B. AuSn at approx. 330 ° C.

Ein SnCu-Eutektikum stellt eine Alternative mit einer deut­ lich niedrigeren Verarbeitungstemperatur dar. Bisher wurde ins Auge gefaßt, SnCu eutektisch aus einem Elektrolyten abzu­ scheiden. Dabei muß jedoch die Cu-Konzentration sehr genau eingehalten werden und das Elektrolytbad immer wieder ergänzt werden, weshalb dieses Verfahren in der Volumenproduktion nur sehr schwer umzusetzen ist.An SnCu eutectic provides an alternative with a deut Lich lower processing temperature. So far envisaged to eutectically remove SnCu from an electrolyte divorce. However, the Cu concentration must be very precise be complied with and the electrolyte bath continually supplemented which is why this process only works in volume production is very difficult to implement.

Die US 6,013,572 beschreibt ein Verfahren zur Herstellung von Silber-Zinn-Kontakthügeln, bei dem auf einer Oberfläche eines Substrats eine Metallurgieschicht gebildet wird, welche durch eine Maske bedeckt wird. Freiliegende Abschnitte der Metal­ lurgieschicht werden anschließend mit Silber belegt, das Sil­ ber wird mit Zinn belegt, und durch Schmelzen wird eine Si­ ber-Zinn-Legierung gebildet.US 6,013,572 describes a process for the production of Silver-tin bumps on a surface of a A metallurgy layer is formed by the substrate a mask is covered. Exposed sections of the metal  The silver layer is then coated with silver, the sil Tin is overlaid, and a Si formed over tin alloy.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein vereinfachtes Verfahren zum Herstellen eines Kontakthügels zu schaffen.The object of the present invention is a simplified method for producing a contact hill create.

Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 ge­ löst.This object is achieved by a method according to claim 1 solves.

Ein Verfahren zum Herstellen eines Kontakthügels umfaßt einen Schritt des Aufbringens von Kupfer (Cu) auf ein Trägerele­ ment, einen Schritt des Aufbringens von Zinn (Sn) auf dem Cu und einen Schritt des Erwärmens des Cu und Sn auf eine Tempe­ ratur, bei der ein Umschmelzen bewirkt wird, bei dem sich zu­ mindest Teile des Cu in dem Sn lösen. Das Trägerelement weist vorzugsweise ein Halbleitermaterial auf.A method of making a bump includes one Step of applying copper (Cu) to a carrier element ment, a step of depositing tin (Sn) on the Cu and a step of heating the Cu and Sn to a temperature rature in which remelting is effected, in which loosen at least parts of the Cu in the Sn. The carrier element has preferably a semiconductor material.

Der vorliegenden Erfindung liegt die Erkenntnis zugrunde, daß zwei Metalle, Cu und Sn, deren eutektisches Gemisch einen Kontakthügel bilden soll, sequentiell abgeschieden werden können. Durch die direkt aufeinanderfolgende Abscheidung - beispielsweise mittels Galvanik - bilden die Materialien Cu und Sn nach einem Umschmelzen eine Verbindung, die sich bei Temperaturen um 225°C bereits löten läßt. Damit sind Verar­ beitungstemperaturen beim Standard-Reflowlöten in der Volu­ menproduktion von 260°C erreichbar. Die erforderliche SnCu- Komposition (0,7% Cu) stellt sich während des Umschmelzens in einer Art Selbstjustage-Prozeß von selbst ein.The present invention is based on the finding that two metals, Cu and Sn, whose eutectic mixture is one Contact hills should be sequentially deposited can. Through the successive deposition - for example by means of electroplating - the materials form Cu and Sn after remelting a compound that is at Can already solder temperatures around 225 ° C. With that are Verar processing temperatures for standard reflow soldering in the volu men production of 260 ° C achievable. The required SnCu- Composition (0.7% Cu) appears during remelting a kind of self-adjustment process.

Durch die sequentielle Abscheidung von zuerst Cu und danach Sn ist das Verfahren sehr einfach, da getrennte Elektrolyte für Cu und Sn verwendet werden. Damit entfallen einige Pro­ bleme einer eutektischen Volumen-Abscheidung, wie z. B. eine mangelnde Homogenität der Legierungszusammensetzung oder ei­ ner Instabilität des Bades. Cu und Sn stehen in der Volumen­ fertigung als gängige, unproblematische Materialien zur Ver­ fügung. Eine Integration des erfindungsgemäßen Verfahrens in einen Gesamtprozeß einer Halbleiterfertigung im "backend of line" bzw. am hinteren Ende einer Fertigung ist sehr einfach und kostengünstig zu realisieren. Ein wichtiger Vorteil von Cu gegenüber Silber ist neben seiner vollständigen Kompatibi­ lität mit existierenden Silizium-Technologien vor allem sein niedrigerer Preis. Die Verwendung von Cu ist deshalb wesent­ lich kostengünstiger.Through the sequential deposition of Cu first and then Sn the process is very simple because of separate electrolytes can be used for Cu and Sn. This eliminates some pro problems with eutectic volume deposition, e.g. Legs lack of homogeneity of the alloy composition or egg ner instability of the bath. Cu and Sn are in volume  production as common, unproblematic materials for ver addition. An integration of the method according to the invention in an overall process of semiconductor production in the "backend of line "or at the rear end of a production is very simple and inexpensive to implement. An important advantage of Cu versus silver is next to its full compatibility above all with existing silicon technologies Lower price. The use of Cu is therefore essential Lich cheaper.

Als "under bump metallisation" (UBM) bzw. mit Metallisierung unter dem Kontakthügel können gängige Materialien wie z. B. Ni oder NiCr oder eine Kombination verwendet werden. Bei Verwen­ dung eines dicken Cu-"Sockels" kann evtl. ganz auf eine Dif­ fusionsbarriere verzichtet werden, da das Sn durch den dicken Kupfersockel nicht in den Halbleiter diffundieren kann.As "under bump metallization" (UBM) or with metallization Common materials such as e.g. B. Ni or NiCr or a combination can be used. When used of a thick Cu "socket" can possibly be completely on a dif fusion barrier can be dispensed with, since the Sn through the thick Copper base cannot diffuse into the semiconductor.

Ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfin­ dung wird nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:A preferred embodiment of the present invention below is made with reference to the enclosed Drawings explained in more detail. Show it:

Fig. 1 eine schematische Schnittdarstellung einer Zwi­ schenphase bei dem erfindungsgemäßen Herstellungs­ verfahren nach einer sequentiellen Abscheidung von Cu und Sn; und Figure 1 is a schematic sectional view of an inter mediate phase in the manufacturing method according to the invention after a sequential deposition of Cu and Sn. and

Fig. 2 eine schematische Schnittdarstellung eines erfin­ dungsgemäß hergestellten Kontakthügels. Fig. 2 is a schematic sectional view of a contact hill according to the invention.

Nachfolgend wird das bevorzugte Ausführungsbeispiel des Ver­ fahrens zum Herstellen eines Kontakthügels gemäß der vorlie­ genden Erfindung erläutert. Es wird zunächst auf Fig. 1 Bezug genommen, die eine schematische Schnittdarstellung einer Schichtfolge eines Zwischenproduktes des erfindungsgemäßen Verfahrens auf einem Trägerelement 4 zeigt. The preferred embodiment of the method for producing a contact hill according to the vorlie invention is explained below. Reference is first made to FIG. 1, which shows a schematic sectional illustration of a layer sequence of an intermediate product of the method according to the invention on a carrier element 4 .

Bei einem ersten Verfahrensschritt wird an einem erwünschten Ort und mit einer erwünschten lateralen Ausdehnung eine Ni- oder NiCr-Schicht als "under bump metallisation" (UBM) 6 auf das Trägerelement 4 aufgebracht. Auf der UBM 6 werden in zwei weiteren getrennten Verfahrensschritten eine Cu-Schicht 8 und eine Sn-Schicht 10 aufgebracht. Die lateralen Ausdehnungen der Cu-Schicht 8 und der Sn-Schicht 10 sind dabei in der Re­ gel geringer als die laterale Ausdehnung der UBM 6. Nach die­ sen Schritten liegt der in Fig. 1 im Querschnitt dargestellte Schichtaufbau vor. Bei einem nachfolgenden und abschließenden Verfahrensschritt werden die Cu-Schicht 8 und die Sn-Schicht 10 für eine Zeitdauer von 20 s bis mehreren min. vorzugsweise 60 s, auf eine Temperatur im Bereich von 200°C bis 260°C erwärmt. Wichtig ist bei diesem Schritt, dass Temperatur und Zeit so gewählt werden, daß Temperatur und Zeitdauer so ge­ wählt werden, daß sich das eutektische Mischungsverhältnis von Sn und Cu einstellen kann. Ist ein Eutektikum gebildet, so ist dieses zumindest bei einer Temperatur, die nicht we­ sentlich höher als seine Schmelztemperatur ist, auch bei län­ ger anhaltender Temperatubehandlung bzgl. des Mischungsver­ hältnisses stabil. Insbesondere löst sich die Cu-Schicht 8 nicht weiter in dem Sn, so daß bei einer ausreichenden ur­ sprünglichen Dicke der Cu-Schicht 8 ein Cu-"Sockel" bestehen bleibt.In a first method step, a Ni or NiCr layer is applied to the carrier element 4 as an "under bump metallization" (UBM) 6 at a desired location and with a desired lateral extent. A Cu layer 8 and an Sn layer 10 are applied to the UBM 6 in two further separate process steps. The lateral dimensions of the Cu layer 8 and the Sn layer 10 are generally less than the lateral dimension of the UBM 6 . After these steps, the layer structure shown in cross section in FIG. 1 is present. In a subsequent and final process step, the Cu layer 8 and the Sn layer 10 are for a period of 20 s to several minutes. preferably 60 s, heated to a temperature in the range from 200 ° C to 260 ° C. It is important in this step that the temperature and time are selected so that the temperature and time are selected so that the eutectic mixing ratio of Sn and Cu can be established. If a eutectic is formed, it is stable at least at a temperature which is not substantially higher than its melting temperature, even with prolonged temperature treatment with respect to the mixture ratio. In particular, the Cu layer 8 does not dissolve further in the Sn, so that a Cu “base” remains if the original thickness of the Cu layer 8 is sufficient.

Fig. 2 zeigt eine schematische Schnittdarstellung eines Kon­ takthügels 2, der gemäß dem oben dargestellten Ausführungs­ beispiel des erfindungsgemäßen Verfahrens auf dem Trägerele­ ment 4 hergestellt wurde. Da bei dem abschließenden Schritt des Erwärmens die Schmelztemperatur des Sn (232°C) über­ schritten wird, ändert die Sn-Schicht 10 aufgrund der Ober­ flächenspannung des Sn in der flüssigen Phase ihre geometri­ sche Gestalt, was beispielsweise bei einer kleinen lateralen Ausdehnung und einer großen ursprünglichen Dicke zu der in Fig. 2 angedeuteten Form eines Tropfens 10' führt. Während des Schrittes des Erwärmens diffundiert zumindest ein Teil des Cu aus der Cu-Schicht 8 in das Sn. In einer Art Selbst­ justage-Prozeß bildet sich ein eutektisches SnCu-Gemisch mit einem Cu-Anteil von ca. 0,7%. Nach dem Schritt des Erwärmens weist somit der den Kontakthügel 2 im wesentlichen bildende Tropfen 10' ein eutektisches SnCu-Gemisch auf. Fig. 2 shows a schematic sectional view of a con tact hill 2 , the element 4 according to the embodiment shown above example of the method according to the invention was produced on the Trägerele. Since the melting temperature of Sn (232 ° C.) is exceeded in the final step of heating, the Sn layer 10 changes its geometrical shape due to the surface tension of Sn in the liquid phase, for example with a small lateral expansion and a large original thickness leads to the shape of a drop 10 'indicated in FIG. 2. During the heating step, at least a portion of the Cu diffuses from the Cu layer 8 into the Sn. In a kind of self-adjustment process, a eutectic SnCu mixture with a Cu content of approx. 0.7% is formed. After the heating step, the drop 10 ′ which essentially forms the bump 2 has a eutectic SnCu mixture.

Das Trägerelement 4, auf dem mittels des erfindungsgemäßen Verfahrens ein Kontakthügel hergestellt wird, kann beispiels­ weise ein Halbleitermaterial wie GaAs oder Si aufweisen. Auf dem Trägerelement 4 können gleichzeitig oder nacheinander mehrere lateral voneinander beabstandete Kontakthügel 2 auf­ gebracht werden. Diese Kontakthügel 2 dienen vor allem bei der Flip-Chip-Montage zur Kontaktierung bzw. zur Herstellung einer elektrischen Verbindungen zwischen dem Trägerelement 4 und einem oder mehreren weiteren Bauelementen. Bei dem Trä­ gerelement 4 kann es sich beispielsweise um einen Einzelhalb­ leiter oder auch um eine MMIC (MMIC = monolithic microwave integrated circuit = monolithische integrierte Mikrowellen- Schaltung) handeln. Beispiele für MMICs sind HEMT (HEMT = High electron mobility field effect transistors = Feldeffekt­ transistor mit hoher Elektronenbeweglichkeit), MESFET (MESFET = Metal semiconductor field effect transistor = Metall- Halbleiter-Feldeffekttransistor) und HBT (HBT = Heterojuncti­ on bipolar transistor = Heteroübergang-Bipolar-Transistor).The carrier element 4 , on which a contact bump is produced by means of the method according to the invention, can have, for example, a semiconductor material such as GaAs or Si. A plurality of laterally spaced contact bumps 2 can be placed on the carrier element 4 simultaneously or in succession. These contact bumps 2 are used primarily in the flip-chip assembly for making contact or for establishing electrical connections between the carrier element 4 and one or more further components. The carrier element 4 can be, for example, a single semiconductor or an MMIC (MMIC = monolithic microwave integrated circuit). Examples of MMICs are HEMT (HEMT = high electron mobility field effect transistors = field effect transistor with high electron mobility), MESFET (MESFET = metal semiconductor field effect transistor = metal semiconductor field effect transistor) and HBT (HBT = heterojunction on bipolar transistor = heterojunction) bipolar transistor).

Die Cu-Schicht 8, die Sn-Schicht 10 und die UBM 6 werden nacheinander in getrennten Schritten und in getrennten Bädern galvanisch oder mittels anderer geeigneter Verfahren aufge­ bracht. Sowohl die Cu-Schicht 8, als auch die Sn-Schicht 10 und die UBM 6 können beispielsweise zunächst ganzflächig auf die Oberfläche des Trägerelements 4 aufgebracht und anschlie­ ßend unter Verwendung einer Maske in einem Ätzbad teilweise wieder entfernt werden, um eine erwünschte begrenzte laterale Ausdehnung, wie sie in Fig. 1 gezeigt ist, zu erhalten. Al­ ternativ können alle drei Schichten von vornherein nur in ei­ nem erwünschten Bereich aufgebracht werden. Dazu können eine oder mehrere Masken verwendet werden. Ferner können ein Teil der zur erfindungsgemäßen Herstellung des Kontakthügels er­ forderlichen Schichten zunächst ganzflächig oder großflächig auf die Oberfläche des Trägerelements 4 aufgebracht und an­ schließend außerhalb ihrer erwünschten lateralen Ausdehnung wieder entfernt werden, und die anderen Schichten von vorn­ herein mit der erwünschten lateralen Erstreckung erstellt werden.The Cu layer 8 , the Sn layer 10 and the UBM 6 are successively brought up in separate steps and in separate baths galvanically or by means of other suitable methods. Both the Cu layer 8 , as well as the Sn layer 10 and the UBM 6 can, for example, first be applied over the entire surface to the surface of the carrier element 4 and then partially removed again using a mask in an etching bath in order to achieve a desired limited lateral expansion as shown in FIG. 1. Alternatively, all three layers can be applied from the outset only in a desired area. One or more masks can be used for this. Furthermore, some of the layers required for the production of the contact bump according to the invention can first be applied over the entire surface or over a large area to the surface of the carrier element 4 and then removed again outside their desired lateral extent, and the other layers can be created from the outset with the desired lateral extension ,

Anstelle der bei dem oben dargestellten bevorzugten Ausfüh­ rungsbeispiel verwendeten Metalle Cu und Sn können auch ande­ re Metalle verwendet werden, die bei einer mit dem Trägerele­ ment verträglichen Temperatur ein eutektisches Gemisch bil­ den, dessen Schmelztemperatur in einem erwünschten Tempera­ turbereich liegt.Instead of the preferred embodiment shown in the above Example used metals Cu and Sn can also other re metals are used, which in a with the carrier element tolerated temperature a eutectic mixture bil the whose melting temperature is in a desired tempera door range.

Die beiden Metalle 8, 10 und ihre Anordnung können ferner al­ ternativ so gewählt werden, daß sich primär das als zweites aufgebrachte Metall 10, d. h. das Metall, das nicht an das Trägerelement 4 bzw. die UBM 6 angrenzt, in dem als erstes aufgebrachten Metall 8 löst. Wenn die Menge des als zweites aufgebrachten Metalles 10, so gewählt wird, daß es sich voll­ ständig in dem als erstes aufgebrachten Metall löst, entsteht auch in dieser Konfiguration ein Kontakthügel 2, dessen von dem Trägerelement 4 abgewandte Seite ein eutektisches Gemisch aufweist und sich so zur Lötverbindung mit einem anderen elektrischen Bauelement eignet.The two metals 8 , 10 and their arrangement can also be chosen alternatively so that primarily the second metal 10 applied, ie the metal that is not adjacent to the carrier element 4 or the UBM 6 , in the first metal applied 8 triggers. If the amount of the second applied metal 10 is chosen so that it completely dissolves in the first applied metal, a contact bump 2 is also formed in this configuration, the side facing away from the carrier element 4 has a eutectic mixture and so suitable for soldering to another electrical component.

Obgleich ein Kontakthügel aus einem Eutektikum Vorteile bei einem späteren Lötvorgang bietet, ist es ferner möglich die beiden Metalle und/oder ihr Mengenverhältnis so zu wählen, daß bei dem Schritt des Erwärmens ein von einem Eutektikum abweichendes Gemisch entsteht.Although a bump from a eutectic benefits offers a later soldering process, it is also possible to choose both metals and / or their quantitative ratio so that at the step of heating one of a eutectic different mixture arises.

Es sei darauf hingewiesen, daß die im bevorzugten Ausfüh­ rungsbeispiel hergestellte UBM 6 optional ist, d. h. alterna­ tiv kann ein Kontakthügel gemäß der vorliegenden Erfindung auch ohne eine UBM 6 hergestellt werden. Als Materialien für die UBM 6 können gängige Materialien, wie z. B. Ni, NiCr oder auch Kombinationen verwendet werden. Die UBM 6 dient unter anderem dazu, eine Diffusion von Sn in darunterliegendes Halbleitermaterial des Trägerelements 4 zu verhindern. Wenn die Cu-Schicht 8 ausreichend dick ausgeführt wird, wirkt sie selbst bereits als Diffusionssperre.It should be pointed out that the UBM 6 produced in the preferred embodiment is optional, ie alternatively a contact bump according to the present invention can also be produced without a UBM 6 . As materials for the UBM 6 common materials such as. B. Ni, NiCr or combinations can be used. The UBM 6 serves, among other things, to prevent diffusion of Sn into the underlying semiconductor material of the carrier element 4 . If the Cu layer 8 is made sufficiently thick, it already acts as a diffusion barrier.

Das Ergebnis des beschriebenen Ausführungsbeispieles des er­ findungsgemäßen Verfahrens ist ein Kontakthügel 2, der im we­ sentlichen aus einem eutektischen SnCu-Gemisch besteht. Ein Kontakthügel 2 ähnlicher Zusammensetzung wäre auch durch di­ rektes Aufbringen des eutektischen SnCu-Gemisches aus einem Elektrolyten herstellbar. Gegenüber diesem Verfahren weist das erfindungsgemäße Verfahren jedoch erhebliche praktische Vorteile auf, die im wesentlichen aus der Verwendung zweier getrennter galvanischer Bäder für die Abscheidung von Sn und Cu folgen. Vor allem entfallen dadurch die Notwendigkeit, ei­ ne Cu-Konzentration in einem galvanischen SnCu-Bad sehr genau einzuhalten, die Problematik der Instabilität eines SnCu- Bades und das Risiko einer mangelnden Homogenität der Legie­ rungszusammensetzung. Das beschriebene erfindungsgemäße Ver­ fahren ist deshalb in der Volumenfertigung einfach umsetzbar. Dies resultiert auch daraus, daß Cu und Sn in der Volumenfer­ tigung bereits gängig sind und als unproblematische Materia­ lien zur Verfügung stehen. The result of the described embodiment of the method according to the invention is a contact bump 2 , which consists essentially of a eutectic SnCu mixture. A contact bump 2 of a similar composition would also be producible by directly applying the eutectic SnCu mixture from an electrolyte. Compared to this method, however, the method according to the invention has considerable practical advantages which essentially result from the use of two separate galvanic baths for the deposition of Sn and Cu. Above all, this eliminates the need to very precisely adhere to a Cu concentration in a galvanic SnCu bath, the problem of the instability of a SnCu bath and the risk of a lack of homogeneity in the alloy composition. The described drive according to the invention is therefore easy to implement in volume production. This also results from the fact that Cu and Sn are already common in volume production and are available as unproblematic materials.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22

Kontakthügel
bump

44

Trägerelement
support element

66

"Under Bump Metallisation" UBM
"Under Bump Metallization" UBM

88th

Cu-Schicht
Cu layer

1010

Sn-Schicht
Sn layer

Claims (6)

1. Verfahren zum Herstellen eines Kontakthügels (2) mit fol­ genden Schritten:
Aufbringen von Kupfer (8) auf ein Trägerelement (4);
Aufbringen von Zinn (10) auf dem ersten Metall (8); und
Erwärmen des Kupfers und des Zinns (8 und 10) auf eine Temperatur, bei der ein Umschmelzen bewirkt wird, bei dem sich zumindest Teile des Kupfers (8) in dem anderen Me­ tall (10) lösen.
1. A method for producing a contact bump ( 2 ) with the following steps:
Applying copper ( 8 ) to a carrier element ( 4 );
Applying tin ( 10 ) to the first metal ( 8 ); and
Heating the copper and the tin ( 8 and 10 ) to a temperature at which remelting is effected at which at least parts of the copper ( 8 ) in the other metal tall ( 10 ) dissolve.
2. Verfahren nach Anspruch 1 oder 2, bei dem das Trägerele­ ment (4) ein Halbleitermaterial aufweist.2. The method according to claim 1 or 2, wherein the Trägerele element ( 4 ) comprises a semiconductor material. 3. Verfahren nach einem der Ansprüche 1 bis 3, das ferner einen Schritt des Aufbringens eines weiteren Metalls (6) zwischen dem Trägerelement (4) und dem Kupfer (8) auf­ weist.3. The method according to any one of claims 1 to 3, further comprising a step of applying a further metal ( 6 ) between the carrier element ( 4 ) and the copper ( 8 ). 4. Verfahren nach Anspruch 4, bei dem das weitere Metall (6) Nickel aufweist.4. The method according to claim 4, wherein the further metal ( 6 ) comprises nickel. 5. Verfahren nach einem der Ansprüche 1 bis 5, bei dem das Umschmelzen in einem Temperaturbereich von 200°C bis 260 °C bewirkt wird.5. The method according to any one of claims 1 to 5, in which the Remelting in a temperature range from 200 ° C to 260 ° C is effected. 6. Verfahren nach einem der Ansprüche 1 bis 6, bei dem bei dem Schritt des Erwärmens ein eutektisches Gemisch des Cu (8) und des Zinns (10) gebildet wird.6. The method according to any one of claims 1 to 6, wherein in the heating step, a eutectic mixture of the Cu ( 8 ) and the tin ( 10 ) is formed.
DE2001123280 2001-05-14 2001-05-14 Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs Withdrawn DE10123280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001123280 DE10123280A1 (en) 2001-05-14 2001-05-14 Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001123280 DE10123280A1 (en) 2001-05-14 2001-05-14 Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs

Publications (1)

Publication Number Publication Date
DE10123280A1 true DE10123280A1 (en) 2002-12-05

Family

ID=7684649

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001123280 Withdrawn DE10123280A1 (en) 2001-05-14 2001-05-14 Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs

Country Status (1)

Country Link
DE (1) DE10123280A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410184A (en) * 1993-10-04 1995-04-25 Motorola Microelectronic package comprising tin-copper solder bump interconnections, and method for forming same
DE19524739A1 (en) * 1994-11-17 1996-05-23 Fraunhofer Ges Forschung Inhomogeneous composition bump contact for surface mounted device flip-chip technology
JP2000077554A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Semiconductor device
JP2000100869A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Semiconductor device and manufacture thereof
JP2000101014A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Semiconductor device
JP2000228006A (en) * 1999-02-05 2000-08-15 Alps Electric Co Ltd Joined body using bonding pad and bump and magnetic head device
EP1148548A2 (en) * 2000-04-19 2001-10-24 Advanced Interconnect Technology Ltd. Method of forming lead-free bump interconnections

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410184A (en) * 1993-10-04 1995-04-25 Motorola Microelectronic package comprising tin-copper solder bump interconnections, and method for forming same
DE19524739A1 (en) * 1994-11-17 1996-05-23 Fraunhofer Ges Forschung Inhomogeneous composition bump contact for surface mounted device flip-chip technology
JP2000077554A (en) * 1998-08-27 2000-03-14 Hitachi Ltd Semiconductor device
JP2000100869A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Semiconductor device and manufacture thereof
JP2000101014A (en) * 1998-09-22 2000-04-07 Hitachi Ltd Semiconductor device
JP2000228006A (en) * 1999-02-05 2000-08-15 Alps Electric Co Ltd Joined body using bonding pad and bump and magnetic head device
EP1148548A2 (en) * 2000-04-19 2001-10-24 Advanced Interconnect Technology Ltd. Method of forming lead-free bump interconnections

Similar Documents

Publication Publication Date Title
DE102005028951B4 (en) Arrangement for the electrical connection of a semiconductor circuit arrangement with an external contact device
DE102008057817B4 (en) Device and method with a soldering process
DE102005053842B4 (en) Semiconductor device with connecting elements and method for producing the same
DE2424857C2 (en) Process for producing a soldered connection by reflow soldering
EP1717854B1 (en) Semiconductor device with a plurality of soldering layers and process therefor
DE4442960C1 (en) Solder bump used in mfr. of semiconductor chips
DE69813701T2 (en) Electrode structure of a silicon semiconductor device
DE102009006152A1 (en) Electronic component and method for producing the electronic component
WO1996016442A1 (en) Core metal soldering knob for flip-chip technology
DE2032872B2 (en) Process for the production of soft solderable contacts for the installation of semiconductor components in housings
DE102013101258A1 (en) Semiconductor device using diffusion soldering
DE102006062029B4 (en) Method for producing a semiconductor device
DE2228678A1 (en) METHOD FOR PRODUCING A LAYER FROM CONDUCTOR MATERIAL FOR SEMICONDUCTOR COMPONENTS
EP2481083B1 (en) Method for fabricating an electronic device and device fabricated with this method
DE102005058654A1 (en) Method for the surface joining of components of semiconductor devices
DE10239318A1 (en) Rewiring contact points for integrated circuit chips
DE102015110437A1 (en) A semiconductor device having a metal structure electrically connected to a conductive structure
CH513250A (en) Contact layers for semiconductor devices
DE1639262A1 (en) Semiconductor component with a large area electrode
DE102016124862A1 (en) Semiconductor device with a solder stop
DE102012216546B4 (en) METHOD OF SOLDERING A SEMICONDUCTOR CHIP TO A CARRIER
DE10123280A1 (en) Production of contact bumps used in the production of flip-chip assemblies comprises applying copper to a support element, applying tin to the copper, and heating the copper and tin to a temperature at which remelting occurs
DE102020117678B3 (en) SEMI-CONDUCTOR DEVICE WITH HETEROGENIC SOLDER JOINT AND METHOD OF MANUFACTURING IT
DE102014116030A1 (en) Method for producing a connection and arrangement for a direct connection chip assembly
DE102006053146A1 (en) Production of a solder used in the production of electronic and/or optoelectronic components comprises applying layers containing gold and tin to a wetting metal and heating so that the gold and tin layers react to form an alloy

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal