DE10116252A1 - New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions - Google Patents

New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions

Info

Publication number
DE10116252A1
DE10116252A1 DE10116252A DE10116252A DE10116252A1 DE 10116252 A1 DE10116252 A1 DE 10116252A1 DE 10116252 A DE10116252 A DE 10116252A DE 10116252 A DE10116252 A DE 10116252A DE 10116252 A1 DE10116252 A1 DE 10116252A1
Authority
DE
Germany
Prior art keywords
fmoc
aryl
solid phase
mmol
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10116252A
Other languages
German (de)
Inventor
Horst Kunz
Michael Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10116252A priority Critical patent/DE10116252A1/en
Publication of DE10116252A1 publication Critical patent/DE10116252A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • C07K1/088General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing other elements, e.g. B, Si, As
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/1072General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
    • C07K1/1077General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of residues other than amino acids or peptide residues, e.g. sugars, polyols, fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/001Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence having less than 12 amino acids and not being part of a ring structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

2-Aryl-2-triorganylsilylether compounds (I) are new. 2-Aryl-2-triorganylsilylether compounds of formula (I) are new; R<1>-R<3> = aryl, alkyl or a benzoid, condensed or heterocyclic aromatic group; X = substituent containing heteroatoms such as N or O and/or functional groups such as carbonyl or carboxyl, and optionally bonded to a polymeric organic or inorganic support; Y = anchoring compound, containing protecting, deblockable or free functional groups at which solid phase synthesis can be carried out. An Independent claim is also included for the preparation of (I).

Description

Die Erfindung betrifft Anker-Verbindungen der allgemeinen Formel I,
The invention relates to anchor compounds of the general formula I,

in denen R1, R2 und R3 unabhänging voneinander Aryl- oder Alkylgruppen, vorzugsweise Methylgruppen sind, Aryl ein benzoider, auch kondensierter oder heterocyclischer aromatischer Rest und X ein an diesen in p-, m- oder o-Stellung angebundener Substituent ist, der auch Heteroatome, wie O und N und/oder funktionelle Gruppen, wie Carbonyl- oder Carboxylgruppen enthalten und an einen polymeren organischen oder anorganischen Träger angebunden werden oder sein kann; Y ist die verankerte Verbindung, die geschützte, deblockierbare funktionelle Gruppen enthält, an denen Festphasensynthesen durchgeführt werden können. In der Regel ist Y eine Acylgruppe oder eine Aminoacylgruppe. Es kann aber auch eine Aryl- oder funktionalisierte Alkylgruppe sein.in which R 1 , R 2 and R 3 are, independently of one another, aryl or alkyl groups, preferably methyl groups, aryl is a benzoid or condensed or heterocyclic aromatic radical and X is a substituent attached to them in the p, m or o position, which also contain heteroatoms such as O and N and / or functional groups such as carbonyl or carboxyl groups and can be or can be attached to a polymeric organic or inorganic support; Y is the anchored compound that contains protected, deblockable functional groups on which solid phase syntheses can be performed. As a rule, Y is an acyl group or an aminoacyl group. However, it can also be an aryl or functionalized alkyl group.

Die Strukturen des Typs I dienen als reversibel lösbare Anker für die Anbindung von Substratmolekülen am polymeren Träger. Besondere Bedeutung haben solche Anker in der Festphasensynthese von Peptiden und Glycopeptiden.The type I structures serve as reversibly releasable anchors for the connection of Substrate molecules on the polymeric carrier. Such anchors are of particular importance in the Solid phase synthesis of peptides and glycopeptides.

Daher sollen die vorteilhaften Eigenschaften dieses neuen Ankers am Beispiel des 2-Phenyl-2- trimethylsilylethyl-Ankers (PTMSEL, Formel I, Aryl = Phenyl, R1, R2, R3 = Methyl) in Festphasensynthesen von Peptiden und Glycopeptiden gezeigt werden.Therefore, the advantageous properties of this new anchor should be shown using the example of the 2-phenyl-2-trimethylsilylethyl anchor (PTMSEL, formula I, aryl = phenyl, R 1 , R 2 , R 3 = methyl) in solid-phase syntheses of peptides and glycopeptides.

Die Festphasensynthese ist für die vielseitige und schnelle Synthese von Peptiden und Peptidkonjugaten von besonderer Bedeutung. Das gilt insbesondere für die kombinatorische Synthese von Verbindungsbibliotheken und Scharen von Einzelverbindungen. Dieses kombinatiorische Syntheseprinzip ist inzwischen auf die Herstellung einer Vielzahl von organischen Substanzklassen ausgedehnt worden (Combinatorial Chemistry, Hrsg. G. Jung, Wiley-VCH, Weinheim, 1999). The solid phase synthesis is for the versatile and fast synthesis of peptides and Peptide conjugates of particular importance. This applies in particular to the combinatorial Synthesis of compound libraries and groups of individual compounds. This combinatorial synthesis principle is meanwhile on the production of a variety of organic substance classes have been expanded (Combinatorial Chemistry, ed. G. Jung, Wiley-VCH, Weinheim, 1999).  

Ein wichtiges Strukturelelement für Festphasensynthesen von Peptiden, Peptidkonjugaten und kombinatorischen Synthesen an fester Phase bildet der Anker, im englischen Schrifttum oft Linker genannt. Er muß stabil während der in der Regel mehrstufigen Synthesen an der Festphase sein, sich aber schlußendlich unter möglichst milden Bedingungen und ohne Beeinträchtigung der hergestellten Produkte spalten lassen. Am gebräuchlichsten sind säurelabile Anker (s. z. B. G.B. Fields, R. Noble, Int. J. Pept. Protein Res. 1990, 35, 161), z. B. vom p-Alkyloxy-benzylester-Typ (S.S. Wang, J. Am. Chem. Soc. 1973, 95, 1328). Bei deren Spaltung werden in der Regel andere säurelabile Schutzgruppen, etwa aus den Aminosäureseitenketten der an der Festphase aufgebauten Peptide gleichzeitig abgespalten, so daß die Produkte nicht in anschließenden Fragmentkondensationen (G. Benz, Synthesis 1993, 37) wieder verwendet werden können. Bei sauren und basischen Abspaltungsreaktionen treten darüberhinaus unerwünschte Nebenreaktionen an Peptiden ein, unter denen die Aspartimid-Bildung und Umacylierung an Aspartyl-Peptiden oft besonders schwer zu vermeiden ist (M. Bodanszky, J. Martinez, Synthesis 1981, 333). Vermeiden lassen sich die meisten dieser Nebenreaktionen, wenn neutral spaltbare Anker, wie die allylischen Anker (O. Seitz, H. Kunz, Angew. Chem. Int. Ed. Engl. 1995, 34, 803) verwendet werden. Wegen ihres geringen sterischen Anspruchs sind die Allyl-Anker-Ester jedoch gegenüber Aminolyse anfällig. Entsprechend neigen sie auch zur Diketopiperazin-Ablösung auf der harzgebundenen Dipeptidstufe, wenn man die basenlabile Fmoc-Gruppe als Aminoschutzgruppe auf dieser Stufe verwendet.An important structural element for solid phase synthesis of peptides, peptide conjugates and The anchor forms combinatorial syntheses on a solid phase, often in English literature Called left. It must be stable during the generally multi-stage syntheses on the solid phase be, but ultimately under the mildest possible conditions and without affecting the have the manufactured products split. The most common are acid-labile anchors (see e.g. G.B. Fields, R. Noble, Int. J. Pept. Protein Res. 1990, 35, 161), e.g. B. of the p-alkyloxy benzyl ester type (S.S. Wang, J. Am. Chem. Soc. 1973, 95, 1328). When they are split, there are usually others acid-labile protective groups, for example from the amino acid side chains of those on the solid phase built peptides split off simultaneously, so that the products are not in subsequent Fragment condensations (G. Benz, Synthesis 1993, 37) can be used again. at acidic and basic cleavage reactions also occur undesirable side reactions on peptides, among which the aspartimide formation and transacylation on aspartyl peptides often is particularly difficult to avoid (M. Bodanszky, J. Martinez, Synthesis 1981, 333). Avoid most of these side reactions occur when neutrally cleavable anchors, such as the allylic Anker (O. Seitz, H. Kunz, Angew. Chem. Int. Ed. Engl. 1995, 34, 803) can be used. Because of However, the allyl anchor esters are less steric than aminolysis susceptible. Accordingly, they also tend to detach diketopiperazine on the resin-bound Dipeptide level, if you consider the base-labile Fmoc group as an amino protective group at this level used.

Der den Verbindungen der allgemeinen Formel I entsprechende 2-(Alkoxyphenyl)-2- trimethylsilyl-ethyl-(PTMSEL)-Anker stellt einen neuartigen Anker dar, der auf der 2-Phenyl-2- trimethylsilyl-ethyl-(PTMSE)-ester-Schutzgruppe beruht.The 2- (alkoxyphenyl) -2- corresponding to the compounds of the general formula I trimethylsilyl-ethyl (PTMSEL) anchor is a new type of anchor based on the 2-phenyl-2- trimethylsilyl-ethyl (PTMSE) ester protecting group.

Der neue PTMSEL-Anker hat die folgenden Vorteile:
The new PTMSEL anchor has the following advantages:

  • a) Er kann durch eine Arylcuprat-Addition an Trimethylsilyl-oxiran 2 einfach gewonnen werden (Beispiel 1).a) It can be easily obtained by adding aryl cuprate to trimethylsilyl-oxirane 2 (Example 1).
  • b) Die Anbindung des verankerten Substrats, insbesondere von N-geschützten Aminosäuren an funktionalisierte Träger, wie Aminomethyl-polystyrol (AMPS) oder aminofunktionalisiertes Tentagel-Harz, kann mit guten Ausbeuten erreicht werden (Beispiel 2).b) The attachment of the anchored substrate, in particular of N-protected amino acids functionalized carriers, such as aminomethyl polystyrene (AMPS) or amino-functionalized Tentagel resin, can be achieved with good yields (Example 2).
  • c) Die Spaltung des PTMSEL-Ankers und damit die Freisetzung der an der Festphase synthetisierten Verbindungen gelingt bereits durch Einwirken von Tetrabutylammoniumfluorid-Trihydrat (TBAF) in Dichlormethan, d. h. unter praktisch neutralen Bedingungen nach dem in Schema 1 skizzierten Mechanismus.

    Schema 1

    Fluorid-induzierte Abspaltung des PTMSEL-Linkers

    Im Gegensatz zu anderen Silyl-Ankern (R. Ramage et al., Tetrahedron Lett. 1987, 28, 4105; G. Barany et al., J. Org. Chem. 1988, 53, 5240; M. Bernatowicz et al., J. Am. Chem. Soc. 1994, 116, 1746), die mit TBAF in Dimethylformamid, N-Methyl-pyrrolidon oder auch Tetrahydrofuran gespalten werden müssen, können unter den milden Bedingungen der Spaltung des PTMSEL-Ankers störende Nebenreaktionen, wie die Bildung von Aspartimiden und umgelagerten Peptiden bei Asparaginsäure enthaltenden Peptiden weitgehend unterdrückt werden (Beispiel 3).
    c) The cleavage of the PTMSEL anchor and thus the release of the compounds synthesized on the solid phase already succeeds through the action of tetrabutylammonium fluoride trihydrate (TBAF) in dichloromethane, ie under practically neutral conditions according to the mechanism outlined in Scheme 1.

    Scheme 1

    Fluoride-induced cleavage of the PTMSEL linker

    In contrast to other silyl anchors (R. Ramage et al., Tetrahedron Lett. 1987, 28, 4105; G. Barany et al., J. Org. Chem. 1988, 53, 5240; M. Bernatowicz et al., J. Am. Chem. Soc. 1994, 116, 1746), which have to be cleaved with TBAF in dimethylformamide, N-methyl-pyrrolidone or also tetrahydrofuran, can, under the mild conditions of cleavage of the PTMSEL anchor, cause undesirable side reactions, such as formation of aspartimides and rearranged peptides in peptides containing aspartic acid are largely suppressed (Example 3).
  • d) Unter den milden Bedingungen der Spaltung des PTMSEL-Ankers sind die meisten der in der Peptidchemie üblichen Schutzgruppen und auch basenempfindliche glycosidische Bindungen und Schutzgruppen in Glycopeptidsynthesen stabil (Beispiel 4). So können auch geschützte Peptide und Glycopeptide von der Festphase abgelöst werden, die direkt in Fragmentkondensationen eingesetzt werden können (Beispiele 4 und 5).d) Under the mild conditions of cleavage of the PTMSEL anchor, most of those in the Peptide chemistry usual protective groups and base-sensitive glycosidic bonds and protecting groups are stable in glycopeptide syntheses (Example 4). So protected too Peptides and glycopeptides are detached from the solid phase, which are directly in Fragment condensations can be used (Examples 4 and 5).
  • e) Der PTMSEL-Anker ist sterisch so anspruchsvoll, daß bei Abspaltungen der Fmoc-Gruppe kein Verlust an polymergebundenem Peptid verzeichnet wird (Beispiele 3-5). Auch wird die intramolekulare Aminolyse zum Diketopiperazin, die auf der Stufe des polymergebundenen Dipeptids besonders bei der Abspaltung der Fmoc-Gruppe häufig für Verluste verantwortlich ist, weitgehend unterdrückt (Beispiel 5).e) The PTMSEL anchor is sterically so demanding that the Fmoc group is split off no loss of polymer-bound peptide is recorded (Examples 3-5). Also the intramolecular aminolysis to diketopiperazine, which is at the polymer-bound stage Dipeptides are often responsible for losses, especially when the Fmoc group is split off is largely suppressed (Example 5).

Die vorgenannten Vorteile werden nachfolgend an den einzelnen Beispielen belegt und in den dazu gehörigen Experimentalteilen ausgeführt.The above advantages are demonstrated in the individual examples below and in the associated experimental parts performed.

Beispiel 1example 1 Synthese des PTMSEL-AnkersSynthesis of the PTMSEL anchor

Die Synthese des Ankers erfolgt in drei Stufen ausgehend von Trimethylvinylsilan 1, welches mit m-Chlorperbenzoesäure zum Trimethylsilyloxiran 2 epoxidiert wird. Anschließende Reaktion mit Lithium-di(p-ethoxyethyloxyphenyl)cuprat, welches in situ durch Lithierung von 1-(4- Bromophenoxy)-1-ethoxyethan mit n-Butyllithium und Reaktion der lithiierten Verbindung mit Kupfer(I)iodid gewonnen wird, liefert (2-p-Ethoxyethyloxyphenyl-2-trimethylsilyl)ethanol 3 in 55%iger Ausbeute. Die Ethoxethyl-Schutzgruppe wird mit kat. Mengen p-Toluolsulfonsäure- Pyridinium-Salz in MeOH abgespalten. Der PTMSEL-Linker, (2-p-Hydroxyphenyl-2- trimethylsilyl)ethanol 4, wird in 90%iger Ausbeute erhalten (50% bezogen auf 2- Trimethylsilyloxiran 2).The synthesis of the anchor is carried out in three stages from trimethylvinylsilane 1, which with m-chloroperbenzoic acid is epoxidized to trimethylsilyloxirane 2. Subsequent reaction with  Lithium di (p-ethoxyethyloxyphenyl) cuprate, which is obtained in situ by lithiation of 1- (4- Bromophenoxy) -1-ethoxyethane with n-butyllithium and reaction of the lithiated compound with Copper (I) iodide is obtained, provides (2-p-ethoxyethyloxyphenyl-2-trimethylsilyl) ethanol 3 in 55% yield. The ethoxethyl protective group is cat. Amounts of p-toluenesulfonic acid Cleaved pyridinium salt in MeOH. The PTMSEL linker, (2-p-hydroxyphenyl-2- trimethylsilyl) ethanol 4, is obtained in 90% yield (50% based on 2- Trimethylsilyloxirane 2).

Schema 2 Scheme 2

Synthese des Ankers Synthesis of the anchor

Beispiel 2Example 2 Die Anbindung des mit einer N-geschützten Aminosäure beladenen Ankers an polymere TrägerThe connection of the anchor loaded with an N-protected amino acid polymeric carriers

Die Anbindung an das Polymer erfolgt über die phenolische Hydroxy-Funktion. Die N-Acyl- Aminosäure wird in Lösung an den Anker gekuppelt. Eine Veresterung an fester Phase ist oftmals mit Problemen der Racemisierung der anzubindenden Startaminosäure belastet.The binding to the polymer takes place via the phenolic hydroxyl function. The N-acyl Amino acid is coupled to the anchor in solution. Esterification on a solid phase is often with problems of racemization of the start amino acid to be bound.

(2-p-Hydroxyphenyl-2-trimethylsilyl)ethanol 4 wird mit Chloressigsäureallylester in Aceton in Gegenwart von K2CO3 und Kaliumiodid zu 4-[2-Hydroxy-1- (trimethylsilyl)ethyl]phenoxyessigsäureallylester 5 umgesetzt. Anschließende Veresterung mit der Fmoc-geschützten Aminosäure nach Steglich (Dicyclohexylcarbodiimid, kat. Mengen DMAP) liefert die als Allylester geschützte Verbindung 6 (Ausbeuten: < 90%). Der Allylester in 6 wird quantitativ durch Allyltransfer mittels Pd(PPh3)4 und p-Toluolsulfinsäure-Natriumsalz (I. Nagakura et al., J. Org. Chem. 1997, 62, 8932) oder einem anderen Allyl-Scavenger (M. Ciommer, H. Kunz, Synlett 1991, 593) gespalten und ergibt die verankerbare Carbonsäure 7 (Ausbeuten ≈35% über 5 Stufen ausgehend von 2-Trimethylsilyloxiran 2), die nun unter Verwendung von Kupplungsreagenzien, wie z. B. TBTU/HOBt/DIPEA (R. Knorr et al., Tetrahedron Lett. 1989, 30, 1927) in einem Gemisch aus DMF/CH2Cl2, an ein aminofunktionalisiertes Polymerharz gebunden werden kann.(2-p-Hydroxyphenyl-2-trimethylsilyl) ethanol 4 is reacted with allyl chloroacetate in acetone in the presence of K 2 CO 3 and potassium iodide to give 4- [2-hydroxy-1- (trimethylsilyl) ethyl] phenoxyacetate 5. Subsequent esterification with the Fmoc-protected amino acid according to Steglich (dicyclohexylcarbodiimide, cat. Amounts of DMAP) provides compound 6, which is protected as an allyl ester (yields: <90%). The allyl ester in 6 is quantitatively determined by allyl transfer using Pd (PPh 3 ) 4 and p-toluenesulfinic acid sodium salt (I. Nagakura et al., J. Org. Chem. 1997, 62, 8932) or another allyl scavenger (M. Ciommer, H. Kunz, Synlett 1991, 593) cleaved and gives the anchorable carboxylic acid 7 (yields ≈35% over 5 steps starting from 2-trimethylsilyloxirane 2), which are now using coupling reagents, such as. B. TBTU / HOBt / DIPEA (R. Knorr et al., Tetrahedron Lett. 1989, 30, 1927) in a mixture of DMF / CH 2 Cl 2 , can be bound to an amino-functionalized polymer resin.

Schema 3 Scheme 3

Anbindung des mit einer Fmoc-Aminosäure beladenen Ankers an das Polymer Connection of the anchor loaded with an Fmoc amino acid to the polymer

Als Harze wurden aminofunktionalisiertes Polystyrol-Harz, AMPS (ACT; 200-400 mesh; Beladung: 1.00 mmol/g), bzw. aminofunktionalisiertes Tentagel-Harz (W. Rapp et al. in "Innovation & Perspectives in Solid Phase Synthesis, 1st International Symposium", Epton (Eds), SPCC UK Ltd., Birmingham, 1990, 205), Nova Syn Tg amino resin (Novabiochem, 110 µm beads, Beladung: 0.43 mmol/g) verwendet. Amino-functionalized polystyrene resin, AMPS (ACT; 200-400 mesh; loading: 1.00 mmol / g), or amino-functionalized tentagel resin (W. Rapp et al. In "Innovation & Perspectives in Solid Phase Synthesis, 1 st International Symposium ", Epton (Eds), SPCC UK Ltd., Birmingham, 1990, 205), Nova Syn Tg amino resin (Novabiochem, 110 µm beads, loading: 0.43 mmol / g).

Unumgesetzte Aminogruppen des polymeren Trägers werden durch Reaktion mit einer Mischung aus Acetanhydrid/Pyridin (1 : 3) acetyliert.Unreacted amino groups of the polymeric carrier are reacted with a mixture acetylated from acetic anhydride / pyridine (1: 3).

Beispiel 3Example 3 Festphasensynthese eines Asparaginsäure enthaltenden Heptapeptids am PTMSEL-AnkerSolid phase synthesis of a heptapeptide containing aspartic acid on PTMSEL anchor

Mit Hilfe des neuen Ankers wird ein geschütztes Heptapeptid an der Festphase synthetisiert, um die bei Peptidsynthesen häufig auftretende Nebenreaktion der Aspartimidbildung und -umlagerung zu untersuchen. Aspartimidbildungen werden sowohl unter sauren als auch unter basischen Bedingungen beobachtet. Die meisten der beschriebenen Silyl-Anker haben den Nachteil, daß die zur Spaltung verwendeten Bedingungen (TBAF in DMF oder THF) so basisch sind, daß die Aspartimidbildung nicht unterdrückt werden kann, ja sogar in den meisten Fällen zu einem unerwünschten Hauptprodukt führt.With the help of the new anchor, a protected heptapeptide is synthesized on the solid phase the side reaction of aspartimide formation which often occurs in peptide synthesis and -examine rearrangement. Aspartimide formations are found both under acidic and under basic conditions observed. Most of the silyl anchors described have that Disadvantage that the conditions used for cleavage (TBAF in DMF or THF) are so basic are that aspartimide formation cannot be suppressed, even in most cases leads to an undesirable main product.

Das Heptapeptid Boc-Leu-Asp(OtBu)-Ala-Asn(Trt)-Gly-Ile-Ile-OH wird in einer automatisierten Synthese am PTMSEL-Anker hergestellt.The heptapeptide Boc-Leu-Asp (OtBu) -Ala-Asn (Trt) -Gly-Ile-Ile-OH is automated in a Synthesis made on the PTMSEL anchor.

Dabei werden die Fmoc-Abspaltungen in vier bis fünf Zyklen a 4 min mit Piperidin (30% Piperidin in NMP) vorgenommen. Die Kupplungen werden mit 10 Äquivalenten an Fmoc- bzw. Boc-Aminosäuren und Kupplungsreagenzien (HBTU, HOBt, DIPEA) durchgeführt. Nach jeder Kupplung wird mit einer Mischung aus Acetanhydrid/DIPEA/HOBt in NMP ein Cappingschritt durchgeführt. Nach abgeschlossener Synthese wird noch im Synthesizer ausgiebig mit NMP und anschließend mit CH2Cl2 gewaschen. Dies ist wichtig, da bei der fluorid-induzierten Abspaltung kein NMP bzw. DMF vorhanden sein darf. TBAF.3H2O ist in polaren, aprotischen Lösungsmitteln wie DMF, NMP oder THF stark basisch, in CH2Cl2 jedoch nur sehr schwach basisch (nahezu neutral). Die fluorid-induzierte Abspaltung vom polymeren Träger wird manuell vorgenommen. Dazu wird das Harz mit einer Lösung von 2 Äquiv. TBAF.3H2O (0.2 mmol) in CH2Cl2 versetzt, ca. 25 Minuten geschüttelt, filtriert und die organische Lösung mit Wasser gewaschen, um noch vorhandenes Fluorid zu entfernen. Der Abspaltvorgang wird noch einmal mit ca. 0.7 Äquiv. TBAF.3H2O (0.07 mmol, ca. 2 Äquiv. bezogen auf noch auf dem Harz verbliebenes Produkt) wiederholt. Einzelheiten und Aufarbeiten sind im Experimentellen Teil beschrieben. The Fmoc cleavages are carried out in four to five 4-minute cycles with piperidine (30% piperidine in NMP). The couplings are carried out with 10 equivalents of Fmoc or Boc amino acids and coupling reagents (HBTU, HOBt, DIPEA). After each coupling, a capping step is carried out with a mixture of acetic anhydride / DIPEA / HOBt in NMP. After synthesis is complete, the synthesizer is washed extensively with NMP and then with CH 2 Cl 2 . This is important because there is no NMP or DMF present in the fluoride-induced cleavage. TBAF.3H 2 O is strongly basic in polar, aprotic solvents such as DMF, NMP or THF, but only very weakly basic (almost neutral) in CH 2 Cl 2 . The fluoride-induced cleavage from the polymeric carrier is carried out manually. For this, the resin is mixed with a solution of 2 equiv. TBAF.3H 2 O (0.2 mmol) in CH 2 Cl 2 , shaken for approx. 25 minutes, filtered and the organic solution washed with water to remove any fluoride still present. The splitting off process is carried out again with approx. 0.7 equiv. TBAF.3H 2 O (0.07 mmol, approx. 2 equiv. Based on the product still remaining on the resin) is repeated. Details and processing are described in the experimental part.

Schema 4 Scheme 4

Synthese eines geschützten Heptapeptids, das Asparaginsäure enthält Synthesis of a protected heptapeptide containing aspartic acid

Es werden die aus beiden Abspaltungen erhaltenen CH2Cl2-Lösungen getrennt aufgearbeitet. Beide Fraktionen zeigen in den HPLC-Spektren die gleiche Zusammensetzung. In Abb. 1 ist ein solches HPLC-Spektrum dargestellt. Die einzelnen Peaks werden durch HPLC-MS-Analyse identifiziert.The CH 2 Cl 2 solutions obtained from the two cleavages are worked up separately. Both fractions show the same composition in the HPLC spectra. Such an HPLC spectrum is shown in Fig. 1. The individual peaks are identified by HPLC-MS analysis.

Abb. 1 Fig. 1

HPLC-Chromatogramm des Rohproduktes 9 HPLC chromatogram of the crude product 9

Wie sich an den HPLC-ESI-Spektren (Abb. 1) zeigt, kann die Aspartimidbildung auf ca. 3% reduziert werden. Nach Reinigung wird das gewünschte, voll geschützte Heptapeptid in 90%iger Ausbeute erhalten.As can be seen from the HPLC-ESI spectra ( Fig. 1), the aspartimide formation can be reduced to approx. 3%. After purification, the desired, fully protected heptapeptide is obtained in 90% yield.

Es zeigt sich also, daß die verwendeten Abspaltungsbedingungen so mild sind, daß selbst die sonst unter basischen Bedingungen zumal bei einer Asp-Gly-Sequenz leicht ablaufende Aspartimidbildung nur in sehr geringem Ausmaße beobachtet wird. It turns out that the separation conditions used are so mild that even otherwise under basic conditions, especially in the case of an Asp-Gly sequence Aspartimide formation is observed to a very limited extent.  

Beispiel 4Example 4 Festphasensynthese eines Glycodecapeptids am PTMSEL-AnkerSolid phase synthesis of a glycodecapeptide on the PTMSEL anchor

Nach dem im vorstehenden Beispiel beschriebenen Prinzip wird ein Glycodecapeptid synthetisiert, um die Stabilität von basenlabilen O-Glycopeptiden bzw. von basenlabilen Hydroxy-Schutzgruppen (Acetyl) unter den verwendeten Abspaltungsbedingungen zu untersuchen.According to the principle described in the previous example, a glycodecapeptide synthesized to the stability of base-labile O-glycopeptides or of base-labile Hydroxy protective groups (acetyl) under the elimination conditions used investigate.

Das Glycodecapeptid Boc-Leu-Ala-Ala-Leu-Asp(OtBu)-Ser(αAc3GalNAc)-Gln(Trt)-Gly-Ala-Ile- OH wird wie das Heptapeptid in einem Peptidsynthesizer synthetisiert. Allerdings wird der glycosylierte Baustein Fmoc-Ser(αAc3GalNAc)-OH manuell gekuppelt. Von diesem Baustein werden nur 3 Äquiv. eingesetzt, dafür wird aber auf das reaktivere Kupplungsgemisch HATU/­ HOAt (L. A. Carpino et al., J. Chem. Soc. Chem. Commun. 1994, 201) zurückgegriffen.The glycodecapeptide Boc-Leu-Ala-Ala-Leu-Asp (OtBu) -Ser (αAc 3 GalNAc) -Gln (Trt) -Gly-Ala-Ile-OH is synthesized in a peptide synthesizer like the heptapeptide. However, the glycosylated building block Fmoc-Ser (αAc 3 GalNAc) -OH is coupled manually. Only 3 equiv. used, but the more reactive coupling mixture HATU / HOAt (LA Carpino et al., J. Chem. Soc. Chem. Commun. 1994, 201) is used for this.

Schema 5 Scheme 5

Festphasensynthese eines Glycodecapeptids am PTMSEL-Anker Solid phase synthesis of a glycodecapeptide on the PTMSEL anchor

Abspaltung und Aufarbeitung werden wieder analog zur Prozedur bei der Synthese des Heptapeptides durchgeführt. Wiederum zeigen beide Abspaltfraktionen in der HPLC die gleiche chemische Zusammensetzung. In Abb. 2 ist ein solches HPLC-Chromatogramm des Rohproduktes wiedergegeben. Die einzelnen Peaks wurden durch HPLC-MS-Analyse identifiziert. Splitting off and working up are again carried out analogously to the procedure for the synthesis of the heptapeptide. Again, both cleavage fractions show the same chemical composition in HPLC. Such an HPLC chromatogram of the crude product is shown in Fig. 2. The individual peaks were identified by HPLC-MS analysis.

Abb. 2 Fig. 2

HPLC-Chromatogramm des Rohproduktes 11 HPLC chromatogram of the crude product 11

Wiederum entspricht der Hauptpeak (92%) dem gewünschten Produkt. Als Nebenprodukt können das Aspartimid enthaltende Peptid 12 (2%) und auch verschiedene Deletionssequenzen (zusammen ca. 4%) identifiziert werden.Again the main peak (92%) corresponds to the desired product. As a by-product can peptide 12 (2%) containing aspartimide and also various deletion sequences (together about 4%) can be identified.

Es werden allerdings keine Nebenprodukte beobachtet, die durch eine β-Eliminierung an dem glycosylierten Serin-Fragment oder durch Abspaltung einzelner Acetyl-Schutzgruppen entstanden sind. Die Abtrennung der beschriebenen Nebenprodukte kann durch präparative HPLC erfolgen. Man isoliert das Glycodecapeptid in 66% Ausbeute bezogen auf die Anfangsbeladung des Harzes (Polymer 8a). However, no by-products are observed that are caused by a β-elimination on the glycosylated serine fragment or by splitting off individual acetyl protective groups are. The by-products described can be separated off by preparative HPLC. The glycodecapeptide is isolated in 66% yield based on the initial loading of the resin (Polymer 8a).  

Beispiel 5Example 5 Synthese und Abspaltung eines Fmoc-Peptids mit der zur Diketopiperazin- Bildung neigenden Prolyl-glycin-SequenzSynthesis and cleavage of an Fmoc peptide with the diketopiperazine Prolyl-glycine-forming sequence

Eine weitere häufig beobachtete Nebenreaktion bei der Peptid-Festphasensynthese ist die Diketopiperazinbildung. Bei der Verwendung von sterisch nicht anspruchsvollen Ankersystemen kann es auf der Stufe des Dipeptides nach Abspaltung der Fmoc-Schutzgruppe zur intramolekularen Aminolyse der Ester-Bindung durch die N-terminal freigesetzte Aminofunktion kommen. Solche Diketopiperazinbildungen werden besonders bei Sequenzen wie -Pro-Pro-O- Anker, -Pro-Gly-O-Anker oder -Tyr-Pro-O-Anker beobachtet. Andererseits konnte gezeigt werden, daß durch sterisch anspruchsvolle Linker, wie z. B. die Trityl-Linker, die Diketopiperazinbildung unterdrückt werden kann.Another frequently observed side reaction in peptide solid phase synthesis is Diketopiperazine. When using sterically not demanding anchor systems it can be at the dipeptide level after the Fmoc protecting group has been split off intramolecular aminolysis of the ester bond by the N-terminal released amino function come. Such diketopiperazine formations are particularly common in sequences such as -Pro-Pro-O- Anchor, -Pro-Gly-O-anchor or -Tyr-Pro-O-anchor observed. On the other hand could show be that through sterically demanding linkers such. B. the trityl linker, the Diketopiperazine formation can be suppressed.

Im folgenden wird an der Synthese des Tripeptides Fmoc-Phe-Pro-Gly-OH gezeigt, daß beim PTMSEL-Anker eine solche Diketopiperazinbildung unterbunden wird. Dazu wird von dem über den PTMSEL-Anker an das Polymer 8b gebundenen Fmoc-Glycin ausgegangen und die Synthese manuell durchgeführt. Gekuppelt wird mit nur 6.5 Äquiv. an Kupplungsreagenzien.In the following it is shown on the synthesis of the tripeptide Fmoc-Phe-Pro-Gly-OH that at PTMSEL anchor prevents such diketopiperazine formation. This is done by the over the PTMSEL anchor to polymer 8b bound Fmoc-glycine and the synthesis done manually. It is coupled with only 6.5 equiv. on coupling reagents.

Schema 6 Scheme 6

Synthese eines Tripeptides zur Untersuchung einer möglichen Diketopiperazin­ bildung Synthesis of a tripeptide to investigate possible diketopiperazine formation

Nach der zweiten Fmoc-Abspaltung, welche mit einer 20%igen Lösung von Piperidin in DMF durch 25minütiges Schütteln vorgenommen wird (normalerweise genügen weniger als 10 min), wird die erhaltene Lösung auf Diketopiperazin untersucht (→ Dünnschichtchromatographie, HPLC-MS-Kopplung). Es kann jedoch kein Diketopiperazin nachgewiesen werden. Außerdem wird nach jeder gekuppelten Aminosäure eine photometrische Beladungsbestimmung durchgeführt, um so eine Aussage über eventuell auftretende Schwierigkeiten bei den Aminosäurekupplungen zu erhalten (Tabelle 1).After the second Fmoc cleavage, which was carried out with a 20% solution of piperidine in DMF by shaking for 25 minutes (normally less than 10 minutes are sufficient), the solution obtained is examined for diketopiperazine (→ thin layer chromatography, HPLC-MS-coupling). However, no diketopiperazine can be detected. Moreover a photometric load determination is carried out after each coupled amino acid carried out in order to make a statement about possible difficulties with the Obtain amino acid couplings (Table 1).

Tabelle 1 Table 1

Beladungsbestimmung auf der Stufe jeder gekuppelten Aminosäure Load determination at the level of each coupled amino acid

Die Beladungsbestimmungen zeigen ebenfalls keine Diketopiperazinbildung an. Nach erfolgter Synthese des Tripeptides wurde die fluorid-induzierte Abspaltung vom polymeren Träger in gewohnter Weise durchgeführt. Abb. 3 zeigt das HPLC-Spektrum des erhaltenen Rohproduktes. The loading determinations also show no formation of diketopiperazine. After the synthesis of the tripeptide, the fluoride-induced cleavage from the polymeric carrier was carried out in the usual way. Fig. 3 shows the HPLC spectrum of the crude product obtained.

Abb. 3 Fig. 3

HPLC-Chromatogramm des Fmoc-Tripeptides 13 HPLC chromatogram of the Fmoc tripeptide 13

Anschließende säulenchromatographische Reinigung an Kieselgel liefert das gewünschte, N- terminal Fmoc-geschützte Tripeptid in 77%iger Ausbeute. Berücksichtigt man die für die Beladungsbestimmung entnommenen Mengen an Harz, so errechnet sich eine Ausbeute von ca. 90% bezogen auf die Anfangsbeladung des Polymers 8b.Subsequent column chromatographic purification on silica gel provides the desired N- terminal Fmoc-protected tripeptide in 77% yield. Taking that into account Amount of resin taken from the load determination, a yield of approx. 90% based on the initial loading of polymer 8b.

Zusammenfassend läßt sich feststellen, daß der erfindungsgemäße PTMSEL-Linker in ausgezeichneter Weise für die Festphasensynthese von geschützten Peptiden und Glycopeptiden nach der Fmoc-Strategie geeignet ist. Die Produkte lassen sich mittels des neuen Linker-Systems in hoher Ausbeute herstellen. Die Abspaltung vom polymeren Träger verläuft einfach, ohne absolutierte Lösungsmittel oder teure Chemikalien und liefert in der Regel die gewünschten Peptide in sehr reiner Form. Die meisten der in der Peptidchemie gebräuchlichen Schutzgruppen (Fmoc, Boc, Z, Aloc, tert. Butylester, Benzylester, Allylester, Trityl, Acetyl, etc.) sind unter den verwendeten, milden Bedingungen der Spaltung des PTMSEL-Ankers stabil, so daß geschützte Peptide aller Art (dreidimensionale Schutzgruppenstrategien für N-Terminus bzw. Seitenkettenfunktionalitäten sind denkbar) synthetisiert werden können. Die verwendeten Ablösungsbedingungen sind sogar so mild (nahezu neutral), daß selbst unter basischen Bedingungen leicht ablaufende Aspartimidbildungen weitgehend unterdrückt werden können und auch bei den basenlabilen O-Glycopeptiden keine Nebenreaktionen beobachtet werden. Auch ist der neue Linker sterisch so anspruchsvoll, daß keine Diketopiperazinbildungen auf der Stufe der zweiten an das Polymer gebundenen Aminosäure beobachtet werden.In summary, it can be stated that the PTMSEL linker according to the invention in excellent way for the solid phase synthesis of protected peptides and glycopeptides according to the Fmoc strategy. The products can be created using the new linker system produce in high yield. The cleavage from the polymeric carrier is simple, without absolute solvents or expensive chemicals and usually delivers the desired ones Peptides in a very pure form. Most of the protecting groups used in peptide chemistry (Fmoc, Boc, Z, Aloc, tert. Butyl ester, benzyl ester, allyl ester, trityl, acetyl, etc.) are among the used, mild conditions of cleavage of the PTMSEL anchor stable, so that protected Peptides of all kinds (three-dimensional protecting group strategies for N-terminus or Side chain functionalities are conceivable) can be synthesized. The used Detachment conditions are so mild (almost neutral) that even basic ones Conditions of easy aspartimide formation can be largely suppressed and no side reactions were observed even with the base-labile O-glycopeptides. Is too the new linker sterically so demanding that no diketopiperazine formation at the level of second amino acid bound to the polymer can be observed.

Eine Festphasensynthese nach der Boc-Strategie ist allerdings nicht möglich, da der PTMSEL- Linker durch Einwirkung von TFA (zur C-terminal freien Säure) gespalten wird. Diese Labilität unter acidolytischen Bedingungen wurde bereits bei der Einführung der PTMSE-Schutzgruppe (M. Wagner, H. Kunz, Synlett 2000, 400) eingehend beschrieben.A solid phase synthesis according to the Boc strategy is not possible, however, because the PTMSEL Linker is cleaved by the action of TFA (to the C-terminal free acid). This instability  was already under acidolytic conditions when the PTMSE protective group was introduced (M. Wagner, H. Kunz, Synlett 2000, 400).

Experimenteller TeilExperimental part 2-Trimethylsilyloxiran 22-trimethylsilyloxirane 2

In einem Dreihalskolben werden 24.51 g (0.1008 mmol) m-Chlorperbenzoesäure in ca. 235 ml Chloroform mittels Eisbad auf 0°C abgekühlt. Über einen Tropftrichter werden 15.5 ml (0.1008 mmol) Trimethylvinylsilan in 50 ml Chloroform tropfenweise zugegeben. Nach 60 Stunden Rühren bei Raumtemp. Wird der ausgefallene farblose Niederschlag abfiltriert und das Filtrat mit 200 ml ges. NaHCO3-Lsg. ausgeschüttelt. Nach Waschen mit 200 ml ges. NaHSO3-Lsg. und mit 200 ml ges. NaHCO3-Lsg. wird die organische Phase über MgSO4 getrocknet. Das Chloroform wird abdestilliert. Der Rückstand wird i. vak. (370 mbar) destilliert.
Ausb.: 7.50 g (64%); farblose Flüssigkeit; Sdp.370 mbar: 75-79°C (Lit. Sdp.: 109-110°C); nD 25 = 1.414 (Lit.: C. T. Dong, Chem. Abstr. 1959, 54, 471; nD 25 = 1.414).
200 MHz-1H-NMR (CDCl3): δ (ppm): 2.88 (t, 1H, β-CH, J = 5.6 Hz); 2.50-2.56 (m, 1H, β-CH); 2.17 (t, 1H, α-CH, J = 4.6 Hz); 0.04 (s, 9H, Si(CH3)3).
In a three-necked flask, 24.51 g (0.1008 mmol) of m-chloroperbenzoic acid in approx. 235 ml of chloroform are cooled to 0 ° C. using an ice bath. 15.5 ml (0.1008 mmol) of trimethylvinylsilane in 50 ml of chloroform are added dropwise via a dropping funnel. After stirring for 60 hours at room temperature. If the precipitated colorless precipitate is filtered off and the filtrate is saturated with 200 ml. NaHCO 3 solution. shaken. After washing with 200 ml sat. NaHSO 3 solution. and sat with 200 ml. NaHCO 3 solution. the organic phase is dried over MgSO 4 . The chloroform is distilled off. The residue is i. vak. (370 mbar) distilled.
Yield: 7.50 g (64%); colorless liquid; Bp 370 mbar : 75-79 ° C (lit bp: 109-110 ° C); n D 25 = 1.414 (Lit .: CT Dong, Chem. Abstr. 1959, 54, 471; n D 25 = 1.414).
200 MHz 1 H NMR (CDCl 3 ): δ (ppm): 2.88 (t, 1H, β-CH, J = 5.6 Hz); 2.50-2.56 (m, 1H, β-CH); 2.17 (t, 1H, α-CH, J = 4.6 Hz); 0:04 (s, 9H, Si (CH 3) 3).

(2-p-Ethoxyethyloxyphenyl-2-trimethylsilyl)ethanol 3(2-p-ethoxyethyloxyphenyl-2-trimethylsilyl) ethanol 3 1. Lithiierung1. Lithiation

Zu 33.09 g (135.0 mmol) 1-(4-Bromophenoxy)-1-ethoxyethan in 150 ml absol. Diethylether unter Argon werden bei -45°C 84.37 ml (135.0 mmol) einer n-Butyllithium-Lsg. (1.6 M-Lsg. in Hexan) im Verlauf von 30 Minuten zugetropft. Danach wird 20 Minuten bei -40°C gerührt. Dann läßt man innerhalb von 45 Minuten auf +10°C kommen und rührt weitere 90 Minuten.To 33.09 g (135.0 mmol) of 1- (4-bromophenoxy) -1-ethoxyethane in 150 ml of absolute. Diethyl ether under Argon are 84.37 ml (135.0 mmol) of an n-butyllithium solution at -45 ° C. (1.6 M solution in hexane) added dropwise in the course of 30 minutes. The mixture is then stirred at -40 ° C for 20 minutes. Then lets the mixture is brought to + 10 ° C. within 45 minutes and stirred for a further 90 minutes.

2. Cupratbildung und Cuprataddition2. Cuprate formation and cuprate addition

12.29 g (65.5 mmol) Cu(I)J werden in 40 ml absol. Diethylether suspendiert. Nun wird die vorstehend beschriebene Lösung der lithiierten Verbindung in einen 500 ml Tropftrichter überkanüliert. Bei 0°C tropft man die Lösung der lithiierten Verbindung innerhalb von 70 Minuten zur Cu-Iodid-Suspension zu. Man läßt 30 Minuten rühren, kühlt auf -50°C ab und tropft bei -50°C 2.7 g (23.2 mmol) 2-Trimethylsilyloxiran mit einer Spritze zu. Man läßt 5 Stunden bei dieser Temperatur rühren. Dann tauscht man die Aceton/Trockeneis-Kühlung gegen eine Eis- Kochsalz-Kühlung (Verhältnis 3 : 1 → -19°C) aus und rührt 14 Std. bei -19°C. Man versetzt mit 200 ml einer ges. NH4Cl-Lsg. und rührt 10 Minuten bei 0°C. Die Mischung wird in einen Scheidetrichter gegeben, mit 300 ml Ethylacetat und weiteren 200 ml einer ges. NH4Cl-Lsg. versetzt und kräftig geschüttelt. Die organische Phase wird zweimal mit 250 ml ges. NH4Cl-Lsg. gewaschen. Die wässr. Phasen werden mit 300 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden über MgSO4 getrocknet und i. Vak. vom Lösungsmittel befreit. Der Rückstand (ca. 30 g) wird durch Chromatographie an 650 g Kieselgel im Laufmittel PE/EE 7 : 1 (Zusatz von 0.1% Triethylamin) gereinigt. Die Produktfraktionen werden mit Toluol versetzt und eingeengt. Das Produkt wird viermal mit Toluol kodestilliert, um Reste des Triethylamins zu entfernen.
Ausb.: 3.6 g (55%); braunes Öl; Rf = 0.23 (PE/EE 6 : 1); [α]D 22 = 0° (c = 1.00, Aceton).
200 MHz-1H-NMR (Aceton-d6): δ (ppm): 7.03 (d, 2H, 2 arom. H, J = 8.79 Hz); 6.89 (d, 2H, 2 arom. H, J = 8.30 Hz); 5.35 (q, 1H, O-CH-O, J = 5.21 Hz); 3.92-4.07 (m, 2H, CH2-OH); 3.65-3.77 (m, 1H, OH); 3.45-3.58 (m, 2H, CH3-CH2-O); 2.31-2.38 (dd, 1H, TMSCH, J1 = 3.41 Hz, J2 = 5.37 Hz); 1.39 (d, 3H, CH-CH3, J = 5.37 Hz); 1.13 (t, 3H, CH2-CH3, J = 6.84 Hz); -0.04 (s, 9H, Si(CH3)3).
50.3 MHz-13C-NMR (Aceton-d6; BB, DEPT): δ (ppm): 155.42 (1C, CipsoAr-O); 136.51 (1C, Cipso­ Ar-CH); 129.48 (2C, 2 arom. C); 118.02 (2C, 2 arom. C); 100.37 (1C, O-CH-O); 63.60 (1C, CH2- O); 61.79 (1C, CH3-CH2-O); 41.00 (1C, Si(CH3)3-CH); 20.71 (1C, CH3-CH); 15.52 (1C, CH3- CH2); -2.16 (3C, Si(CH3)3).
12.29 g (65.5 mmol) Cu (I) J are made absolute in 40 ml. Diethyl ether suspended. Now the solution of the lithiated compound described above is cannulated into a 500 ml dropping funnel. At 0 ° C., the solution of the lithiated compound is added dropwise to the Cu iodide suspension within 70 minutes. The mixture is stirred for 30 minutes, cooled to -50 ° C. and 2.7 g (23.2 mmol) of 2-trimethylsilyloxirane are added dropwise at -50 ° C. using a syringe. The mixture is stirred for 5 hours at this temperature. Then you replace the acetone / dry ice cooling with an ice-salt cooling (ratio 3: 1 → -19 ° C) and stir for 14 hours at -19 ° C. 200 ml of a sat. NH 4 Cl solution. and stirred for 10 minutes at 0 ° C. The mixture is placed in a separatory funnel, with 300 ml of ethyl acetate and a further 200 ml of a sat. NH 4 Cl solution. offset and shaken vigorously. The organic phase is saturated twice with 250 ml. NH 4 Cl solution. washed. The aq. Phases are shaken out with 300 ml of ethyl acetate. The combined organic phases are dried over MgSO 4 and i. Vak. freed from the solvent. The residue (approx. 30 g) is purified by chromatography on 650 g of silica gel in the eluent PE / EE 7: 1 (addition of 0.1% triethylamine). The product fractions are mixed with toluene and concentrated. The product is co-distilled four times with toluene to remove residues of the triethylamine.
Yield: 3.6 g (55%); brown oil; R f = 0.23 (PE / EE 6: 1); [α] D 22 = 0 ° (c = 1.00, acetone).
200 MHz 1 H NMR (acetone-d 6 ): δ (ppm): 7.03 (d, 2H, 2 aromatic H, J = 8.79 Hz); 6.89 (d, 2H, 2 aromatic H, J = 8.30 Hz); 5.35 (q, 1H, O-CH-O, J = 5.21 Hz); 3.92-4.07 (m, 2H, CH 2 -OH); 3.65-3.77 (m, 1H, OH); 3:45 to 3:58 (m, 2H, CH 3 -CH 2 -O); 2.31-2.38 (dd, 1H, TMSCH, J 1 = 3.41 Hz, J 2 = 5.37 Hz); 1:39 (d, 3H, CH-CH 3, J = 5:37 Hz); 1.13 (t, 3H, CH 2 -CH 3 , J = 6.84 Hz); -0.04 (s, 9H, Si (CH 3) 3).
50.3 MHz 13 C NMR (acetone-d 6 ; BB, DEPT): δ (ppm): 155.42 (1C, C ipsoAr-O ); 136.51 (1C, C ipso Ar-CH ); 129.48 (2C, 2 aromatic C); 118.02 (2C, 2 aroma C); 100.37 (1C, O-CH-O); 63.60 (1C, CH 2 - O); 61.79 (1C, CH 3 -CH 2 -O); 41.00 (1C, Si (CH 3) 3 -CH); 20.71 (1C, CH 3 -CH); 15:52 (1C, CH 3 - CH 2); -2.16 (3C, Si (CH 3 ) 3 ).

(2-p-Hydroxyphenyl-2-trimethylsilyl)ethanol 4(2-p-hydroxyphenyl-2-trimethylsilyl) ethanol 4

Zu 2.55 g (9.03 mmol) (2-p-Ethoxyethyloxyphenyl-2-trimethylsilyl)ethanol 3 in 40 ml Methanol (p. a.) wird unter Argonatmosphäre eine Lösung von 68.1 mg PPTS (0.27 mmol, 0.03 Äquiv.) in 3 ml Methanol zugegeben. Man läßt 2 h bei Raumtemperatur rühren. Wenn die Reaktion beendet ist (DC-Kontrolle), wird das Lösungsmittel i. Vak. entfernt. Der Rückstand wird durch Chromatographie an 140 g Kieselgel im Laufmittelgemisch PE/EE 4 : 1 gereinigt.
Ausb.: 1.70 g (90%); farbloser, kristalliner Feststoff; Schmp. 138-141°C, Rf = 0.18 (PE/EE 3 : 1); [α]D 22 = 0° (c = 1.00 g/100 ml, Aceton).
FD-MS (m/z) = 210.4 [M]+.
200 MHz-1H-NMR (Aceton-d6): δ (ppm): 7.94 (sb, 1H, OH Phenol); 6.95 (d, 2H, 2 arom. H, J = 8.79 Hz); 6.72 (d, 2H, 2 arom. H, J = 8.79 Hz); 3.86-4.07 (m, 2H, CH2-OH); 3.37 (t, 1H, OH, J = 5.37 Hz); 2.28 (dd, 1H, TMS-CH, J1 = 3.42 Hz, J2 = 8.79 Hz); -0.05 (s, 9H, Si(CH3)3).
50.3 MHz-13C-NMR (Aceton-d6; BB, DEPT): δ (ppm): 155.53 (1C, CipsoAr-OH); 133.74 (1C, Cipso­ Ar-CH); 129.60 (2C, 2 arom. C); 115.80 (2C, 2 arom. C); 63.85 (1C, CH2-O); 41.00 (1C, TMS- CH); 20.71 (1C, CH3-CH); -2.11 (3C, Si(CH3)3).
A solution of 68.1 mg PPTS (0.27 mmol, 0.03 equiv.) In 3 ml methanol is added to 2.55 g (9.03 mmol) (2-p-ethoxyethyloxyphenyl-2-trimethylsilyl) ethanol 3 in 40 ml methanol (pa) under an argon atmosphere. The mixture is stirred at room temperature for 2 hours. When the reaction is complete (TLC control), the solvent is i. Vak. away. The residue is purified by chromatography on 140 g of silica gel in a PE / EE 4: 1 eluent mixture.
Yield: 1.70 g (90%); colorless, crystalline solid; Mp 138-141 ° C, R f = 0.18 (PE / EE 3: 1); [α] D 22 = 0 ° (c = 1.00 g / 100 ml, acetone).
FD-MS (m / z) = 210.4 [M] + .
200 MHz 1 H NMR (acetone-d 6 ): δ (ppm): 7.94 (s b , 1H, OH phenol); 6.95 (d, 2H, 2 aromatic H, J = 8.79 Hz); 6.72 (d, 2H, 2 aromatic H, J = 8.79 Hz); 3.86-4.07 (m, 2H, CH 2 -OH); 3.37 (t, 1H, OH, J = 5.37 Hz); 2.28 (dd, 1H, TMS-CH, J 1 = 3.42 Hz, J 2 = 8.79 Hz); -0.05 (s, 9H, Si (CH 3) 3).
50.3 MHz 13 C NMR (acetone-d 6 ; BB, DEPT): δ (ppm): 155.53 (1C, C ipsoAr-OH ); 133.74 (1C, C ipso Ar-CH ); 129.60 (2C, 2 arom. C); 115.80 (2C, 2 aroma C); 63.85 (1C, CH 2 -O); 41.00 (1C, TMS-CH); 20.71 (1C, CH 3 -CH); -2.11 (3C, Si (CH 3 ) 3 ).

4-[2-Hydroxy-1-(trimethylsilyl)ethyl]phenoxyessigsäureallylester 54- [2-Hydroxy-1- (trimethylsilyl) ethyl] phenoxyacetic acid allyl ester 5

Zu 1.55 g (7.37 mmol) [2-(p-Hydroxyphenyl)-2-trimethylsilyl]ethanol 4 in 40 ml Aceton werden unter Argon nacheinander 1.325 g (9.59 mmol) K2CO3, 160 mg (0.96 mmol) KI und 1.027 ml (8.85 mmol, d = 1.159 g/ml) Chloressigsäureallylester gegeben und bei Raumtemp. gerührt. Nach 18 h beträgt der Umsatz ≈60% (DC-Kontrolle PE/EE 3 : 1). Daher werden weitere 0.795 g (5.75 mmol) K2CO3, 96 mg (0.5B mmol) KI und 0.617 ml (5.32 mmol) Chloressigsäureallylester zugegeben, und es wird weitere 20 h gerührt. Es wird über Hyflo-Supercel® filtriert und mit ca. 150 ml Aceton nachgewaschen. Das Lösungsmittel wird i. Vak. entfernt. Der ölige braune Rückstand wird an 180 g Kieselgel im Laufmittel PE/EE 5 : 1 gereinigt. Man erhält ein farbloses, leicht gelbliches Öl, welches nach Trocknen im Hochvakuum und Lagern bei 4°C kristallisiert.
Ausb.: 1.76 g (78%); farbloser, kristalliner Feststoff; Schmp. 27-28°C; Rf = 0.29 (PE/EE 3 : 1).
FD-MS (m/z) = 308.4 [M]+.
200 MHz-1H-NMR (CDCl3): δ (ppm): 7.01 (d, 2H, 2 arom. H, J = 8.31 Hz); 6.83 (d, 2H, 2 arom. H, J = 8.79 Hz); 5.81-6.00 (m, 1H, CH=CH2); 5.31 (dd, 1H, CH=CHAHB, J1 = 16.32 Hz, J2 = 1.47 Hz); 5.24 (dd, 1H, CH=CHAHB, J1 = 10.52 Hz, J2 = 1.46 Hz); 4.69 (d, 2H, CH2-CH=CH2, J = 5.45 Hz); 4.61 (s, 2H, O-CH2-C=O); 3.89-4.12 (m, 2H, CH-CH2-OH); 2.37 (dd, 1H, TMSCH, J1 = 4.39 Hz, J2 = 11.23 Hz); 1.50 (sb, 1H, OH); -0.06 (s, 9H, Si(CH3)3).
50.3 MHz-13C-NMR (CDCl3; BB, DEPT): δ (ppm): 168.80 (1C, C=O Ester); 155.74 (1C, CipsoAr-O); 133.61 (1C, CipsoAr-CH); 131.47 (1C, CH=CH2); 128.82 (2C, 2 arom. C); 119.02 (1C, CH=CH2); 115.03 (2C, 2 arom. C); 65.79, 65.61 (2C, CH2=CH-CH2-O, O=C-CH2-O); 63.22 (1C, TMS-CH-CH2-O); 40.81 (1C, TMS-CH); -2.11 (3C, Si(CH3)3).
To 1.55 g (7.37 mmol) of [2- (p-hydroxyphenyl) -2-trimethylsilyl] ethanol 4 in 40 ml of acetone, 1,325 g (9.59 mmol) of K 2 CO 3 , 160 mg (0.96 mmol) of KI and 1,027 are added in succession under argon ml (8.85 mmol, d = 1,159 g / ml) added chloroacetate and at room temperature. touched. After 18 h, the conversion is ≈60% (DC control PE / EE 3: 1). A further 0.795 g (5.75 mmol) K 2 CO 3 , 96 mg (0.5B mmol) KI and 0.617 ml (5.32 mmol) allyl chloroacetate are therefore added, and the mixture is stirred for a further 20 h. It is filtered through Hyflo-Supercel® and washed with approx. 150 ml acetone. The solvent is i. Vak. away. The oily brown residue is purified on 180 g of silica gel in the eluent PE / EE 5: 1. A colorless, slightly yellowish oil is obtained, which crystallizes after drying in a high vacuum and storage at 4 ° C.
Yield: 1.76 g (78%); colorless, crystalline solid; Mp 27-28 ° C; R f = 0.29 (PE / EE 3: 1).
FD-MS (m / z) = 308.4 [M] + .
200 MHz 1 H NMR (CDCl 3 ): δ (ppm): 7.01 (d, 2H, 2 aromatic H, J = 8.31 Hz); 6.83 (d, 2H, 2 aromatic H, J = 8.79 Hz); 5.81-6.00 (m, 1H, CH = CH2); 5.31 (dd, 1H, CH = CH A H B , J 1 = 16.32 Hz, J 2 = 1.47 Hz); 5.24 (dd, 1H, CH = CH A H B , J 1 = 10.52 Hz, J 2 = 1.46 Hz); 4.69 (d, 2H, CH 2 -CH = CH 2, J = 5:45 Hz); 4.61 (s, 2H, O-CH 2 -C = O); 3.89-4.12 (m, 2H, CH-CH 2 -OH); 2.37 (dd, 1H, TMSCH, J 1 = 4.39 Hz, J 2 = 11.23 Hz); 1.50 (s b , 1H, OH); -0.06 (s, 9H, Si (CH 3) 3).
50.3 MHz 13 C NMR (CDCl 3 ; BB, DEPT): δ (ppm): 168.80 (1C, C = O ester); 155.74 (1C, C ipsoAr-O ); 133.61 (1C, C ipsoAr-CH ); 131.47 (1C, CH = CH 2); 128.82 (2C, 2 arom. C); 119.02 (1C, CH = CH 2); 115.03 (2C, 2 aroma C); 65.79, 65.61 (2C, CH 2 = CH-CH 2 -O, O = C-CH 2 -O); 63.22 (1C, TMS-CH-CH 2 -O); 40.81 (1C, TMS-CH); -2.11 (3C, Si (CH 3 ) 3 ).

4-[2-(N-Fluorenylmethoxycarbonyl-L-isoleucyloxy)-1-(trimethylsilyl)ethyl]-phenoxy­ essigsäureallylester 6a4- [2- (N-fluorenylmethoxycarbonyl-L-isoleucyloxy) -1- (trimethylsilyl) ethyl] -phenoxy allyl acetate 6a

Zu 1.048 g (2.97 mmol) Fmoc-Ile-OH in 20 ml absol. CH2Cl2 werden 0.832 g (2.70 mmol) 4-[2- Hydroxy-1-(trimethylsilyl)ethyl]phenoxyessigsäureallylester gegeben. Man rührt unter Argon und kühlt auf ca. 0°C. Dann werden 20 mg DMAP (0.16 mmol) und 0.673 g DCC (3.26 mmol) zugesetzt. Man läßt 3 h bei 0°C unter Argon rühren. Es wird über Hyflo-Supercel® filtriert und mit ca. 70 ml CH2Cl2 nachgewaschen. Das Filtrat wird zweimal mit je 100 ml einer 5%igen NaHCO3-Lsg., mit 100 ml H2O und mit 100 ml einer ges. NaCl-Lsg. gewaschen. Man trocknet über MgSO4 und entfernt das Lösungsmittel i. Vakkum. Der Rückstand wird chromatographisch an 130 g Kieselgel im Laufmittel PE/EE 8.5 : 1 gereinigt.
Ausb.: 1.58 (91%); farbloses Öl; [α]D 24 = -7.01° (c = 1.00 g/100 ml, CHCl3); Rf = 0.23 (PE/EE 5 : 1), 0.44 (PE/EE 10 : 3).
ESI-MS (m/z) = 666.4 [M+Na]+.
200 MHz-1H-NMR (CDCl3; BB, DEPT): δ(ppm): 7.74 (d, 2H, H4-, H5-Fmoc, J = 7.32 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.32 Hz); 7.24-7.42 (m, 4H, H2-, H3-, H6-; H7-Fmoc); 6.93 (d, 2H, 2 arom. H, J = 7.82 Hz); 6.78 (d, 2H, 2 arom. H, J = 8.31 Hz); 5.81-6.00 (m, 1H, CH=CH2); 5.17-5.31 (m, 3H, CH=CH2, NH); 4.67 (d, 2H, CH2-CH=CH2, J = 5.86 Hz); 4.57 (s, 2H, O-CH2-C=O); 4.52-­ 4.77 (m, 1H, α-CH Ile); 4.33-4.37 (m, 2H, CH2-Fmoc); 4.04-4.22 (m, 3H, TMS-CH-CH2-O, H9- Fmoc); 2.47-2.55 (m, 1H, TMS-CH); 1.41-1.64 (m, 1H, β-CH Ile); 0.65-1.06 (m, 8H, χ-CH2, χ- CH3, δ-CH3 Ile); -0.02 (s, 9H, Si(CH3)3).
50.3 MHz-13C-NMR (CDCl3): δ(ppm): 172.20 (1C, C=O Ester Ile); 168.73 (1C, C=O Allylester); 156.02, 155.74 (2C, C=O Urethan, CipsoAr-O); 143.98, 143.84 (2C, C4a-, C4b-Fmoc); 141.32 (2C, C8a-, C9a-Fmoc); 133.37 (1C, CipsoAr-CH); 131.49 (1C, CH=CH2); 128.39 (2C, 2 arom. C); 127.69 (2C, C3-, C6-Fmoc); 127.06 (2C, C2-, C7-Fmoc); 125.12 (2C, C1-, C8-Fmoc); 119.98 (2C, C4-, C5-Fmoc); 119.01 (1C, CH=CH2); 114.73 (2C, 2 arom. C); 66.98, 66.31, 65.75, 65.59 (4C, CH2=CH-CH2-O, O=C-CH2-O, CH2-Fmoc, TMS-CH-CH2-O); 58.33 (1C, α-CH Ile); 47.22 (1C, C9-Fmoc); 37.85 (1C, TMS-CH); 36.52 (1C, β-CH Ile); 24.7 (1C, χ-CH2 Ile); 15.13 (1C, χ-CH3 Ile); 11.56 (1C, δ-CH3 Ile); -2.11 (3C, Si(CH3)3).
To 1,048 g (2.97 mmol) Fmoc-Ile-OH in 20 ml absolute. CH 2 Cl 2 , 0.832 g (2.70 mmol) of 4- [2-hydroxy-1- (trimethylsilyl) ethyl] phenoxyacetic acid allyl ester are added. The mixture is stirred under argon and cooled to about 0 ° C. Then 20 mg DMAP (0.16 mmol) and 0.673 g DCC (3.26 mmol) are added. The mixture is stirred at 0 ° C. under argon for 3 h. It is filtered through Hyflo-Supercel® and washed with approx. 70 ml CH 2 Cl 2 . The filtrate is washed twice with 100 ml of a 5% NaHCO 3 solution, with 100 ml H 2 O and with 100 ml of a sat. NaCl solution. washed. It is dried over MgSO 4 and the solvent is removed i. Vakkum. The residue is purified by chromatography on 130 g of silica gel in the mobile phase PE / EE 8.5: 1.
Yield: 1.58 (91%); colorless oil; [α] D 24 = -7.01 ° (c = 1.00 g / 100 ml, CHCl 3 ); R f = 0.23 (PE / EE 5: 1), 0.44 (PE / EE 10: 3).
ESI-MS (m / z) = 666.4 [M + Na] + .
200 MHz 1H NMR (CDCl 3 ; BB, DEPT): δ (ppm): 7.74 (d, 2H, H4, H5 Fmoc, J = 7.32 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.32 Hz); 7.24-7.42 (m, 4H, H2-, H3, H6-; H7-Fmoc); 6.93 (d, 2H, 2 aromatic H, J = 7.82 Hz); 6.78 (d, 2H, 2 aromatic H, J = 8.31 Hz); 5.81-6.00 (m, 1H, CH = CH2); 5:17 to 5:31 (m, 3H, CH = CH 2, NH); 4.67 (d, 2H, CH 2 -CH = CH 2, J = 5.86 Hz); 4:57 (s, 2H, O-CH 2 -C = O); 4.52-4.77 (m, 1H, α-CH Ile); 4:33 to 4:37 (m, 2H, CH 2 -Fmoc); 4.04-4.22 (m, 3H, TMS-CH-CH 2 -O, H9-Fmoc); 2.47-2.55 (m, 1H, TMS-CH); 1.41-1.64 (m, 1H, β-CH Ile); 0.65-1.06 (m, 8H, χ-CH 2 , χ-CH 3 , δ-CH 3 Ile); -0.02 (s, 9H, Si (CH 3) 3).
50.3 MHz 13 C NMR (CDCl 3 ): δ (ppm): 172.20 (1C, C = O Ester Ile); 168.73 (1C, C = O allyl ester); 156.02, 155.74 (2C, C = O urethane, C ipsoAr-O ); 143.98, 143.84 (2C, C4a, C4b-Fmoc); 141.32 (2C, C8a, C9a-Fmoc); 133.37 (1C, C ipsoAr-CH ); 131.49 (1C, CH = CH 2); 128.39 (2C, 2 arom. C); 127.69 (2C, C3, C6 Fmoc); 127.06 (2C, C2, C7 Fmoc); 125.12 (2C, C1-, C8-Fmoc); 119.98 (2C, C4, C5 Fmoc); 119.01 (1C, CH = CH 2); 114.73 (2C, 2 aromatic C); 66.98, 66.31, 65.75, 65.59 (4C, CH 2 = CH-CH 2 -O, O = C-CH 2 -O, CH 2 -Fmoc, TMS-CH-CH 2 -O); 58.33 (1C, α-CH Ile); 47.22 (1C, C9 Fmoc); 37.85 (1C, TMS-CH); 36.52 (1C, β-CH Ile); 24.7 (1C, χ-CH2-Ile); 15.13 (1C, χ-CH 3 Ile); 11.56 (1C, δ-CH 3 Ile); -2.11 (3C, Si (CH 3 ) 3 ).

Teilweise tritt Signalverdopplung auf, weil Diastereomere vorliegen.Signal doubling occurs in part because of diastereomers.

4-[2-(N-Fluorenylmethoxycarbonyl-L-isoleucyloxy)-1-(trimethylsilyl)ethyl]phenoxy­ essigsäure 7a4- [2- (N-fluorenylmethoxycarbonyl-L-isoleucyloxy) -1- (trimethylsilyl) ethyl] phenoxy acetic acid 7a

1.454 g (2.26 mmol) 4-[2-(N-Fluorenylmethoxycarbonyl-L-isoleucyloxy)-1-(trimethylsilyl)ethyl]- phenoxyessigsäureallylester 6 werden in 20 ml THF (p. a.) gelöst. Unter Argon werden 156.5 mg (0.14 mmol) Pd(PPh3)4 und eine Lösung von 522.9 mg (2.94 mmol) p-Toluolsulfinsäure-Natrium- Salz in 12 ml MeOH (p. a.) zugegeben. Man rührt 90 Minuten unter Argon bei 20°C, entfernt das Lösungsmittel i. Vak. und reinigt den Rückstand chromatographisch an Kieselgel im Laufmittelgemisch CH2Cl2/MeOH/HOAc/H2O 97.5 : 2.5 : 0.25 : 0.25.
Ausb.: 1.363 g (quant.); farbloser amorpher Stoff; [α]D 24 = -6.09° (c = 0.5 g/100 ml, CHCl3); Rf = 0.11 (CH2Cl2/MeOH/HOAc/H2O 97.5 : 2.5 : 0.25 : 0.25).
FD-MS (m/z) = 604.1 [M+H]+.
200 MHz-1H-NMR (CDCl3): δ (ppm): 8.32 (sb, 1H, COOH); 7.75 (d, 2H, H4-, H5-Fmoc, J = 7.32 Hz); 7.58 (d, 2H, H1-, H8-Fmoc, J = 7.32 Hz); 7.14-7.52 (m, 4H, H2-, H3-, H6-, H7-Fmoc); 6.95 (d, 2H, 2 arom. H, J = 7.32 Hz); 6.80 (d, 2H, 2 arom. H, J = 8.79 Hz); 5.28 (t, 1H, NH); 4.54-­ 4.78 (m, 1H, α-CH Ile); 4.58 (s, 2H, O-CH2-C=O); 4.33-4.37 (m, 2H, CH2-Fmoc); 4.16-4.22 (m, 3H, TMS-CH-CH2-O, H9-Fmoc); 2.49-2.57 (m, 1H, TMS-CH); 1.55-1.81 (m, 1H, β-CH Ile); 0.66-1.06 (m, 8H, χ-CH2, χ-CH3, δ-CH3 Ile); -0.01 (s, 9H, Si(CH3)3).
100.6 MHz-13C-NMR (CDCl3; BB, DEPT): δ (ppm): 172.09, 172.03 (2C, COOH; C=O Ester Ile); 156.08, 155.67 (2C, C=O Urethan, CipsoAr-O); 143.97, 143.81 (2C, C4a-, C4b-Fmoc); 141.31 (2C, C8a-, C9a-Fmoc); 132.20 (1C, CipsoAr-CH); 127.04-129.01 (6C, 2 arom. C, C2-, C3-, C6, C7- Fmoc); 125.26, 125.05 (2C, C1-, C8-Fmoc); 119.94 (2C, C4-, C5-Fmoc); 114.82 (2C, 2 arom. C); 67.02, 66.30, 65.25 (3C, O=C-CH2-O, CH2-Fmoc, TMS-CH-CH2-O); 58.41 (1C, α-CH Ile); 47.22 (1C, C9-Fmoc); 37.82 (1C, TMS-CH); 36.62 (1C, β-CH Ile); 24.7 (1C, χ-CH2 Ile); 15.21 (1C, χ-CH3 Ile); 11.47 (1C, δ-CH3 Ile); -2.72 (3C, Si(CH3)3).
1,454 g (2.26 mmol) of 4- [2- (N-fluorenylmethoxycarbonyl-L-isoleucyloxy) -1- (trimethylsilyl) ethyl] - phenoxyacetic acid 6-allyl ester 6 are dissolved in 20 ml of THF (pa). 156.5 mg (0.14 mmol) of Pd (PPh 3 ) 4 and a solution of 522.9 mg (2.94 mmol) of p-toluenesulfinic acid sodium salt in 12 ml of MeOH (pa) are added under argon. The mixture is stirred for 90 minutes under argon at 20 ° C., the solvent is removed i. Vak. and purifies the residue chromatographically on silica gel in the mobile phase mixture CH 2 Cl 2 / MeOH / HOAc / H 2 O 97.5: 2.5: 0.25: 0.25.
Yield: 1,363 g (quant.); colorless amorphous substance; [α] D 24 = -6.09 ° (c = 0.5 g / 100 ml, CHCl 3 ); R f = 0.11 (CH 2 Cl 2 / MeOH / HOAc / H 2 O 97.5: 2.5: 0.25: 0.25).
FD-MS (m / z) = 604.1 [M + H] + .
200 MHz 1 H NMR (CDCl 3 ): δ (ppm): 8.32 (s b , 1H, COOH); 7.75 (d, 2H, H4-, H5-Fmoc, J = 7.32 Hz); 7.58 (d, 2H, H1-, H8-Fmoc, J = 7.32 Hz); 7.14-7.52 (m, 4H, H2, H3, H6, H7 Fmoc); 6.95 (d, 2H, 2 aromatic H, J = 7.32 Hz); 6.80 (d, 2H, 2 aromatic H, J = 8.79 Hz); 5.28 (t, 1H, NH); 4.54-4.78 (m, 1H, α-CH Ile); 4:58 (s, 2H, O-CH 2 -C = O); 4:33 to 4:37 (m, 2H, CH 2 -Fmoc); 4.16-4.22 (m, 3H, TMS-CH-CH 2 -O, H9-Fmoc); 2.49-2.57 (m, 1H, TMS-CH); 1.55-1.81 (m, 1H, β-CH Ile); 0.66-1.06 (m, 8H, χ-CH 2 , χ-CH 3 , δ-CH 3 Ile); -0.01 (s, 9H, Si (CH 3) 3).
100.6 MHz - 13 C NMR (CDCl 3 ; BB, DEPT): δ (ppm): 172.09, 172.03 (2C, COOH; C = O Ester Ile); 156.08, 155.67 (2C, C = O urethane, C ipsoAr-O ); 143.97, 143.81 (2C, C4a, C4b-Fmoc); 141.31 (2C, C8a, C9a-Fmoc); 132.20 (1C, C ipsoAr-CH ); 127.04-129.01 (6C, 2 aroma C, C2, C3, C6, C7 Fmoc); 125.26, 125.05 (2C, C1-, C8-Fmoc); 119.94 (2C, C4, C5 Fmoc); 114.82 (2C, 2 aromatic C); 67.02, 66.30, 65.25 (3C, O = C-CH 2 -O, CH 2 -Fmoc, TMS-CH-CH 2 -O); 58.41 (1C, α-CH Ile); 47.22 (1C, C9 Fmoc); 37.82 (1C, TMS-CH); 36.62 (1C, β-CH Ile); 24.7 (1C, χ-CH2-Ile); 15.21 (1C, χ-CH 3 Ile); 11.47 (1C, δ-CH 3 Ile); -2.72 (3C, Si (CH 3 ) 3 ).

Teilweise tritt Signalverdopplung auf, weil Diastereomere vorliegen.Signal doubling occurs in part because of diastereomers.

4-[2-(N-Fluorenyhnethoxycarbonyl-glycyloxy)-1-(trimethylsilyl)ethyl]-phenoxy-essigsäure­ allylester 6b4- [2- (N-Fluorenyhnethoxycarbonyl-glycyloxy) -1- (trimethylsilyl) ethyl] phenoxy-acetic acid allylester 6b

Zu 212 mg (0.71 mmol) Fmoc-Gly-OH in 20 ml absol. CH2Cl2 werden 200 mg (0.65 mmol) 4-[2- Hydroxy-1-(trimethylsilyl)ethyl]phenoxyessigsäureallylester 5 gegeben. Man rührt unter Argon und kühlt auf 0°C. Dann werden 5 mg DMAP (0.04 mmol) und 162 g DCC (0.785 mmol) zugesetzt. Man läßt 10 min bei 0°C und dann 4 h bei Raumtemp. unter Argon rühren. Es wird über Hyflo- Supercel® filtriert und mit ca. 100 ml CH2Cl2 nachgewaschen. Das Filtrat wird zweimal mit je 80 ml einer 5%igen NaHCO3-Lsg. und mit 100 ml einer ges. NaCl-Lsg. gewaschen. Man trocknet über MgSO4 und entfernt i. Vak. das Lösungsmittel. Der Rückstand wird chromatographisch an 50 g Kieselgel im Laufmittel PE/EE 5 : 1 gereinigt.
Ausb.: 362 mg (95%); farbloses Öl; [α]D 22 = 0° (c = 1.00 g/100 ml, CHCl3); Rf = 0.23 (PE/EE 10 : 3).
ESI-MS (m/z) = 610.3 [M+Na]+.
400 MHz-1H-NMR (CDCl3; BB, DEPT): δ (ppm): 7.74 (d, 2H, H4-, H5-Fmoc, J = 7.33 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.33 Hz); 7.38 (t, 2H, H2-, H7-Fmoc, J = 7.33 Hz); 7.29 (t, 2H, H3-, H6- Fmoc, J = 7.34 Hz); 6.93 (d, 2H, 2 arom. H, J = 8.51 Hz); 6.79 (d, 2H, 2 arom. H, J = 8.51 Hz); 5.81-­ 5.94 (m, 1H, CH=CH2); 5.18-5.32 (m, 3H, CH=CH2, NH); 4.68 (d, 2H, CH2-CH=CH2, J = 5.87 Hz); 4.58 (s, 2H, O-CH2-C=O); 4.48-4.63 (m, 2H, TMS-CH-CH2-O); 4.35 (d, 2H, CH2- Fmoc, J = 7.05 Hz); 4.19 (t, 1H, H9-Fmoc, J = 7.34 Hz); 3.87 (dd, 1H, α-CHa Gly, Jgem = 18.20 Hz, Jvic = 5.57 Hz); 3.80 (dd, 1H, α-CHb Gly, Jgem = 18.33 Hz, Jvic = 5.28 Hz); 2.48 (dd, 1H, TMS-CH, J1 = 11.32 Hz, J2 = 4.71 Hz); -0.03 (s, 9H, Si(CH3)3).
100.6 MHz-13C-NMR (CDCl3; BB, DEPT): δ(ppm): 170.14 (1C, C=O Ester Gly); 168.68 (1C, C=O Allylester); 156.15, 155.77 (2C, C=O Urethan, CipsoAr-O); 143.87 (2C, C4a-, C4b-Fmoc); 141.31 (2C, C8a-, C9a-Fmoc); 133.46 (1C, CipsoAr-CH); 131.51 (1C, CH=CH2); 128.40 (2C, 2 arom. C); 127.68 (2C, C3-, C6-Fmoc); 127.04 (2C, C2-, C7-Fmoc); 125.06 (2C, C1-, C8-Fmoc); 119.94 (2C, C4-, C5-Fmoc); 118.87 (1C, CH=CH2); 114.73 (2C, 2 arom. C); 67.18, 66.74, 65.67, 65.62 (4C, CH2=CH-CH2-O, O=C-CH2-O, CH2-Fmoc, TMS-CH-CH2-O); 47.17 (1C, C9-Fmoc); 42.79 (1C, α-CH Gly); 36.38 (1C, TMS-CH); -2.63 (3C, Si(CH3)3).
To 212 mg (0.71 mmol) Fmoc-Gly-OH in 20 ml absolute. CH 2 Cl 2 , 200 mg (0.65 mmol) of 4- [2-hydroxy-1- (trimethylsilyl) ethyl] phenoxyacetic acid allyl ester 5 are added. The mixture is stirred under argon and cooled to 0 ° C. Then 5 mg DMAP (0.04 mmol) and 162 g DCC (0.785 mmol) are added. The mixture is left at 0 ° C. for 10 minutes and then at room temperature for 4 hours. stir under argon. It is filtered through Hyflo-Supercel® and washed with approx. 100 ml CH 2 Cl 2 . The filtrate is washed twice with 80 ml of a 5% NaHCO 3 solution. and with 100 ml of a sat. NaCl solution. washed. It is dried over MgSO 4 and removed i. Vak. the solvent. The residue is purified by chromatography on 50 g of silica gel in the mobile phase PE / EE 5: 1.
Yield: 362 mg (95%); colorless oil; [α] D 22 = 0 ° (c = 1.00 g / 100 ml, CHCl 3 ); R f = 0.23 (PE / EE 10: 3).
ESI-MS (m / z) = 610.3 [M + Na] + .
400 MHz 1 H NMR (CDCl 3 ; BB, DEPT): δ (ppm): 7.74 (d, 2H, H4, H5 Fmoc, J = 7.33 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.33 Hz); 7.38 (t, 2H, H2-, H7-Fmoc, J = 7.33 Hz); 7.29 (t, 2H, H3-, H6- Fmoc, J = 7.34 Hz); 6.93 (d, 2H, 2 aromatic H, J = 8.51 Hz); 6.79 (d, 2H, 2 aromatic H, J = 8.51 Hz); 5.81- 5.94 (m, 1H, CH = CH2); 5:18 to 5:32 (m, 3H, CH = CH 2, NH); 4.68 (d, 2H, CH 2 -CH = CH 2, J = 5.87 Hz); 4:58 (s, 2H, O-CH 2 -C = O); 4.48-4.63 (m, 2H, TMS-CH-CH 2 -O); 4:35 (d, 2H, CH 2 - Fmoc, J = 7.05 Hz); 4.19 (t, 1H, H9-Fmoc, J = 7.34 Hz); 3.87 (dd, 1H, α-CH a Gly, J gem = 18.20 Hz, J vic = 5.57 Hz); 3.80 (dd, 1H, α-CH b Gly, J gem = 18.33 Hz, J vic = 5.28 Hz); 2.48 (dd, 1H, TMS-CH, J 1 = 11.32 Hz, J 2 = 4.71 Hz); -0.03 (s, 9H, Si (CH 3) 3).
100.6 MHz 13 C NMR (CDCl 3 ; BB, DEPT): δ (ppm): 170.14 (1C, C = O Ester Gly); 168.68 (1C, C = O allyl ester); 156.15, 155.77 (2C, C = O urethane, C ipsoAr-O ); 143.87 (2C, C4a, C4b-Fmoc); 141.31 (2C, C8a, C9a-Fmoc); 133.46 (1C, C ipsoAr-CH ); 131.51 (1C, CH = CH 2); 128.40 (2C, 2 arom. C); 127.68 (2C, C3, C6 Fmoc); 127.04 (2C, C2, C7 Fmoc); 125.06 (2C, C1-, C8-Fmoc); 119.94 (2C, C4, C5 Fmoc); 118.87 (1C, CH = CH 2); 114.73 (2C, 2 aromatic C); 67.18, 66.74, 65.67, 65.62 (4C, CH 2 = CH-CH 2 -O, O = C-CH 2 -O, CH 2 -Fmoc, TMS-CH-CH 2 -O); 47.17 (1C, C9-Fmoc); 42.79 (1C, α-CH Gly); 36.38 (1C, TMS-CH); -2.63 (3C, Si (CH 3 ) 3 ).

4-[2-(N-Fluorenylmethoxycarbonyl-glycyloxy)-1-(trimethylsilyl)ethyl]phenoxyessigsäure 7b4- [2- (N-fluorenylmethoxycarbonylglycyloxy) -1- (trimethylsilyl) ethyl] phenoxyacetic acid 7b

Zu 321 mg (0.55 mmol) 4-[2-(N-Fluorenylmethoxycarbonyl-glycyloxy)-1-(trimethylsilyl)ethyl]- phenoxyessigsäureallylester 6b in 10 ml THF werden unter Argon 38 mg (0.03 mmol) Pd(PPh3)4 und eine Lösung von 126.5 mg (0.71 mmol) p-Toluolsulfinsäure-Natrium-Salz in 6 ml MeOH zugegeben. Man rührt 90 Minuten unter Argon und Lichtausschluß bei Raumtemp., entfernt das Lösungsmittel i. Vak. und reinigt den Rückstand chromatographisch an 60 g Kieselgel im Laufmittelgemisch CH2Cl2/MeOH/HOAc/H2O 97.5 : 2.5 : 0.25 : 0.25.
Ausb.: 299 mg (quant.); farbloser amorpher Stoff; [α]D 22 = 0° (c = 1.00 g/100 ml, CHCl3); Rf = 0.09 (CH2Cl2/MeOH/HOAc/H2O 97.5 : 2.5 : 0.25 : 0.25).
ESI-MS (m/z) = 570.4 [M+Na]+, 586.6 [M+K]+.
400 MHz-1H-NMR (CDCl3): δ (ppm): 7.74 (d, 2H, H4-, H5-Fmoc, J = 7.62 Hz); 7.56 (d, 2H, H1-, H8-Fmoc, J = 7.63 Hz); 7.38 (t, 2H, H2-, H7-Fmoc, J = 7.63 Hz); 7.29 (t, 2H, H3-, H6-Fmoc, J = 7.64 Hz); 6.94 (d, 2H, 2 arom. H, J = 8.51 Hz); 6.80 (d, 2H, 2 arom. H, J = 8.51 Hz); 5.26 (t, 1H, NH); 4.58 (s, 2H, O-CH2-C=O); 4.48-4.64 (m, 2H, TMS-CH-CH2-O); 4.35 (d, 2H, CH2-Fmoc, J = 7.04 Hz); 4.18 (t, 1H, H9-Fmoc, J = 7.04 Hz); 3.85 (dd, 1H, α-CHa Gly, Jgem = 18.19 Hz, Jvic = 5.58 Hz); 3.80 (dd, 1H, α-CHb Gly, Jgem = 18.33 Hz, Jvic = 5.58 Hz); 2.48 (dd, 1H, TMS-CH, J1 = 11.30 Hz, J2 = 4.69 Hz); -0.02 (s, 9H, Si(CH3)3).
100.6 MHz-13C-NMR (CDCl3; BB, DEPT): δ (ppm): 171.90 (1C, COOH); 170.18 (1C, C=O Ester Gly); 156.30, 155.36 (2C, C=O Urethan, CipsoAr-O); 143.81 (2C, C4a-, C4b-Fmoc); 141.31 (2C, C8a-, C9a-Fmoc); 133.83 (1C, CipsoAr-CH); 127.04-128.99 (6C, 2 arom. C, C2-, C3-, C6-, C7- Fmoc); 125.27, 125.02 (2C, C1-, C8-Fmoc); 119.94 (2C, C4-, C5-Fmoc); 114.87 (2C, 2 arom. C); 67.27, 66.69, 65.21 (3C, O=C-CH2-O, CH2-Fmoc, TMS-CH-CH2-O); 47.15 (1C, C9-Fmoc); 42.79 (1C, α-CH Gly); 36.48 (1C, TMS-CH); -2.63 (3C, Si(CH3)3).
To 321 mg (0.55 mmol) of 4- [2- (N-fluorenylmethoxycarbonylglycyloxy) -1- (trimethylsilyl) ethyl] - phenoxyacetic acid 6b in 10 ml of THF, 38 mg (0.03 mmol) of Pd (PPh 3 ) 4 and a solution of 126.5 mg (0.71 mmol) of p-toluenesulfinic acid sodium salt in 6 ml of MeOH was added. The mixture is stirred for 90 minutes under argon and with the exclusion of light at room temperature. The solvent is removed i. Vak. and purifies the residue chromatographically on 60 g of silica gel in a CH 2 Cl 2 / MeOH / HOAc / H 2 O eluent mixture 97.5: 2.5: 0.25: 0.25.
Yield: 299 mg (quant.); colorless amorphous substance; [α] D 22 = 0 ° (c = 1.00 g / 100 ml, CHCl 3 ); R f = 0.09 (CH 2 Cl 2 / MeOH / HOAc / H 2 O 97.5: 2.5: 0.25: 0.25).
ESI-MS (m / z) = 570.4 [M + Na] + , 586.6 [M + K] + .
400 MHz 1 H NMR (CDCl 3 ): δ (ppm): 7.74 (d, 2H, H4, H5 Fmoc, J = 7.62 Hz); 7.56 (d, 2H, H1-, H8-Fmoc, J = 7.63 Hz); 7.38 (t, 2H, H2, H7 Fmoc, J = 7.63 Hz); 7.29 (t, 2H, H3-, H6-Fmoc, J = 7.64 Hz); 6.94 (d, 2H, 2 aromatic H, J = 8.51 Hz); 6.80 (d, 2H, 2 aromatic H, J = 8.51 Hz); 5.26 (t, 1H, NH); 4:58 (s, 2H, O-CH 2 -C = O); 4.48-4.64 (m, 2H, TMS-CH-CH 2 -O); 4:35 (d, 2H, CH2 -Fmoc, J = 7:04 Hz); 4.18 (t, 1H, H9-Fmoc, J = 7.04 Hz); 3.85 (dd, 1H, α-CH a Gly, J gem = 18.19 Hz, J vic = 5.58 Hz); 3.80 (dd, 1H, α-CH b Gly, J gem = 18.33 Hz, J vic = 5.58 Hz); 2.48 (dd, 1H, TMS-CH, J 1 = 11.30 Hz, J 2 = 4.69 Hz); -0.02 (s, 9H, Si (CH 3) 3).
100.6 MHz - 13 C NMR (CDCl 3 ; BB, DEPT): δ (ppm): 171.90 (1C, COOH); 170.18 (1C, C = O Ester Gly); 156.30, 155.36 (2C, C = O urethane, C ipsoAr-O ); 143.81 (2C, C4a, C4b-Fmoc); 141.31 (2C, C8a, C9a-Fmoc); 133.83 (1C, C ipsoAr-CH ); 127.04-128.99 (6C, 2 ar. C, C2, C3, C6, C7 Fmoc); 125.27, 125.02 (2C, C1-, C8-Fmoc); 119.94 (2C, C4, C5 Fmoc); 114.87 (2C, 2 aromatic C); 67.27, 66.69, 65.21 (3C, O = C-CH 2 -O, CH 2 -Fmoc, TMS-CH-CH 2 -O); 47.15 (1C, C9-Fmoc); 42.79 (1C, α-CH Gly); 36.48 (1C, TMS-CH); -2.63 (3C, Si (CH 3 ) 3 ).

Beladung von Aminomethyl-polystrol (AMPS) mit 4-[2-(N-Fluorenylmethoxycarbonyl-L- isoleucyloxy)-1-(trimethylsilyl)ethyl]phenoxyessigsäure 8aLoading of aminomethyl polystyrene (AMPS) with 4- [2- (N-fluorenylmethoxycarbonyl-L- isoleucyloxy) -1- (trimethylsilyl) ethyl] phenoxyacetic acid 8a

1.39 g AMPS (ACT; 200-400 mesh; 1.00 mmol/g; 1.39 mmol) werden in einen Reaktor eingewogen und 30 min in ca. 20 ml CH2Cl2 vorgequollen. 673.0 mg (1.11 mmol) 4-[2-(N- Fluorenylmethoxycarbonyl-L-isoleucyloxy)-1-(trimethylsilyl)-ethyl]-phenoxyessigsäure 7a werden in einer Mischung aus 40 ml CH2Cl2 und 5 ml DMF gelöst. Zu dieser Lösung werden nacheinander 171.2 mg (1.11 mmol) HOBt, 0.246 ml (225.6 mg, 2.23 mmol) N-Methylmorpholin und letztlich 358.0 mg (1.11 mmol) TBTU gegeben. Man läßt ca. 20 min bei Raumtemp. vorreagieren und überführt dann diese Lösung in den Festphasenreaktor. Man schüttelt 18 h bei Raumtemp. und filtriert dann ab. Das Harz wird dreimal mit je 20 ml DMF und dreimal mit je 20 ml CH2Cl2 gewaschen. Man versetzt mit 20 ml einer Lösung bestehend aus Pyridin/Acetanhydrid (3 : 1) und schüttelt 20 Minuten. Nach dem Capping der unumgesetzten Aminofunktionen wird viermal mit je 20 ml DMF, einmal mit je 20 ml MeOH, CH2Cl2, MeOH, CH2Cl2, MeOH, CH2Cl2 und abschließend sechsmal mit je 20 ml Diethylether gewaschen und im Hochvakuum getrocknet. Es werden 2.33 g beladenes Harz erhalten. Die Beladungsbestimmung erfolgt photometrisch anhand der UV-Absorbtion des Fluorenylmethyl-Piperidin-Adduktes, das durch Versetzen von 20 mg des mit einer Fmoc-Aminosäure beladenen Harzes mit Piperidin entsteht. Beladung: c = 0.365 mmol/g, das entspricht einer Kupplungsausbeute von 74%.1.39 g AMPS (ACT; 200-400 mesh; 1.00 mmol / g; 1.39 mmol) are weighed into a reactor and pre-swollen in approx. 20 ml CH 2 Cl 2 for 30 min. 673.0 mg (1.11 mmol) of 4- [2- (N-fluorenylmethoxycarbonyl-L-isoleucyloxy) -1- (trimethylsilyl) ethyl] -phenoxyacetic acid 7a are dissolved in a mixture of 40 ml of CH 2 Cl 2 and 5 ml of DMF. 171.2 mg (1.11 mmol) of HOBt, 0.246 ml (225.6 mg, 2.23 mmol) of N-methylmorpholine and finally 358.0 mg (1.11 mmol) of TBTU are added to this solution in succession. It is left for about 20 minutes at room temperature. pre-react and then transfer this solution to the solid phase reactor. Shake at room temperature for 18 hours. and then filters off. The resin is washed three times with 20 ml of DMF and three times with 20 ml of CH 2 Cl 2 . 20 ml of a solution consisting of pyridine / acetic anhydride (3: 1) are added and the mixture is shaken for 20 minutes. After the unreacted amino functions have been capped, the mixture is washed four times with 20 ml of DMF, once with 20 ml of MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 and finally six times with 20 ml of diethyl ether and in High vacuum dried. 2.33 g of loaded resin are obtained. The loading is determined photometrically on the basis of the UV absorption of the fluorenylmethyl-piperidine adduct, which is obtained by adding 20 mg of the resin loaded with an Fmoc-amino acid to piperidine. Loading: c = 0.365 mmol / g, which corresponds to a coupling yield of 74%.

Beladung von AMPS mit 4-[2-(N-Fluorenylmethoxycarbonyl-glycyloxy)-1-(trimethylsilyl)- ethyl]phenoxyessigsäure 8bLoading of AMPS with 4- [2- (N-fluorenylmethoxycarbonyl-glycyloxy) -1- (trimethylsilyl) - ethyl] phenoxyacetic acid 8b

593 mg AMPS (ACT; 200-400 mesh; 1.00 mmol/g; 0.593 mmol) werden in einen Reaktor eingewogen und 30 min in ca. 10 ml CH2Cl2 vorgequollen. 260 mg (0.475 mmol) 4-[2-(N- Fluorenylmethoxycarbonyl-glycyloxy)-1-(trimethylsilyl)-ethyl]phenoxy-essigsäure 7b werden in einer Mischung aus 20 ml CH2Cl2 und 3 ml DMF gelöst. Zu dieser Lösung werden nacheinander 72.9 mg (0.475 mmol) HOBt, 0.105 ml (96.0 mg, 0.95 mmol) N-Methylmorpholin und 152.4 mg (0.475 mmol) TBTU gegeben. Man läßt ca. 20 min bei Raumtemp. vorreagieren und überführt dann diese Lösung in den Festphasenreaktor. Man schüttelt 18 h bei Raumtemp. und filtriert ab. Das Harz wird dreimal mit je 20 ml DMF und dreimal mit je 20 ml CH2Cl2 gewaschen. Man versetzt mit 20 ml einer Lösung bestehend aus Pyridin/Acetanhydrid (3 : 1) und schüttelt 20 Minuten. Nach dem Capping der unumgesetzten Aminofunktionen wird viermal mit je 20 ml DMF, einmal mit je 20 ml MeOH, CH2Cl2, MeOH, CH2Cl2, MeOH, CH2Cl2 und abschließend sechsmal mit je 20 ml Diethylether gewaschen und im Hochvak. getrocknet. Es werden 870 mg beladenes Harz erhalten. Die Beladungsbestimmung erfolgt photometrisch anhand der UV- Absorbtion des Fluorenylmethyl-Piperidin-Adduktes, das durch Versetzen von 20 mg des mit einer Fmoc-Aminosäure beladenen Harzes mit Piperidin entsteht. Beladung: c = 0.474 mmol/g, das entspricht einer Kupplungsausbeute von 87%.593 mg AMPS (ACT; 200-400 mesh; 1.00 mmol / g; 0.593 mmol) are weighed into a reactor and pre-swollen in approx. 10 ml CH 2 Cl 2 for 30 min. 260 mg (0.475 mmol) of 4- [2- (N-fluorenylmethoxycarbonyl-glycyloxy) -1- (trimethylsilyl) -ethyl] phenoxy-acetic acid 7b are dissolved in a mixture of 20 ml of CH 2 Cl 2 and 3 ml of DMF. 72.9 mg (0.475 mmol) of HOBt, 0.105 ml (96.0 mg, 0.95 mmol) of N-methylmorpholine and 152.4 mg (0.475 mmol) of TBTU are added to this solution in succession. It is left for about 20 minutes at room temperature. pre-react and then transfer this solution to the solid phase reactor. Shake at room temperature for 18 hours. and filtered off. The resin is washed three times with 20 ml of DMF and three times with 20 ml of CH 2 Cl 2 . 20 ml of a solution consisting of pyridine / acetic anhydride (3: 1) are added and the mixture is shaken for 20 minutes. After the unreacted amino functions have been capped, the mixture is washed four times with 20 ml of DMF, once with 20 ml of MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 and finally six times with 20 ml of diethyl ether and in high vacuum. dried. 870 mg of loaded resin are obtained. The loading is determined photometrically on the basis of the UV absorption of the fluorenylmethyl-piperidine adduct, which is obtained by adding 20 mg of the resin loaded with an Fmoc-amino acid to piperidine. Loading: c = 0.474 mmol / g, which corresponds to a coupling yield of 87%.

Beladung von Nova-Syn-Tg-amino-resin HL mit 4-[2-(N-Fluorenylmethoxycarbonyl-L- isoleucyloxy)-1-(trimethylsilyl)ethyl]phenoxyessigsäure 8cLoading of Nova-Syn-Tg-amino-resin HL with 4- [2- (N-fluorenylmethoxycarbonyl-L- isoleucyloxy) -1- (trimethylsilyl) ethyl] phenoxyacetic acid 8c

3.24 g Nova Syn Tg amino-resin HL (Novabiochem; 10 µm beads; 0.43 mmol/g; 1.393 mmol) werden in einen Reaktor für die Festphasensynthese eingewogen und 30 min in ca. 20 ml CH2Cl2 vorgequollen. 673.0 mg (1.11 mmol) 4-[2-(N-Fluorenylmethoxycarbonyl-L-isoleucyloxy)-1- (trimethylsilyl)-ethyl]phenoxyessigsäure 7a werden in einer Mischung aus 40 ml CH2Cl2 und 5 ml DMF gelöst. Zu dieser Lösung werden nacheinander 171.2 mg (1.11 mmol) HOBt, 0.246 ml (225.6 mg, 2.23 mmol) N-Methylmorpholin und letztlich 358.0 mg (1.11 mmol) TBTU gegeben. Man läßt ca. 20 min bei Raumtemp. vorreagieren und überführt dann diese Lösung in den Festphasenreaktor. Man schüttelt 18 h bei Raumtemp. und filtriert ab. Das Harz wird dreimal mit je 30 ml DMF und dreimal mit je 30 ml CH2Cl2 gewaschen. Man versetzt mit 35 ml einer Lösung bestehend aus Pyridin/Acetanhydrid (3 : 1) und schüttelt 20 Minuten. Nach dem Capping der unumgesetzten Aminofunktionen wird viermal mit je 30 ml DMF, einmal mit je 30 ml MeOH, CH2Cl2, MeOH, CH2Cl2, MeOH, CH2Cl2 und abschließend sechsmal mit je 30 ml Diethylether gewaschen und im Hochvak. getrocknet. Es werden 3.72 g beladenes Harz erhalten. Die Beladungsbestimmung erfolgt photometrisch anhand der UV-Absorbtion des Fluorenylmethyl- Piperidin-Adduktes, das durch Versetzen von 20 mg des mit einer Fmoc-Aminosäure beladenen Harzes mit Piperidin entsteht. Beladung: c = 0.278 mmol/g, das entspricht einer Kupplungsausbeute von 93%. 3.24 g of Nova Syn Tg amino-resin HL (Novabiochem; 10 µm beads; 0.43 mmol / g; 1,393 mmol) are weighed into a reactor for solid phase synthesis and pre-swollen in approx. 20 ml of CH 2 Cl 2 for 30 min. 673.0 mg (1.11 mmol) of 4- [2- (N-fluorenylmethoxycarbonyl-L-isoleucyloxy) -1- (trimethylsilyl) ethyl] phenoxyacetic acid 7a are dissolved in a mixture of 40 ml of CH 2 Cl 2 and 5 ml of DMF. 171.2 mg (1.11 mmol) of HOBt, 0.246 ml (225.6 mg, 2.23 mmol) of N-methylmorpholine and finally 358.0 mg (1.11 mmol) of TBTU are added to this solution in succession. It is left for about 20 minutes at room temperature. pre-react and then transfer this solution to the solid phase reactor. Shake at room temperature for 18 hours. and filtered off. The resin is washed three times with 30 ml of DMF and three times with 30 ml of CH 2 Cl 2 . 35 ml of a solution consisting of pyridine / acetic anhydride (3: 1) are added and the mixture is shaken for 20 minutes. After the unreacted amino functions have been capped, the mixture is washed four times with 30 ml of DMF, once with 30 ml of MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 and finally six times with 30 ml of diethyl ether and in high vacuum. dried. 3.72 g of loaded resin are obtained. The loading is determined photometrically on the basis of the UV absorption of the fluorenylmethyl-piperidine adduct, which is obtained by adding 20 mg of the resin loaded with an Fmoc-amino acid to piperidine. Loading: c = 0.278 mmol / g, which corresponds to a coupling yield of 93%.

Festphasensynthese eines geschützten Heptapeptids zur Untersuchung einer potentiellen Aspartimid-BildungSolid phase synthesis of a protected heptapeptide to investigate a potential Aspartimide Education Nα-Tert.-butyloxycarbonyl-L-leucyl-O-tert.-butyl-L-aspartyl-L-alanyl-Nω-trityl-L-aspariginyl-glycyl-L-isoleucyl-L-isoleucin 9N α -Tert.-butyloxycarbonyl-L-leucyl-O-tert.-butyl-L-aspartyl-L-alanyl-N ω -trityl-L-aspariginyl-glycyl-L-isoleucyl-L-isoleucine 9 (Boc-Leu-Asp(OtBu)-Ala-Asn(Trt)-Gly-Ile-Ile-OH)(Boc-Leu-Asp (OtBu) -Ala-Asn (Trt) -Gly-Ile-Ile-OH)

In einem Perkin-Elmer ABI 433A Peptidsynthesizer werden 274.1 mg des mit Fmoc-Ile- OPTMSEL beladenen Aminomethylpolystyrol-Harzes 8a (Beladung: c = 0.365 mmol/g) eingesetzt. Die Fmoc-Abspaltungen wurden in vier bis fünf 4 Minuten-Zyklen mit Piperidin (30% Piperidin in NMP) vorgenommen. Die Kupplungen wurden mit 10 Äquivalenten an Fmoc- bzw. Boc-Aminosäuren und Kupplungsreagenzien (HBTU, HOBt, DIPEA) innerhalb von 34-36 min durchgeführt. Nach jeder Kupplung wurde mit einer Mischung aus Acetanhydrid/DIPEA/HOBt in NMM ein Capping-Schritt durchgeführt. Nach abgeschlossener Synthese wurde noch im Synthesizer ausgiebig mit NMP und anschließend mit CH2Cl2 gewaschen. Zur Abspaltung des geschützten Heptapeptids vom polymeren Träger wird das Harz in einen Reaktor überführt und i. Hochvak. getrocknet. Anschließend wird dreimal mit 10 ml CH2Cl2 gewaschen. Dann wird das Harz mit einer Lösung aus 63.1 mg Tetrabutylammoniumfluorid-Trihydrat (TBAF.3H2O, 0. 2 mmol, 2 Äquiv.) in 10 ml CH2Cl2 versetzt und 25 Minuten bei Raumtemp. geschüttelt. Man filtriert ab und wäscht mit 10 ml CH2Cl2. Dieser Abspaltvorgang wird noch einmal mit einer Lösung aus 18.9 mg TBAF.3H2O (0.06 mmol) in 10 ml CH2Cl2 wiederholt. Die beiden Abspaltlösungen werden getrennt aufgearbeitet: Es wird mit 10 ml H2O versetzt und insgesamt zweimal mit 10 ml H2O gewaschen. Die vereinigten organischen Phasen werden über MgSO4 getrocknet und i. Vak. vom Lösungsmittel befreit.In a Perkin-Elmer ABI 433A peptide synthesizer, 274.1 mg of the ammomethyl polystyrene resin 8a loaded with Fmoc-Ile-OPTMSEL are used (loading: c = 0.365 mmol / g). Fmoc cleavages were performed in four to five four minute cycles with piperidine (30% piperidine in NMP). The couplings were carried out with 10 equivalents of Fmoc or Boc amino acids and coupling reagents (HBTU, HOBt, DIPEA) within 34-36 min. After each coupling, a capping step was carried out with a mixture of acetic anhydride / DIPEA / HOBt in NMM. After the synthesis was complete, the synthesizer was washed extensively with NMP and then with CH 2 Cl 2 . To split off the protected heptapeptide from the polymeric carrier, the resin is transferred to a reactor and i. High vacuum. dried. It is then washed three times with 10 ml of CH 2 Cl 2 . A solution of 63.1 mg of tetrabutylammonium fluoride trihydrate (TBAF.3H 2 O, 0.2 mmol, 2 equiv.) In 10 ml of CH 2 Cl 2 is then added to the resin and the mixture is stirred at room temperature for 25 minutes. shaken. It is filtered off and washed with 10 ml of CH 2 Cl 2 . This cleavage process is repeated once more with a solution of 18.9 mg of TBAF.3H 2 O (0.06 mmol) in 10 ml of CH 2 Cl 2 . The two cleavage solutions are worked up separately: 10 ml of H 2 O are added and the mixture is washed twice with 10 ml of H 2 O. The combined organic phases are dried over MgSO 4 and i. Vak. freed from the solvent.

1. Fraktion: 89 mg, farbloser, kristalliner Feststoff; 2. Fraktion: 37 mg, farbloser, kristalliner Feststoff. Beide Fraktionen werden durch HPLC-MS-Untersuchung analysiert. Beide Fraktionen zeigen gleiche Zusammensetzung und bestehen aus 97% des gewünschten Heptapeptids und 3% des Aspartimid enthaltenden Peptids. Eine Reinigung des Rohproduktes, d. h. die Abtrennung des Aspartimid enthaltenden Peptids (ca. 3%), ist durch präparative HPLC möglich. (Säule: C8 Eurosphere, Gradient: 30% CH3CN in H2O → 60% CH3CN in H2O in 100 min). Nach Gefriertrocknung erhält man einen farblosen, amorphen Feststoff.
Ausb.: 100 mg (90%); farbloser, amorpher Feststoff; [α]D 23 = -22.29° (c = 1.01 g/100 ml, MeOH); Rf = 0.39 (CH2Cl2/MeOH/HOAc/H2O 90 : 10 : 1 : 1).
M: 1113.34 (C59H84N8O13)
HPLC-MS (Säule A, Gradient A): Rt, m/z = 6.53 min (3.3%; 1083.5, [Aspartimid+2Na]+; 1077.5 [Aspartimid+K]+; 1061.4 [Aspartimid+Na]+); 7.28 min (96.7%; 1157.4, [M+2Na]+; 1151.4, [M+K]+; 1135.4, [M+Na]+).
ESI-MS (m/z) = 1173.4 [M+2K]+; 1157.4 [M+2Na]+; 1151.4 [M+K]+; 1135.5 [M+Na]+; 1095.5 [M+K+H-tBu]+; 1079.5 [M+Na+H-tBu]+; 995.4 [M+K-BoctBu+2H]+; 979.4 [M+Na-Boc- tBu+2H]+.
400 MHz-1H-NMR (DMSO-d6, 1H,1H-COSY): δ (ppm): 8.72 (sb, 1H, β-NH Asn); 8.18-8.35 (m, 2H, α-NH Asn, Asp); 7.78-7.93 (m, 4H, NH Ala, Gly, 2x Ile); 7.14-7.25 (m, 15H, Trt); 7.02 (d, 1H, NH Leu); 4.51-4.58 (m, 2H, α-CH Asn, Asp); 4.23-4.27 (m, 2H, α-CH Ala, Ile); 3.99-4.01 (m, 1H, α-CH Ile); 3.93-3.96 (m, 1H, α-CH Leu); 3.65-3.77 (m, 2H, α-CH2 Gly); 2.41-2.71 (m, 4H, 2x β-CH2 Asn, Asp); 1.68-1.81 (m, 2H, 2x β-CH Ile); 1.52-1.61 (m, 1H, χ-CH Leu); 1.35 (s, 9H, 3x CH3 Boc); 1.34 (s, 9H, 3x CH3 tBu); 1.29-1.41 (m, 4H, β-CH2 Leu, 2x χ-CHA Ile); 1.20 (d, 3H, CH3 Ala, J = 7.04 Hz); 1.04-1.20 (m, 2H, 2x χ-CHB Ile); 0.75-0.84 (m, 18H, 2x χ-CH3 Ile, 2x δ-CH3 Ile, 2x δ-CH3 Leu).
100.6 MHz-13C-NMR (DMSO-d6; BB, DEPT): δ (ppm): 172.56, 171.62, 170.91, 170.38, 169.83, 169.35, 169.01, 168.83, 168.11 (9C, 1x COOH Ile, 1x COOtBu Asp, 7x C=O Amid Leu, α-Asn, β-Asn, Ala, Asp, Gly, Ile); 144.69 (3C, Cipso-Trt); 128.47 (3C, Cpara-Trt); 127.31 (6C, Cortho-Trt); 126.19 (6C, Cmeta-Trt); 80.05 (1C, Cquart Boc); 77.91 (1C, Cquart tBu); 69.36 (1C, Cquart); 56.89 56,75 (2C, α-CH Leu, α-CH Ile); 52.72 (1C, α-CH Asn); 50.26 (1C, α-CH Ile); 49.26 (1C, α-CH Asp); 48.29 (1C, α-CH Ala); 42.04 (1C, α-CH2 Gly); 40.70 (1C, β-CH2 Leu); 38.30 (1C, β-CH2 Asn); 36.92 (1C, β-CH2 Asp); 36.79; 36.51 (2C, 2x β-CH Ile); 28.07 (3C, 3x CH3 Boc); 27.59 (3C, 3x CH3 tBu); 24.77, 24.07 (2C, 2x χ-CH2 Ile); 22.83 (1C, χ-CH Leu); 21.40 (2C, 2x δ-CH3 Leu); 18.21 (1C, CH3 Ala); 15.53, 15.22 (2C, 2x χ-CH3 Ile); 11.47, 10.96 (2C, 2x δ-CH3 Ile).
1st fraction: 89 mg, colorless, crystalline solid; 2nd fraction: 37 mg, colorless, crystalline solid. Both fractions are analyzed by HPLC-MS examination. Both fractions have the same composition and consist of 97% of the desired heptapeptide and 3% of the aspartimide-containing peptide. A purification of the crude product, ie the separation of the peptide containing aspartimide (approx. 3%), is possible by preparative HPLC. (Column: C8 Eurosphere, gradient: 30% CH 3 CN in H 2 O → 60% CH 3 CN in H 2 O in 100 min). After freeze-drying, a colorless, amorphous solid is obtained.
Yield: 100 mg (90%); colorless, amorphous solid; [α] D 23 = -22.29 ° (c = 1.01 g / 100 ml, MeOH); R f = 0.39 (CH 2 Cl 2 / MeOH / HOAc / H 2 O 90: 10: 1: 1).
M: 1113.34 (C 59 H 84 N 8 O 13 )
HPLC-MS (column A, gradient A): R t , m / z = 6.53 min (3.3%; 1083.5, [aspartimide + 2Na] + ; 1077.5 [aspartimide + K] + ; 1061.4 [aspartimide + Na] + ); 7.28 min (96.7%; 1157.4, [M + 2Na] + ; 1151.4, [M + K] + ; 1135.4, [M + Na] + ).
ESI-MS (m / z) = 1173.4 [M + 2K] + ; 1157.4 [M + 2Na] + ; 1151.4 [M + K] + ; 1135.5 [M + Na] + ; 1095.5 [M + K + H-tBu] + ; 1079.5 [M + Na + H-tBu] + ; 995.4 [M + K-BoctBu + 2H] + ; 979.4 [M + Na-Boc-tBu + 2H] + .
400 MHz 1 H NMR (DMSO-d 6 , 1 H, 1 H-COZY): δ (ppm): 8.72 (s b , 1H, β-NH Asn); 8.18-8.35 (m, 2H, α-NH Asn, Asp); 7.78-7.93 (m, 4H, NH Ala, Gly, 2x Ile); 7.14-7.25 (m, 15H, Trt); 7.02 (d, 1H, NH Leu); 4.51-4.58 (m, 2H, α-CH Asn, Asp); 4.23-4.27 (m, 2H, α-CH Ala, Ile); 3.99-4.01 (m, 1H, α-CH Ile); 3.93-3.96 (m, 1H, α-CH Leu); 3.65-3.77 (m, 2H, α-CH 2 Gly); 2.41-2.71 (m, 4H, 2x β-CH 2 Asn, Asp); 1.68-1.81 (m, 2H, 2x β-CH Ile); 1.52-1.61 (m, 1H, χ-CH Leu); 1.35 (s, 9H, 3x CH 3 Boc); 1.34 (s, 9H, 3x CH 3 tBu); 1.29-1.41 (m, 4H, β-CH 2 Leu, 2x χ-CH A Ile); 1.20 (d, 3H, CH 3 Ala, J = 7:04 Hz); 1.04-1.20 (m, 2H, 2x χ-CHB Ile); 0.75-0.84 (m, 18H, 2x χ-CH 3 Ile, 2x δ-CH 3 Ile, 2x δ-CH 3 Leu).
100.6 MHz- 13 C-NMR (DMSO-d 6 ; BB, DEPT): δ (ppm): 172.56, 171.62, 170.91, 170.38, 169.83, 169.35, 169.01, 168.83, 168.11 (9C, 1x COOH Ile, 1x COOtBu Asp , 7x C = O Amid Leu, α-Asn, β-Asn, Ala, Asp, Gly, Ile); 144.69 (3C, C ipso -Trt); 128.47 (3C, C para -Trt); 127.31 (6C, C ortho -Trt); 126.19 (6C, C meta -Trt); 80.05 (1C, C quart Boc); 77.91 (1C, C quart tBu); 69.36 (1C, C quart ); 56.89 56.75 (2C, α-CH Leu, α-CH Ile); 52.72 (1C, α-CH Asn); 50.26 (1C, α-CH Ile); 49.26 (1C, α-CH Asp); 48.29 (1C, α-CH Ala); 42.04 (1C, α-CH 2 Gly); 40.70 (1C, β-CH 2 Leu); 38.30 (1C, β-CH 2 Asn); 36.92 (1C, β-CH 2 Asp); 36.79; 36.51 (2C, 2x β-C H Ile); 28.07 (3C, 3x CH 3 Boc); 27.59 (3C, 3x CH 3 tBu); 24.77, 24.07 (2C, 2x χ-CH 2 Ile); 22.83 (1C, χ-CH Leu); 21.40 (2C, 2x δ-CH 3 Leu); 18:21 (1C, CH 3 ala); 15.53, 15.22 (2C, 2x χ-CH 3 Ile); 11.47, 10.96 (2C, 2x δ-CH 3 Ile).

Festphasensynthese eines geschützten GlycodecapeptidsSolid phase synthesis of a protected glycodecapeptide Nα-Tert.-butyloxycarbonyl-L-leucyl-L-alanyl-L-alanyl-L-leucyl-O-tert.-butyl-L-aspartyl-O- (2-acetamido-3,4,6-tri-O-acetyl-2-desoxy-α-D-galactopyranosyl)-L-seryl-Nω-trityl-L- glutaminyl-glycyl-L-alanyl-L-isoleucin 11N α -Tert.-butyloxycarbonyl-L-leucyl-L-alanyl-L-alanyl-L-leucyl-O-tert.-butyl-L-aspartyl-O- (2-acetamido-3,4,6-tri- O-acetyl-2-deoxy-α-D-galactopyranosyl) -L-seryl-N ω -trityl-L-glutaminyl-glycyl-L-alanyl-L-isoleucine 11 (Boc-Leu-Ala-Ala-Leu-Asp(OtBu)-Ser(αAc3GalAc)-Gln(Trt)-Gly-Ala-Ile-OH)(Boc-Leu-Ala-Ala-Leu-Asp (OtBu) -Ser (αAc 3 GalAc) -Gln (Trt) -Gly-Ala-Ile-OH)

In einem Perkin-Elmer ABI 433A Peptidsynthesizer werden 274.1 mg des mit Fmoc-Ile- OPTMSEL beladenen Aminomethylpolystyrol-Harzes 8a (Beladung: c = 0.365 mmol/g) eingesetzt. Die Fmoc-Abspaltungen werden in vier bis fünf 4 Minuten Zyklen mit Piperidin (30% Piperidin in NMP) vorgenommen. Die Kupplungen werden mit 10 Äquivalenten an Fmoc- bzw. Boc- Aminosäuren und Kupplungsreagenzien (HBTU, HOBt, DIPEA) innerhalb von 34-36 min durchgeführt. Die Kupplung des glycosylierten Bausteins erfolgte manuell mit nur 3 Äquivalenten an Fmoc-Ser(αAc3GalNAc)-OH. Als Kupplungsreagenzien werden hier HATU (3 Äquiv.), HOAt (3 Äquiv.) und DIPEA (6 Äquiv.) verwendet. Aufgrund des geringeren Reagenzienüberschusses wird die Reaktionszeit für diese Kupplung auf 5 h ausgedehnt. Nach jeder Kupplung wurde mit einer Mischung aus Acetanhydrid/DIPEA/HOBt in NMM ein Capping-Schritt durchgeführt. Nach abgeschlossener Synthese wird noch im Synthesizer ausgiebig mit NMP und anschließend mit CH2Cl2 gewaschen. Zur Abspaltung des geschützten Glycodecapeptids vom polymeren Träger wird das Harz zunächst in einen Reaktor überführt und i. Hochvak. getrocknet. Anschließend wird dreimal mit 10 ml CH2Cl2 gewaschen. Dann wird das Harz mit einer Lösung aus 63.1 mg TBAF.3H2O (0.2 mmol, 2 Äquiv.) in 10 ml CH2Cl2 versetzt und 25 Minuten bei Raumtemp. geschüttelt. Man filtriert ab und wäscht viermal mit 10 ml CH2Cl2. Dieser Abspaltvorgang wird noch einmal mit einer Lösung aus 23 mg TBAF.3H2O (0.07 ) in 10 ml CH2Cl2 wiederholt. Die beiden Abspaltlösungen werden getrennt aufgearbeitet: Es wird mit 20 ml H2O versetzt und insgesamt zweimal mit 20 ml H2O gewaschen. (Aufgrund der schweren Löslichkeit des Produktes in CH2Cl2 treten bei den Phasentrennungen Probleme auf.) Die vereinigten organischen Phasen werden i. Vak. vom Lösungsmittel befreit. 1. Fraktion: 109 mg, farbloser, kristalliner Feststoff; 2. Fraktion: 47 mg, farbloser, kristalliner Feststoff. Beide Fraktionen werden durch HPLC-MS- Untersuchung analysiert. In beiden Fraktionen ist das Produkt zu ca. 90% enthalten (nach Integration über UV- bzw. ELS-Chromatogramm). Der erhaltene Feststoff kann durch präparative HPLC gereinigt werden. (Säule: Eurosphere C8, Gradient: 30% CH3CN in H2O → 80% CH3CN in H2O in 100 min). Nach Gefriertrocknung erhält man einen farblosen, amorphen Feststoff.
Ausb.: 111 mg (66%); farbloser, amorpher Feststoff; [α]D 23 = 1.96° (c = 0.90 g/100 ml, MeOH); Rf = 0.39 (CH2Cl2/MeOH/HOAc/H2O 90 : 10 : 1 : 1).
M: 1685.95 C83H120N12O25
HPLC-MS (Säule A, Gradient B): Rt, m/z = 4.45 min (2.7%); 5.25 min (3.8%; Deletionssequenzen: letzte bzw. vorletzte Aminosäure nicht gekuppelt); 5.80 min (1.6%; 839.6, ([Aspartimid+3Na]+/2); 836.7, ([Aspartimid+Na+K]+/2); 828.9, ([Aspartimid+2Na]+/2; 825.9 ([Aspartimid+K]+/2)); 6.82 min (92.0%; 876.8, ([M+3Na]+/2); 873.8, ([M+Na+K]+/2); 865.8, ([M+2Na]+/2); 862.8, ([M+K]+/2)).
ESI-MS (m/z) = 884.7 ([M+3Na]+/2; 876.8 ([M+Na+K]+/2); 873.8 ([M+2Na]+/2); 865.8 ([M+2Na]+/2); 854.7 ([M+Na]+/2); 848.8 ([M+3Na-tBu+H]+/2); 845.7 ([M+Na+K-tBu+H]+/2); 798.8 ([M+3Na-tBu-Boc+2H]+/2); 795.8 ([M+Na+K-tBu-Boc+2H]+/2); 787.8 ([M+2Na-tBu- Boc+2H]+/2).
MALDI-TOF-MS (cca, pos) (m/z) = 1709.3 [M+Na]+; 1725.2 [M+K]+; 1731 [M+2Na]+; 1747.2 [M+Na+K]+.
400 MHz-1H-NMR (DMSO-d6; 1H,1H-COSY): δ(ppm): 8.53 (sb, 1H, ω-NH Gln); 8.08-8.14 (m, 3H, 3x NH Asp, Ser, Ala); 7.85-7.98 (m, 5H, 5x NH 2x Ala, Gln, Leu, Gly); 7.61 (d, 1H, NH GalNAc, J = 8.6 Hz); 7.14-7.26 (m, 15H, Trt); 6.85 (d, 1H, NH-Urethan Leu, J = 7.43 Hz); 5.28 (s, 1H, H4-Gal); 5.00 (dd, 1H, H3-Gal, JH3,H4 = 2.74 Hz, JH3,H2 = 11.74 Hz); 4.85 (d, 1H, H1-Gal, JH1,H2 = 3.13 Hz); 4.56-4.64 (m, 1H, α-CH Asp); 4.47-4.52 (m, 1H, α-CH Ser); 3.94-4.40 (m, 9H, α-CH 3x Ala, Ile, Gln, H2-Gal, H5-Gal, 2x H6-Gal); 3.88-3.92 (m, 2H, 2x α-CH Leu); 3.72-3.76 (m, 2H, α-CH2 Gly); 3.60-3.64 (m, 2H, β-CH2 Ser); 2.71-2.73 (m, 1H, β-CHA Asp,); 2.45-2.49 (m, 1H, β-CHB Asp); 2.62-2.68 (m, 2H, χ-CH2 Gln); 2.07 (s, 3H, CH3 NHAc); 1.71-1.94 (m, 10H, 3x CH3 OAc, β-CH Ile); 1.52-1.59 (m, 2H, 2x χ-CH Leu); 1.36 (s, 9H, 3x CH3 Boc); 1.33 (s, 9H, 3x CH3 tBu); 1.33-1.42 (m, 6H, 2x β-CH2 Leu, β-CH2 Gln); 1.11-1.18 (m, 11H, 3x CH3 Ala, χ-CH2 Ile); 0.79-0.86 (m, 18H, 4x δ-CH3 Leu, 2x δ-CH3 Leu).
100.6 MHz-13C-NMR (DMSO-d6; BB, DEPT): δ (ppm): 172.86 (1C, COOH); 172.69 (1C, COOtBu); 172.18, 172.11, 172.02, 171.53, 170.39, 170.19, 170.04, 169.97, 169.91, 169.71, 169.34, 169.05, 168.22, 168.11 (14C, 3x C=O Ester, 11x C=O Amid, N-Acetyl, 3x Ala, 2x Leu, Asp, Ser, Gly, α- und ω-Gln); 145.00 (1C, Cipso-Trt); 128.61 (3C, Cpara-Trt); 127.54 (6C, Cortho- Trt); 126.41 (6C, Cmeta-Trt); 97.29 (1C, C1-Gal); 80.39 (1C, Cquart Boc); 78.34 (1C, Cquart tBu); 69.37 (1C, Cquart Trt); 67.51 (1C, C3-Gal); 66.96 (1C, β-CH2-Ser); 66.83 (1C, C4-Gal); 65.92 (1C, C5-Gal); 61.14 (1C, C6-Gal); 56.04 (1C, α-CH Leu); 52.66, 52.39, 52.20 (3C, α-CH Leu, Ser, Ile); 50.87, 49.28, 48.08, 47.95, 47.59, 46.57 (6C, α-CH Asp, Gln, 3x Ala, C2-Gal); 41.61 (1C, α- CH2 Gly); 40.37, 40.22 (2C, 2x β-CH2 Leu); 36.92 (1C, β-CH2 Asp; 36.08 (1C, β-CH Ile); 32.39 (1C, χ-CH2 Gln); 27.89 (3C, 3x CH3 Boc); 27.66 (1C, β-CH2 Gln); 27.37 (3C, 3x CH3 tBu); 24.46 (1C, χ-CH2 Ile); 23.94, 23.82 (2C, 2x χ-CH Leu); 22.69, 22.33, 21.21, 20.22 (4C, 4x CH3 Acetyl); 20.18, 20.13, 18.05 (3C, CH3 Ala); 17.67, 17.38 (4C, 4x δ-CH3 Leu); 15.24 (1C, χ-CH3 Ile); 11.08 (1C, δ-CH3 Ile).
In a Perkin-Elmer ABI 433A peptide synthesizer, 274.1 mg of the ammomethyl polystyrene resin 8a loaded with Fmoc-Ile-OPTMSEL are used (loading: c = 0.365 mmol / g). The Fmoc cleavages are carried out in four to five 4 minute cycles with piperidine (30% piperidine in NMP). The couplings are carried out with 10 equivalents of Fmoc or Boc amino acids and coupling reagents (HBTU, HOBt, DIPEA) within 34-36 min. The glycosylated building block was coupled manually with only 3 equivalents of Fmoc-Ser (αAc 3 GalNAc) -OH. HATU (3 equiv.), HOAt (3 equiv.) And DIPEA (6 equiv.) Are used as coupling reagents. Due to the lower reagent excess, the reaction time for this coupling is extended to 5 h. After each coupling, a capping step was carried out with a mixture of acetic anhydride / DIPEA / HOBt in NMM. After synthesis is complete, the synthesizer is washed extensively with NMP and then with CH 2 Cl 2 . To split off the protected glycodecapeptide from the polymeric support, the resin is first transferred to a reactor and i. High vacuum. dried. It is then washed three times with 10 ml of CH 2 Cl 2 . A solution of 63.1 mg of TBAF.3H 2 O (0.2 mmol, 2 equiv.) In 10 ml of CH 2 Cl 2 is then added to the resin and the mixture is at room temperature for 25 minutes. shaken. It is filtered off and washed four times with 10 ml of CH 2 Cl 2 . This cleavage process is repeated once more with a solution of 23 mg TBAF.3H 2 O (0.07) in 10 ml CH 2 Cl 2 . The two cleavage solutions are worked up separately: 20 ml of H 2 O are added and the mixture is washed twice with 20 ml of H 2 O. (Due to the poor solubility of the product in CH 2 Cl 2 , problems occur with the phase separations.) The combined organic phases are i. Vak. freed from the solvent. 1st fraction: 109 mg, colorless, crystalline solid; 2nd fraction: 47 mg, colorless, crystalline solid. Both fractions are analyzed by HPLC-MS examination. The product is approximately 90% contained in both fractions (after integration via UV or ELS chromatogram). The solid obtained can be purified by preparative HPLC. (Column: Eurosphere C8, gradient: 30% CH 3 CN in H 2 O → 80% CH 3 CN in H 2 O in 100 min). After freeze-drying, a colorless, amorphous solid is obtained.
Yield: 111 mg (66%); colorless, amorphous solid; [α] D 23 = 1.96 ° (c = 0.90 g / 100 ml, MeOH); R f = 0.39 (CH 2 Cl 2 / MeOH / HOAc / H 2 O 90: 10: 1: 1).
M: 1685.95 C 83 H 120 N 12 O 25
HPLC-MS (column A, gradient B): R t , m / z = 4.45 min (2.7%); 5.25 min (3.8%; deletion sequences: last or penultimate amino acid not coupled); 5.80 min (1.6%; 839.6, ([Aspartimid + 3Na] + / 2); 836.7, ([Aspartimid + Na + K] + / 2); 828.9, ([Aspartimid + 2Na] + / 2; 825.9 ([Aspartimid + K] + / 2)); 6.82 min (92.0%; 876.8, ([M + 3Na] + / 2); 873.8, ([M + Na + K] + / 2); 865.8, ([M + 2Na ] + / 2); 862.8, ([M + K] + / 2)).
ESI-MS (m / z) = 884.7 ([M + 3Na] + / 2; 876.8 ([M + Na + K] + / 2); 873.8 ([M + 2Na] + / 2); 865.8 ([M + 2Na] + / 2); 854.7 ([M + Na] + / 2); 848.8 ([M + 3Na-tBu + H] + / 2); 845.7 ([M + Na + K-tBu + H] + / 2); 798.8 ([M + 3Na-tBu-Boc + 2H] + / 2); 795.8 ([M + Na + K-tBu-Boc + 2H] + / 2); 787.8 ([M + 2Na-tBu - Boc + 2H] + / 2).
MALDI-TOF-MS (cca, pos) (m / z) = 1709.3 [M + Na] + ; 1725.2 [M + K] + ; 1731 [M + 2Na] + ; 1747.2 [M + Na + K] + .
400 MHz 1 H NMR (DMSO-d 6 ; 1 H, 1 H-COZY): δ (ppm): 8.53 (s b , 1H, ω-NH Gln); 8.08-8.14 (m, 3H, 3x NH Asp, Ser, Ala); 7.85-7.98 (m, 5H, 5x NH 2x Ala, Gln, Leu, Gly); 7.61 (d, 1H, NH GalNAc, J = 8.6 Hz); 7.14-7.26 (m, 15H, Trt); 6.85 (d, 1H, NH-urethane Leu, J = 7.43 Hz); 5.28 (s, 1H, H4-Gal); 5.00 (dd, 1H, H3-Gal, J H3, H4 = 2.74 Hz, J H3, H2 = 11.74 Hz); 4.85 (d, 1H, H1-Gal, J H1, H2 = 3.13 Hz); 4.56-4.64 (m, 1H, α-CH Asp); 4.47-4.52 (m, 1H, α-CH Ser); 3.94-4.40 (m, 9H, α-CH 3x Ala, Ile, Gln, H2-Gal, H5-Gal, 2x H6-Gal); 3.88-3.92 (m, 2H, 2x α-CH Leu); 3.72-3.76 (m, 2H, α-CH 2 Gly); 3.60-3.64 (m, 2H, β-CH 2 Ser); 2.71-2.73 (m, 1H, β-CH A Asp,); 2.45-2.49 (m, 1H, β-CH B Asp); 2.62-2.68 (m, 2H, χ-CH 2 Gln); 2:07 (s, 3H, CH3 NHAc); 1.71-1.94 (m, 10H, 3x CH 3 OAc, β-CH Ile); 1.52-1.59 (m, 2H, 2x χ-CH Leu); 1:36 (s, 9H, 3x CH 3 Boc); 1.33 (s, 9H, 3x CH 3 tBu); 1.33-1.42 (m, 6H, 2x β-CH 2 Leu, β-CH 2 Gln); 1.11-1.18 (m, 11H, 3x CH 3 Ala, χ-CH 2 Ile); 0.79-0.86 (m, 18H, 4x δ-CH 3 Leu, 2x δ-CH 3 Leu).
100.6 MHz 13 C NMR (DMSO-d 6 ; BB, DEPT): δ (ppm): 172.86 (1C, COOH); 172.69 (1C, COOtBu); 172.18, 172.11, 172.02, 171.53, 170.39, 170.19, 170.04, 169.97, 169.91, 169.71, 169.34, 169.05, 168.22, 168.11 (14C, 3x C = O ester, 11x C = O amide, N-acetyl, 3x Ala, 2x Leu, Asp, Ser, Gly, α- and ω-Gln); 145.00 (1C, C ipso -Trt); 128.61 (3C, C para -Trt); 127.54 (6C, C ortho - Trt); 126.41 (6C, C meta -Trt); 97.29 (1C, C1-Gal); 80.39 (1C, C quart Boc); 78.34 (1C, C quart tBu); 69.37 (1C, C quart Trt); 67.51 (1C, C3-Gal); 66.96 (1C, β-CH 2 ser); 66.83 (1C, C4-Gal); 65.92 (1C, C5-Gal); 61.14 (1C, C6-Gal); 56.04 (1C, α-CH Leu); 52.66, 52.39, 52.20 (3C, α-CH Leu, Ser, Ile); 50.87, 49.28, 48.08, 47.95, 47.59, 46.57 (6C, α-CH Asp, Gln, 3x Ala, C2-Gal); 41.61 (1C, α-CH 2 Gly); 40.37, 40.22 (2C, 2x β-CH 2 Leu); 36.92 (1C, β-CH 2 Asp; 36.08 (1C, β-CH Ile); 32.39 (1C, χ-CH 2 Gln); 27.89 (3C, 3x CH 3 Boc); 27.66 (1C, β-CH 2 Gln ); 27.37 (3C, 3x CH 3 tBu); 24.46 (1C, χ-CH 2 Ile); 23.94, 23.82 (2C, 2x χ-CH Leu); 22.69, 22.33, 21.21, 20.22 (4C, 4x CH 3 acetyl ); 20.18, 20.13, 18.05 (3C, CH 3 Ala); 17.67, 17.38 (4C, 4x δ-CH 3 Leu); 15.24 (1C, χ-CH 3 Ile); 11.08 (1C, δ-CH 3 Ile) ,

Synthese eines Tripeptids zur Untersuchung einer potentiellen Diketopiperazinbildung auf der Stufe der zweiten gekuppelten Aminosäure und zur Untersuchung der Stabilität der Fmoc-Gruppe unter den Bedingungen der AbspaltungSynthesis of a tripeptide to investigate potential diketopiperazine formation the stage of the second coupled amino acid and to study the stability of the Fmoc group under the conditions of the spin-off N-Fluorenylmethoxycarbonyl-L-phenylalanyl-L-prolyl-L-glycin 13N-fluorenylmethoxycarbonyl-L-phenylalanyl-L-prolyl-L-glycine 13 (Fmoc-Phe-Pro-Gly-OH)(Fmoc-Phe-Pro-Gly-OH) Erste Fmoc-Abspaltung und Kupplung der ersten Fmoc-AminosäureFirst Fmoc cleavage and coupling of the first Fmoc amino acid

302.5 mg (0.143 mmol) des mit Fmoc-Gly-OPTMSEL beladenen AMPS-Harzes 8b (Beladung: c = 0.474 mmol/g) werden in einem Reaktor für die Festphasensynthese mit ca. 10 ml CH2Cl2 vorgequollen und mit einer 20%igen Lösung von Piperidin in DMF versetzt und 25 min geschüttelt. Man filtriert und wäscht sechsmal mit je 20 ml DMF. 308.7 mg (0.915 mmol) Fmoc-L- Pro-OH werden in 20 ml DMF gelöst und nacheinander mit 140.5 mg (0.915 mmol) HOBt, 0.313 ml (236.5 mg, 1.83 mmol) N-Ethyldiisopropylamin und letztlich 293.8 mg (0.915 mmol) TBTU versetzt. Man läßt ca. 10 min bei Raumtemperatur vorreagieren und überführt dann diese Lösung in den Festphasenreaktor. Man schüttelt 18 h bei Raumtemp. und filtriert dann ab. Das Harz wird sechsmal mit je 20 ml DMF gewaschen und anschließend mit einer Lösung aus 15 ml Pyridin und 5 ml Acetanhydrid versetzt. Man läßt 25 min schütteln. Nach Capping der unumgesetzten Aminofunktionen wird viermal mit je 20 ml DMF, einmal mit je 20 ml MeOH, CH2Cl2, MeOH, CH2Cl2, MeOH, CH2Cl2 und abschließend sechsmal mit je 20 ml Diethylether gewaschen und i. Hochvak. getrocknet. Die Beladungsbestimmung erfolgt photometrisch anhand der UV- Absorbtion des Fluorenylmethyl-Piperidin-Adduktes, das durch Versetzen von 20 mg des mit einer Fmoc-Aminosäure beladenen Harzes mit Piperidin entsteht. Beladung: c = 0.451 mmol/g.302.5 mg (0.143 mmol) of the AMPS resin 8b loaded with Fmoc-Gly-OPTMSEL (loading: c = 0.474 mmol / g) are preswollen in a reactor for solid phase synthesis with approx. 10 ml CH 2 Cl 2 and with a 20% solution of piperidine in DMF and shaken for 25 min. It is filtered and washed six times with 20 ml of DMF each. 308.7 mg (0.915 mmol) Fmoc-L-Pro-OH are dissolved in 20 ml DMF and successively with 140.5 mg (0.915 mmol) HOBt, 0.313 ml (236.5 mg, 1.83 mmol) N-ethyldiisopropylamine and finally 293.8 mg (0.915 mmol) TBTU transferred. The mixture is left to react for about 10 minutes at room temperature and this solution is then transferred to the solid phase reactor. Shake at room temperature for 18 hours. and then filters off. The resin is washed six times with 20 ml of DMF and then mixed with a solution of 15 ml of pyridine and 5 ml of acetic anhydride. The mixture is shaken for 25 minutes. After the unreacted amino functions have been capped, the mixture is washed four times with 20 ml of DMF, once with 20 ml of MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 and finally six times with 20 ml of diethyl ether and i. High vacuum. dried. The loading is determined photometrically on the basis of the UV absorption of the fluorenylmethyl-piperidine adduct, which is obtained by adding 20 mg of the resin loaded with an Fmoc-amino acid to piperidine. Loading: c = 0.451 mmol / g.

Zweite Fmoc-AbspaltungSecond Fmoc split off

Das Harz wird mit einer 20%igen Lösung von Piperidin in DMF versetzt und 25 min geschüttelt. Es wird filtriert und diese Lösung auf das Vorhandensein des entsprechenden Diketopiperazins untersucht: Dazu entfernt man das Lösungsmittel i. Vak. und analysiert den Rückstand durch HPLC-MS. Im Rückstand kann kein Diketopiperazin gefunden werden, sondern nur das Fluorenylmethyl-Piperidin-Addukt.The resin is mixed with a 20% solution of piperidine in DMF and shaken for 25 minutes. It is filtered and this solution for the presence of the corresponding diketopiperazine examined: To do this, remove the solvent i. Vak. and analyzes the backlog HPLC-MS. No diketopiperazine can be found in the residue, only that Fluorenylmethyl piperidine adduct.

Das Harz wird sechsmal mit je 20 ml DMF gewaschen.The resin is washed six times with 20 ml DMF each.

Kupplung der zweiten Fmoc-AminosäureCoupling of the second Fmoc amino acid

354.0 mg (0.915 mmol) Fmoc-L-Phe-OH werden in 20 ml DMF gelöst und nacheinander mit 140.5 mg (0.915 mmol) HOBt, 0.313 ml (236.5 mg, 1.83 mmol) N-Ethyldiisopropylamin und letztlich 293.8 mg (0.915 mmol) TBTU versetzt. Man läßt ca. 10 min bei Raumtemperatur vorreagieren und überführt dann diese Lösung in den Festphasenreaktor. Man schüttelt 18 h bei Raumtemp. und filtriert ab. Das Harz wird fünfmal mit je 20 ml DMF, einmal mit je 20 ml MeOH, CH2Cl2, MeOH, CH2Cl2, MeOH, CH2Cl2 und abschließend sechsmal mit je 20 ml Diethylether gewaschen und i. Hochvak. getrocknet. Es werden 314 mg beladenes Harz erhalten. Die Beladungsbestimmung erfolgt photometrisch anhand der UV-Absorbtion des Fluorenylmethyl- Piperidin-Adduktes, das durch Versetzen von 20 mg des mit einer Fmoc-Aminosäure beladenen Harzes mit Piperidin entsteht. Beladung: c = 0.419 mmol/g.354.0 mg (0.915 mmol) Fmoc-L-Phe-OH are dissolved in 20 ml DMF and successively with 140.5 mg (0.915 mmol) HOBt, 0.313 ml (236.5 mg, 1.83 mmol) N-ethyldiisopropylamine and finally 293.8 mg (0.915 mmol) TBTU transferred. The mixture is left to react for about 10 minutes at room temperature and this solution is then transferred to the solid phase reactor. Shake at room temperature for 18 hours. and filtered off. The resin is washed five times with 20 ml DMF, once with 20 ml MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 , MeOH, CH 2 Cl 2 and finally six times with 20 ml diethyl ether and i. High vacuum. dried. 314 mg of loaded resin are obtained. The loading is determined photometrically on the basis of the UV absorption of the fluorenylmethyl-piperidine adduct, which is obtained by adding 20 mg of the resin loaded with an Fmoc-amino acid to piperidine. Loading: c = 0.419 mmol / g.

Abspaltung vom polymeren TrägerCleavage from the polymeric carrier

Das Harz wird dreimal mit 10 ml CH2Cl2 gewaschen. Dann wird das Harz mit einer Lösung aus 85.8 mg TBAF.3H2O (0.27 mmol, ≈2.2 Äquiv.) in 10 ml CH2Cl2 versetzt und 25 Minuten bei Raumtemp. geschüttelt. Man filtriert ab und wäscht mit 10 ml CH2Cl2. Dieser Abspaltvorgang wird noch einmal mit einer Lösung aus 30 mg TBAF.3H2O (0.095 mmol) in 10 ml CH2Cl2 wiederholt. Bei der zweiten Abspaltung kann dünnschichtchromatographisch kein Produkt mehr detektiert werden. Die gesammelten Filtrate der ersten Abspaltung werden mit 10 ml H2O versetzt und insgesamt zweimal mit 10 ml H2O gewaschen. Die vereinigten organischen Phasen werden über MgSO4 getrocknet und i. Vak. vom Lösungsmittel befreit. Das Rohprodukt wird chromatographisch an 20 g Kieselgel im Laufmittelgemisch CH2Cl2/MeOH/AcOH/H2O 95 : 5 : 0.5 : 0.5 gereinigt. Man entfernt das Lösungsmittel i. Vak. und noch enthaltene Essigsäure durch fünfmalige Kodestillation mit ca. 10 ml Toluol. Man erhält einen farblosen, kristallinen Feststoff.
Ausbeute: 60 mg (77%) (Nicht berücksichtigt sind hier 60 mg des beladenen Harzes, die für Beladungsbestimmungen verwendet wurden; d. h. die Ausbeute liegt dementsprechend höher bei 90%.); farbloser, kristalliner Feststoff; [α]D 22 = -31.58° (c = 1.00 g/100 ml, CHCl3); Rf = 0.12 (CH2Cl2/MeOH/HOAc/H2O 95 : 5 : 0.5 : 0.5).
400 MHz-1H-NMR (CDCl3): δ (ppm): 7.73 (d, 2H, H4-, H5-Fmoc, J = 7.34 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.63 Hz); 7.12-7.40 (m, 10H, H2-, H3-, H6-, H7-Fmoc, 5 arom. H Phe, NH Gly); 6.76 (d, 1H, NH-Urethan, J = 9.09 Hz); 4.76-4.82 (m, 1H, α-CH Pro); 4.56-4.66 (m, 1H, α-CH Phe); 4.11-4.35 (m, 3H, CH2-Fmoc, H9-Fmoc); 4.06 (dd, 2H, α-CH2 Gly, J1 = 4.99 Hz, J2 = 9.68 Hz); 3.65-3.72 (m, 1H, δ-CHAHB Pro); 3.05-3.10 (m, 1H, δ-CHAHB Pro); 3.04 (d, 2H, CH2 Phe, J = 7.34 Hz); 2.25-2.28 (m, 1H, β-CHAHB Pro); 1.81-1.89 (m, 3H, β-CHAHB, χ-CH2 Pro). 100.6 MHz-13C-NMR (CDCl3; BB, DEPT): δ(ppm): 172.71 (1C, COOH); 171.51, 170.42 (2 C=O Amid, Gly, Pro); 156.08 (1C, C=O Urethan); 143.84 (2C, C4a-, C4b-Fmoc); 141.30 (2C, C8a, C9a-Fmoc); 135.67 (1C, Cipso Phe); 127.02-129.31 (9C, C2-, C3-, C6-, C7-Fmoc, 5 arom. C Phe); 125.06, 125.15 (2C, C1-, C8-Fmoc); 119.92 (2C, C4-, C5-Fmoc); 67.22 (1C, CH2-Fmoc); 60.10 (1C, α-CH Pro); 53.90 (1C, α-CH Phe); 47.70 (1C, δ-CH2 Pro); 47.13 (1C, C9-Fmoc); 41.80 (1C, α-CH2 Gly); 38.91 (1C, CH2 Phe); 27.24 (1C, β-CH2 Pro); 24.84 (1C, χ-CH2 Pro).
The resin is washed three times with 10 ml CH 2 Cl 2 . A solution of 85.8 mg of TBAF.3H 2 O (0.27 mmol, ≈2.2 equiv.) In 10 ml of CH 2 Cl 2 is then added to the resin and the mixture is stirred at room temperature for 25 minutes. shaken. It is filtered off and washed with 10 ml of CH 2 Cl 2 . This cleavage process is repeated once more with a solution of 30 mg of TBAF.3H 2 O (0.095 mmol) in 10 ml of CH 2 Cl 2 . In the second cleavage, no more product can be detected by thin layer chromatography. The collected filtrates of the first cleavage are mixed with 10 ml H 2 O and washed twice with a total of 10 ml H 2 O. The combined organic phases are dried over MgSO 4 and i. Vak. freed from the solvent. The crude product is purified by chromatography on 20 g of silica gel in a CH 2 Cl 2 / MeOH / AcOH / H 2 O eluent mixture 95: 5: 0.5: 0.5. The solvent is removed i. Vak. and acetic acid still contained by five times co-distillation with about 10 ml of toluene. A colorless, crystalline solid is obtained.
Yield: 60 mg (77%) (60 mg of the loaded resin which was used for loading determinations are not taken into account here, ie the yield is accordingly higher at 90%.); colorless, crystalline solid; [α] D 22 = -31.58 ° (c = 1.00 g / 100 ml, CHCl 3 ); R f = 0.12 (CH 2 Cl 2 / MeOH / HOAc / H 2 O 95: 5: 0.5: 0.5).
400 MHz 1 H NMR (CDCl 3 ): δ (ppm): 7.73 (d, 2H, H4, H5 Fmoc, J = 7.34 Hz); 7.57 (d, 2H, H1-, H8-Fmoc, J = 7.63 Hz); 7.12-7.40 (m, 10H, H2-, H3-, H6-, H7-Fmoc, 5 aromatic H Phe, NH Gly); 6.76 (d, 1H, NH urethane, J = 9.09 Hz); 4.76-4.82 (m, 1H, α-CH Pro); 4.56-4.66 (m, 1H, α-CH Phe); 4:11 to 4:35 (m, 3H, CH 2 Fmoc, Fmoc H9); 4.06 (dd, 2H, α-CH 2 Gly, J 1 = 4.99 Hz, J 2 = 9.68 Hz); 3.65-3.72 (m, 1H, δ-CH A H B Pro); 3.05-3.10 (m, 1H, δ-CH A H B Pro); 3:04 (d, 2H, CH 2 Phe, J = 7.34 Hz); 2.25-2.28 (m, 1H, β-CH A H B Pro); 1.81-1.89 (m, 3H, β-CHAHB, χ-CH 2 Pro). 100.6 MHz - 13 C NMR (CDCl 3 ; BB, DEPT): δ (ppm): 172.71 (1C, COOH); 171.51, 170.42 (2 C = O amide, Gly, Pro); 156.08 (1C, C = O urethane); 143.84 (2C, C4a, C4b-Fmoc); 141.30 (2C, C8a, C9a-Fmoc); 135.67 (1C, C ipso Phe); 127.02-129.31 (9C, C2, C3, C6, C7 Fmoc, 5 aromatic C Phe); 125.06, 125.15 (2C, C1-, C8-Fmoc); 119.92 (2C, C4, C5 Fmoc); 67.22 (1C, CH2-Fmoc); 60.10 (1C, α-CH Pro); 53.90 (1C, α-CH Phe); 47.70 (1C, δ-CH 2 Pro); 47.13 (1C, C9-Fmoc); 41.80 (1C, α-CH 2 Gly); 38.91 (1C, CH 2 Phe); 27.24 (1C, β-CH 2 Pro); 24.84 (1C, χ-CH 2 Pro).

Claims (11)

1. Verbindungen der allgemeinen Formel I,
in denen R1, R2 und R3 unabhängig voneinander Aryl- oder Alkylgruppen sind, Aryl ein benzoider, auch kondensierter oder heterocyclischer aromatischer Rest und X ein an diesen in p-, m- oder o-Stellung angebundener Substituent ist, der auch Heteroatome wie O und N und/oder funktionelle Gruppen wie Carbonyl- oder Carboxylgruppen enthalten und an einen polymeren organischen oder anorganischen Träger angebunden werden oder sein kann; Y ist die verankerte Verbindung, die geschützte, deblockierbare oder auch freie funktionelle Gruppen enthält, an denen Festphasensynthesen durchgeführt werden können.
1. Compounds of the general formula I,
in which R 1 , R 2 and R 3 are independently aryl or alkyl groups, aryl is a benzoid, also condensed or heterocyclic aromatic radical and X is a substituent attached to them in the p-, m- or o-position, which is also heteroatoms how O and N and / or functional groups such as carbonyl or carboxyl groups contain and can be or can be attached to a polymeric organic or inorganic carrier; Y is the anchored compound, which contains protected, deblockable or also free functional groups on which solid phase syntheses can be carried out.
2. Die Synthesen von Verbindungen der allgemeinen Formel I aus Triorganylsilyl-oxiranen, in denen R1, R2 und R3 die in Anspruch 1 gekennzeichnete Bedeutung haben, und Arylmetall- Verbindungen, vorzugsweise Arylcupraten, in denen Aryl einen Substituenten X nach Anspruch 1 mit deblockierbarer funktioneller Gruppe enthält.2. The syntheses of compounds of general formula I from triorganylsilyloxiranes, in which R 1 , R 2 and R 3 have the meaning indicated in claim 1, and aryl metal compounds, preferably aryl cuprates, in which aryl has a substituent X according to claim 1 with deblockable functional group. 3. Verbindungen der allgemeinen Formel I nach Anspruch 1, gekennzeichnet dadurch daß R1 und R2 Methylgruppen sind und R3 ein längerkettiger, auch verzweigter Alkylrest mit 2 bis 6 C-Atomen oder ein Phenylrest sein kann.3. Compounds of general formula I according to claim 1, characterized in that R 1 and R 2 are methyl groups and R 3 can be a long-chain, also branched alkyl radical having 2 to 6 carbon atoms or a phenyl radical. 4. Verbindungen nach Anspruch 1 und 3, gekennzeichnet dadurch, daß Aryl ein substituierter Phenylrest ist.4. Compounds according to claim 1 and 3, characterized in that aryl is a substituted Is phenyl. 5. Verbindungen nach Anspruch 1, 3 und 4, gekennzeichnet dadurch, daß X eine funktionalisierte Alkylkette, ein funktionalisierter Alkoxylsubstituent oder eine deblockierbare Phenolgruppe ist.5. Compounds according to claim 1, 3 and 4, characterized in that X is a functionalized alkyl chain, a functionalized alkoxyl substituent or a deblockable phenol group. 6. Verbindungen nach Anspruch 1, 3, 4 und 5, gekennzeichnet dadurch, daß X eine spaltbare, auch substituierte Alkoxygruppe ist. 6. Compounds according to claim 1, 3, 4 and 5, characterized in that X is a cleavable, is also substituted alkoxy group.   7. Verbindungen nach Anspruch 1, 3, 4, 5 und 6, dadurch gekennzeichnet, daß X eine Carboxylgruppe oder ein eine geschützte Carboxylgruppe enthaltender Alkoxysubstituent ist.7. Compounds according to claim 1, 3, 4, 5 and 6, characterized in that X is a Carboxyl group or an alkoxy substituent containing a protected carboxyl group. 8. Verbindungen nach Anspruch 1, 3, 4, 5, 6 und 7, dadurch gekennzeichnet, daß Y ein Acyl- oder eine Arylrest ist.8. Compounds according to claim 1, 3, 4, 5, 6 and 7, characterized in that Y is an acyl or is an aryl residue. 9. Verbindungen nach Anspruch 1, 3, 4, 5, 6, 7 und 8, dadurch gekennzeichnet, daß Y ein Acylrest, insbesondere ein freier oder N-geschützter Aminoacylrest ist.9. Compounds according to claim 1, 3, 4, 5, 6, 7 and 8, characterized in that Y is an acyl radical, is in particular a free or N-protected aminoacyl radical. 10. Verbindungen nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8 und 9, gekennzeichnet dadurch, daß ein organisches oder anorganisches Polymer Bestandteil des Substituenten X ist.10. Compounds according to claim 1, 2, 3, 4, 5, 6, 7, 8 and 9, characterized in that a organic or inorganic polymer is part of the substituent X. 11. Synthesen von Verbindungen nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8, 9 und 10, dadurch gekennzeichnet, daß nach Anspruch 2 hergestellte 2-Aryl-2-triorganylsilyl-ethanole in Ester oder Arylether überführt, im Substituenten X deblockiert und die so erhaltenen erfindungsgemäßen Verbindungen nach Anspruch 1 und 3-9 durch Kondensation an einen geeignet funktionalisierten polymeren Träger gekuppelt werden.11. Syntheses of compounds according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, thereby characterized in that 2-aryl-2-triorganylsilylethanols prepared according to claim 2 in ester or aryl ether, deblocked in the substituent X and the resulting Compounds according to the invention according to claims 1 and 3-9 by condensation on a suitably functionalized polymeric carriers can be coupled.
DE10116252A 2001-03-31 2001-03-31 New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions Withdrawn DE10116252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10116252A DE10116252A1 (en) 2001-03-31 2001-03-31 New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10116252A DE10116252A1 (en) 2001-03-31 2001-03-31 New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions

Publications (1)

Publication Number Publication Date
DE10116252A1 true DE10116252A1 (en) 2002-10-02

Family

ID=7680014

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10116252A Withdrawn DE10116252A1 (en) 2001-03-31 2001-03-31 New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions

Country Status (1)

Country Link
DE (1) DE10116252A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876858A (en) * 2019-01-14 2019-06-14 广东博兴新材料科技有限公司 One kind preparation method of (methyl) acrylate substance and the application of 2- acrylamide-2-methyl propane sulfonic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876858A (en) * 2019-01-14 2019-06-14 广东博兴新材料科技有限公司 One kind preparation method of (methyl) acrylate substance and the application of 2- acrylamide-2-methyl propane sulfonic
CN109876858B (en) * 2019-01-14 2020-01-07 广东博兴新材料科技有限公司 Preparation method of (methyl) acrylate substance and application of 2-acrylamide-2-methylpropanesulfonic acid

Similar Documents

Publication Publication Date Title
EP0519327B1 (en) N-Acyl-S-(2-hydroxyalkyl)-cysteines, their preparation and their use as intermediates in the preparation of synthetic immunoadjuvants and synthetic vaccines
Kunz et al. The Allyl Group as Mildly and Selectively Removable Carboxy‐Protecting Group for the Synthesis of Labile O‐Glycopeptides
Barlos et al. Efficient" one-pot" synthesis of N-tritylamino acids
EP0355572B1 (en) Peptide derivatives, their production and use
EP0235692B1 (en) Oligopeptidyl nitrile derivatives, the agents containing them, process for their preparation and their use
EP0164654A2 (en) Process for the preparation of peptapeptides acting on the immune system, and their intermediary products
EP0292729B1 (en) Process for solid phase peptide synthesis
DE4119544C1 (en)
EP0394194B1 (en) Protected amino-acids and process for their preparation
DE10116252A1 (en) New 2-aryl-2-triorganylsilylether compounds useful for the solid phase synthesis of peptides and peptide conjugates, may be cleaved from the solid phase substrate under practically neutral conditions
AT390619B (en) METHOD FOR PRODUCING NEW PROLIN DERIVATIVES
DE1248059B (en) Process for the production of bradykinin-active undeca and dodecapeptides
DE2706490A1 (en) NEW CARBON ACID ESTERS
EP0475184A1 (en) Process for the production of peptides by solid phase synthesis
DE3016831A1 (en) N, N&#39;-DI-SUCCINIMIDYL-, N, N&#39;-DIPHTHALIMIDYL- AND N, N&#39;-BIS (5-NORBORN-2,3-DICARBOXYIMIDYL) CARBONATE, PROCESS FOR THE PRODUCTION OF THESE COMPOUNDS AND THE USE OF THESE COMPOUNDS ACTIVE ESTER OF AMINO ACIDS
EP0295540B1 (en) Solid-phase system containing allylic chains, process for its preparation and its use in solid-phase reactions
WO1990003387A1 (en) Process for producing dipeptides from non-proteinogenic amino acids with terminal nitrogen atoms
DE69922150T2 (en) DEOXYHYPUSINE REAGENT AND PEPTIDES
EP0074103B1 (en) N-(n&#39;-(2-chloroethyl)-n&#39;-nitroso-carbamoyl)-oligopeptide esters and amides, and process for preparing them
DE4404168A1 (en) Hirudin derivatives and process for their preparation
EP0135183B1 (en) Process for the preparation of compounds containing carboxylic acid amide groups, especially of peptides
EP0370399B1 (en) Process for the preparation of tripeptides
EP4255885A1 (en) Iodotyrosine derivatives and process for preparing iodotyrosine derivatives
JP4873801B2 (en) Structural analysis method for organic compounds
DE2022032C3 (en) Process for the production of peplides

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee