DE10055886A1 - Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use - Google Patents

Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use

Info

Publication number
DE10055886A1
DE10055886A1 DE10055886A DE10055886A DE10055886A1 DE 10055886 A1 DE10055886 A1 DE 10055886A1 DE 10055886 A DE10055886 A DE 10055886A DE 10055886 A DE10055886 A DE 10055886A DE 10055886 A1 DE10055886 A1 DE 10055886A1
Authority
DE
Germany
Prior art keywords
hantavirus
proteins
vaccines
recombinant
yeast cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10055886A
Other languages
German (de)
Inventor
Rainer Ulrich
Ausra Dargeviciute
Kestutis Sasnauskas
Aake Lundkvist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUMBOLDT-UNIVERSITAET ZU BERLIN UNIVERSITAETSKLINIKU
Institute Of Biotechnology Vilnius Lt
Original Assignee
Humboldt Universitaet zu Berlin
Universitatsklinikum Charite Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Humboldt Universitaet zu Berlin, Universitatsklinikum Charite Berlin filed Critical Humboldt Universitaet zu Berlin
Priority to DE10055886A priority Critical patent/DE10055886A1/en
Priority to PCT/DE2001/004213 priority patent/WO2002038174A2/en
Priority to AU2002221553A priority patent/AU2002221553A1/en
Publication of DE10055886A1 publication Critical patent/DE10055886A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/12011Bunyaviridae
    • C12N2760/12111Hantavirus, e.g. Hantaan virus
    • C12N2760/12122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to vaccines against hantaviruses, to methods for producing said vaccines and to their use. The scope of application is medicine or veterinary medicine. The invention is characterised by the use of a yeast high-expression system, which enables large quantities of recombinant hantavirus proteins to be obtained. The recombinant proteins are purified by density gradient centrifugation or affinity chromatography. Obtaining the proteins from yeast cells ensures that they are free of endotoxins and suitable for human applications as vaccines and in the development of diagnostics.

Description

Die Erfindung betrifft Impfstoffe gegen Hantaviren, Verfahren zu ihrer Herstellung und ihre Verwendung. Anwendungsgebiete sind die Medizin bzw. Veterinärmedizin. Die Erfindung soll die hocheffiziente Produktion von nicht-infektiösen, Endotoxin-freien rekombinanten Hantavirus-Proteinen ermöglichen, die für eine humane Anwendung als Impfstoff geeignet sind.The invention relates to vaccines against hantaviruses, processes for their preparation and their Use. Areas of application are medicine and veterinary medicine. The invention is said to be the highly efficient production of non-infectious, endotoxin-free recombinant Hantavirus proteins make it suitable for human use as a vaccine are.

Hantaviren werden wegen ihrer zunehmenden Bedeutung als Krankheitserreger zu den "emerging viruses" gezählt. Sie sind als Erreger des in Europa und Asien auftretenden Hämorrhagischen Fiebers mit Renalem Syndrom, HFRS, (Schmaljohn et al., 1985, Science 227, 1041-1044) und des in Amerika Anfang der 90er Jahre neu aufgetretenen, mit hoher Letalität einhergehenden Hantaviralen Pulmonalen Syndroms, HPS (Nichol et al., 1993, Science 262, 914-917), identifiziert worden. Das als HFRS (Abkürzungsverzeichnis hinter den Ausführungsbeispielen) zusammengefasste Krankheitsbild wird von unterschiedlichen Serotypen hervorgerufen: Den schwersten Krankheitsverlauf verursachen Infektionen mit den Serotypen Hantaan (HTNV) und Dobrava (DOBV), während Infektionen mit den Serotypen Seoul (SEOV) und Puumala (PUUV) mildere klinische Verläufe zeigen. Insgesamt treten weltweit etwa 200000 HFRS-Fälle pro Jahr auf (Krüger und Zöller, 1996, in: Virusdiagnostik, Porstmann, T., Hrg., Blackwell Wissenschaftsverlag, Berlin Wien Oxford, S. 117-128.). In Europa konnte die Ko-Existenz der humanpathogenen Serotypen DOBV und PUUV gezeigt werden (Sibold et al., 1999, Am. J. Trop. Med. Hyg. 61, 409-411; Sibold et al., 2001, J. Med. Virol., im Druck).Hantaviruses are becoming the cause of their increasing importance as pathogens "emerging viruses" counted. They are the pathogen that occurs in Europe and Asia Hemorrhagic Fever with Renal Syndrome, HFRS, (Schmaljohn et al., 1985, Science 227, 1041-1044) and the new one that appeared in America in the early 1990s, with high Lethality-related Hantaviral Pulmonary Syndrome, HPS (Nichol et al., 1993, Science 262, 914-917). That as HFRS (list of abbreviations behind The clinical picture summarized in the exemplary embodiments) is different Serotypes caused: The most serious course of the disease is caused by infections with the Serotypes Hantaan (HTNV) and Dobrava (DOBV), while infections with the serotypes Seoul (SEOV) and Puumala (PUUV) show milder clinical courses. Overall kick around 200,000 HFRS cases per year worldwide (Krüger and Zöller, 1996, in: Virusdiagnostik, Porstmann, T., ed., Blackwell Wissenschaftsverlag, Berlin Vienna Oxford, pp. 117-128.). In Europe was able to show the co-existence of the human pathogenic serotypes DOBV and PUUV (Sibold et al., 1999, Am. J. Trop. Med. Hyg. 61, 409-411; Sibold et al., 2001, J. Med. Virol., In press).

Hantaviren bilden einen separaten Genus innerhalb der Familie Bunyaviridae (Schmaljohn et al., 1995, Arch. Virol. Suppl. 10, 300-315). Das RNA-Genom negativer Polarität setzt sich aus 3 Segmenten zusammen, die die virale RNA-Polymerase, die Glykoproteine G1 und G2 sowie das Nukleokapsidprotein (N) kodieren.Hantaviruses form a separate genus within the Bunyaviridae family (Schmaljohn et al., 1995, Arch. Virol. Suppl. 10, 300-315). The negative polarity RNA genome settles composed of 3 segments, the viral RNA polymerase, the glycoproteins G1 and G2 and encode the nucleocapsid protein (N).

Wegen der endemischen Verbreitung von Hantaviren in Asien wurden in China, Süd- und Nordkorea sowie in Japan verschiedene inaktivierte Hantavirus-Vakzinen hergestellt und erprobt (Übersicht in Schmaljohn, 1994, Rev. Med. Virol. 4, 185-196). Bisher ist lediglich ein HTNV-Totimpfstoff (Handelsname: Hantavax) in Korea für die humane Anwendung zugelassen worden (Cho and Howard, 1999, Vaccine 17, 2569-2575). Obwohl mit den bisher entwickelten Vollvirus-Totvakzinen z. T. hoffnungsvolle Impferfolge erzielt werden konnten, bleiben eine Reihe von offenen Problemen bestehen: Wegen des hohen Gefährdungspotentials der Hantaviren muss ihre Vermehrung unter L3-Laborbedingungen erfolgen. Die Virusausbeute bei Kultivierung in Zellkulturen ist sehr gering. Die bei den bisher getesteten Vakzinen beobachtete geringe Virus-neutralisierende Aktivität wird möglicherweise durch den nur geringen Anteil von G1 und G2 am Gesamtprotein sowie die Zerstörung der G1- und G2-Konformation bei der Virusinaktivierung verursacht.Because of the endemic spread of Hantaviruses in Asia have been in China, South and North Korea and various inactivated hantavirus vaccines manufactured in Japan and tried (overview in Schmaljohn, 1994, Rev. Med. Virol. 4, 185-196). So far, only one HTNV dead vaccine (trade name: Hantavax) in Korea for human use  been approved (Cho and Howard, 1999, Vaccine 17, 2569-2575). Although with the so far developed whole virus dead vaccines e.g. Hopeful vaccination successes could be achieved, A number of open problems remain: Because of the high risk potential the hantaviruses must reproduce under L3 laboratory conditions. The Virus yield when cultivated in cell cultures is very low. The ones tested so far Low virus neutralizing activity may be observed by vaccines the only small proportion of G1 and G2 in the total protein and the destruction of the G1 and G2 conformation caused by virus inactivation.

Eine Lösungsmöglichkeit für die genannten Probleme ist die Herstellung von rekombinanten Virus-Untereinheiten-Vakzinen. In Tierexperimenten konnte durch Immunisierung mit Vaccinia Virus (VACV)-abgeleiteten Vakzinen, die die kompletten M-Segmente von HTNV bzw. SEOV trugen, eine schützende Immunantwort gegen das entsprechende homologe Virus (Schmaljohn et al., 1990, J. Virol. 64, 3162-3170; Xu et al., 1992, Am. J. Trop. Med. Hyg. 47, 397-404) induziert werden. Während bei Immunisierung mit HTNV- und SEOV-VACV- Rekombinanten auch gegen SEOV und HTNV geschützt wurde, wurde gegen einen PUUV- Challenge nicht geschützt (Chu et al., 1995, J. Virol. 69, 6417-6423).One solution to the problems mentioned is the production of recombinant Virus subunit vaccines. In animal experiments, immunization with Vaccinia Virus (VACV)-derived vaccines that cover the complete M segments of HTNV or SEOV, a protective immune response against the corresponding homologous virus (Schmaljohn et al., 1990, J. Virol. 64, 3162-3170; Xu et al., 1992, Am. J. Trop. Med. Hyg. 47, 397-404) can be induced. While immunized with HTNV- and SEOV-VACV- Recombinant was also protected against SEOV and HTNV, was against a PUUV Challenge not protected (Chu et al., 1995, J. Virol. 69, 6417-6423).

Eine rekombinante HTNV-VACV-Vakzine zeigte in einer klinischen Phase I-Studie die Immunogenität und Sicherheit der Vakzine. Eine Phase II-Studie zeigte bei Immunisierung zwar bei ¾ von VACV-naiven Probanden die Induktion von Virus-neutralisierenden Antikörpern, jedoch nur etwa bei ¼ der VACV-immunen Probanden (McClain et al., 2000, J. Med. Virol. 60, 77-85).A recombinant HTNV-VACV vaccine showed that in a clinical phase I study Immunogenicity and safety of the vaccine. A phase II study showed immunization in ¾ of VACV-naive subjects the induction of virus-neutralizing Antibodies, but only in about ¼ of the VACV-immune test subjects (McClain et al., 2000, J. Virol. 60, 77-85).

Die bisher hergestellten nackten DNA-Vakzinen auf der Basis von G1/G2-kodierenden Konstrukten zeigten in Tiermodellen die Induktion virus-neutralisierender Antikörper und Protektion an (Hooper et al., 1999, Virology 255, 269-278; Bharadwaj et al., 1999, Vaccine 17, 2836-2843; Kamrud et al., 1999, Virology 263, 209-219). Dagegen konnte bei Inokulation von N-kodierenden Konstrukten keine bzw. nur eine schwache Protektion induziert werden. Für eine klinische Anwendung von DNA-Vakzinen sind jedoch noch eine Reihe von Fragen bezüglich der Sicherheit (Gefahr der Toleranzinduktion, Integration der DNA, Autoimmunität) zu untersuchen (Davis and Cluskie, 1999, Microbes and Infection 1, 7-21). Alternativ wurden Sindbisvirus-abgeleitete Konstrukte getestet, die jedoch eine deutlich geringere Protektion als DNA-Vakzine-Konstrukte zeigten (Kamrud et al., 1999).The previously produced naked DNA vaccines based on G1 / G2-encoding Constructs showed the induction of virus-neutralizing antibodies and in animal models Protection to (Hooper et al., 1999, Virology 255, 269-278; Bharadwaj et al., 1999, Vaccine 17, 2836-2843; Kamrud et al., 1999, Virology 263, 209-219). In contrast, with inoculation no or only weak protection is induced by N-coding constructs. However, there are still a number of questions for the clinical application of DNA vaccines regarding safety (risk of tolerance induction, integration of DNA, Autoimmunity) (Davis and Cluskie, 1999, Microbes and Infection 1, 7-21). Alternatively, Sindbis virus-derived constructs were tested, but one clearly showed less protection than DNA vaccine constructs (Kamrud et al., 1999).

Gegenüber den bisher genannten Systemen bieten rekombinante Proteine bezüglich der Sicherheit deutliche Vorteile (keine Infektiosität, keine Integration). In einer Reihe von heterologen Expressionssystemen, wie E. coli und Insektenzellen, konnten rekombinante Hantavirus-Proteine hergestellt werden, die in Tiermodellen eine protektive Immunantwort induzierten (Schmaljohn et al., 1990, J. Virol. 64, 3162-3170; Yoshimatsu et al., 1993, Arch. Virol. 130, 365-376; Lundkvist et al., 1996, Virology 216, 397-406; Ulrich et al., 1998, Vaccine 16, 272-280). Während E. coli-Expressionssysteme eine Hochexpression von Hantavirus-Proteinen erlauben, stellt eine mögliche Kontamination mit bakteriellen Endotoxinen ein Problem für die humane Anwendung dar. Demgegenüber bieten Insektenzell-Expressionssysteme den Vorteil, frei von Endotoxinen zu sein, sind jedoch in ihrer Syntheseleistung für Fremdproteine den E. coli-Systemen unterlegen.Compared to the previously mentioned systems, recombinant proteins offer in terms of Security clear advantages (no infectivity, no integration). In a series of  heterologous expression systems, such as E. coli and insect cells, could be recombinant Hantavirus proteins are made that have a protective immune response in animal models induced (Schmaljohn et al., 1990, J. Virol. 64, 3162-3170; Yoshimatsu et al., 1993, Arch. Virol. 130, 365-376; Lundkvist et al., 1996, Virology 216, 397-406; Ulrich et al., 1998, Vaccine 16, 272-280). During E. coli expression systems, high expression of Hantavirus proteins allow possible contamination with bacterial Endotoxins pose a problem for human use. In contrast, offer However, insect cell expression systems have the advantage of being free of endotoxins inferior to the E. coli systems in their synthesis performance for foreign proteins.

Die Geschichte der Entdeckung und der Bekämpfung von Hantaviren lässt sich auch anhand der Patentliteratur dokumentieren. C. S. Schmaljohn und J. Dalrymple hatten zunächst 1987 und dann 1991 zusammen mit D. J. McClain in den USA Patentanmeldungen hinterlegt, die sich auf Hantavirus-Proteine bzw. auf Vakzine beziehen, insbesondere auf die Glykoproteine G1 und G2: US-PS (PS = Patentschrift)5298423 und 5614193. 1993 ließen sich S. T. Nichol, C. F. Spiropoulou, T. G. Ksiazek und P. E. Rollin den Nachweis des Hantavirus "Four Corners Virus" schützen (US 5945277, WO 9500648), 1995 aus dieser Gruppe P. E. Rollin, L. Elliot, T. G. Ksiazek und S. T. Nichol den Nachweis des "Black Creek Canal Hantavirus" (US 5853980). In Korea meldeten 1996 H. S. Kim, W. D. Yoo, S. O. Kim, K. S. Noh und S. P. Hong "Hantaan virus nucleocapsid protein expressed from E. coli" (WO 9727302) zum Patent an, im gleichen Jahr in Schweden (SE) Å. Lundkvist einen Impfstoff gegen Hantavirus oder Puumalavirus auf der Basis des Nukleokapsid-Proteins (N) (WO 9728819). In den USA folgten 1997 B. L. Hjelle und N. Torrez-Martinez mit einer Nukleokapsidprotein-Vakzine des "Rio Mamore Hantavirus" (WO 9901153), 1998 in Korea H. W. Lee, S. J. Ryu, C. N. Ahn, H. Kim und T. Tomiyama mit einer Anmeldung des Titels "Diagnostic reagent for Puumala virus infection" (EP 952450). Auf das Jahr 1999 gehen die USA-Anmeldungen von S. T. Nichol, S. Morzunov, T. G. Ksiazek und P. E. Rollin über die Entdeckung und Isolierung des neuen Hantavirus "Bayou" (US 5916754) sowie von C. S. Schmaljohn und J. W. Hooper über eine DNA-Vakzine gegen Hantavirus-Infektionen (WO 2000044406) zurück. Die aufgezeigten Lösungen lassen jedoch die bereits oben erwähnten Probleme von rekombinanten Proteinen aus E. coli, von DNA-Vakzinen und VACV-abgeleiteten Lebendvakzinen offen.The history of the discovery and control of hantaviruses can also be illustrated document the patent literature. C. S. Schmaljohn and J. Dalrymple initially had 1987 and then in 1991 filed with D. J. McClain in the United States patent applications that refer to hantavirus proteins or vaccines, in particular to the glycoproteins G1 and G2: US Pat. No. 5,298,423 and 5,614,193. In 1993, S. T. Nichol, C. F. Spiropoulou, T. G. Ksiazek and P. E. Rollin for the detection of the Hantavirus "Four Corners Protect virus "(US 5945277, WO 9500648), 1995 from this group P.E. Rollin, L. Elliot, T. G. Ksiazek and S. T. Nichol the detection of the "Black Creek Canal Hantavirus" (US 5853980). In 1996, H. S. Kim, W. D. Yoo, S. O. Kim, K. S. Noh and S. P. Hong reported in Korea "Hantaan virus nucleocapsid protein expressed from E. coli" (WO 9727302) for a patent, the same year in Sweden (SE) Å. Lundkv is a vaccine against Hantavirus or Puumala virus based on the nucleocapsid protein (N) (WO 9728819). In the USA followed in 1997 by B. L. Hjelle and N. Torrez-Martinez with a nucleocapsid protein vaccine from "Rio Mamore Hantavirus" (WO 9901153), 1998 in Korea H. W. Lee, S. J. Ryu, C. N. Ahn, H. Kim and T. Tomiyama with an application for the title "Diagnostic reagent for Puumala virus infection "(EP 952450). The United States applications go from 1999 to S. T. Nichol, S. Morzunov, T.G. Ksiazek and P.E. Rollin on the discovery and isolation of the new Hantavirus "Bayou" (US 5916754) and by C. S. Schmaljohn and J. W. Hooper on a DNA vaccine against hantavirus infections (WO 2000044406). The shown However, solutions leave the problems of recombinant proteins already mentioned above from E. coli, from DNA vaccines and VACV-derived live vaccines.

Der Erfindung liegt die Aufgabe zugrunde, neue Hantavirus-Impfstoffe zu entwickeln, die für humane Anwendungen unbedenklich sind. Die Aufgabe wurde dadurch gelöst, dass mit Hilfe eines Hefe-Expressionssystems, das die Hochexpression von Hantavirus-Proteinen erlaubt, rekombinante Hantavirus-Proteine in großer Menge aus Hefezellen isoliert und durch einfache Zentrifugationsschritte und/oder durch Affinitätschromatografie gereinigt werden. Die erfindungsgemäß gewonnenen Proteine haben sich als Endotoxin-frei und für humane Anwendungen unbedenklich erwiesen.The invention has for its object to develop new hantavirus vaccines for human applications are harmless. The task was solved by using a yeast expression system that allows high expression of hantavirus proteins,  recombinant hantavirus proteins isolated in large quantities from yeast cells and by simple Centrifugation steps and / or purified by affinity chromatography. The Proteins obtained according to the invention have proven to be endotoxin-free and for human Applications proven safe.

Die Erfindung hat die PCR-Amplifkation und Klonierung von Hantavirusprotein­ kodierenden Sequenzen zum Inhalt. Diese DNA-Sequenzen werden in Hefeexpressionsvektoren mit einer Hefe-spezifischen Expressionseinheit (Promoter und Transkriptionsstopsignal) eingebaut. Die Expression der Hantavirusproteine erfolgt in Hefezellen, bevorzugt in Saccharomyces cerevisiae Stamm fh4c (ATCC #42368; Colona und Lampen, 1974, Biochemistry 13, 2741-2748). Nach Aufschluss der Hefezellen mit Hilfe von Glasperlen werden die authentischen Hantavirusproteine durch zwei aufeinanderfolgende Cäsiumchlorid-Dichtezentrifugationen, Hexahistidin-tragende Hantavirusproteine durch Anreicherung des unlöslichen Proteins und anschließende Nickelchelatchromatografie gereinigt. Die anschließende Analyse der rekombinanten Proteine erfolgt durch SDS- Polyacrylamidgelelektrophorese und anschließende Silberfärbung des Gels bzw. Immunoblot mit Hantavirus-spezifischen Antikörpern. Die Protektivität der Proteine wird durch Immunisierung von Rötelmäusen, dem natürlichen Wirt des PUUV, und anschließende PUUV-Belastung (Challenge) erbracht. Der Schutz wird anhand von fehlenden anti-G2- Antikörpern im Serum, fehlenden N-Antigens in der Lunge und fehlenden RNA-Nachweises mittels S-Segment-spezifischer PCR erbracht.The invention has the PCR amplification and cloning of hantavirus protein coding sequences to the content. These DNA sequences are in Yeast expression vectors with a yeast-specific expression unit (promoter and Transcription stop signal) installed. The expression of the hantavirus proteins takes place in Yeast cells, preferably in Saccharomyces cerevisiae strain fh4c (ATCC # 42368; Colona and Lampen, 1974, Biochemistry 13, 2741-2748). After opening the yeast cells with the help of Glass beads become the authentic Hantavirus proteins by two successive ones Cesium chloride density centrifugations, hexahistidine-carrying hantavirus proteins by Enrichment of the insoluble protein and subsequent nickel chelate chromatography cleaned. The subsequent analysis of the recombinant proteins is carried out by SDS Polyacrylamide gel electrophoresis and subsequent silver staining of the gel or immunoblot with hantavirus-specific antibodies. The protection of the proteins is determined by Immunization of rubella, the natural host of the PUUV, and subsequent PUUV load (challenge) provided. Protection is based on the lack of anti-G2 Antibodies in the serum, lack of N antigen in the lungs and lack of RNA detection performed using S-segment-specific PCR.

Durch die Erfindung wird ein neuartiges Expressionssystem für Hantavirusproteine verfügbar, das gegenüber den bisherigen Systemen in E. coli bzw. Insektenzellen wesentliche Vorteile aufweist. So erlauben Hefe-Expressionssysteme eine einfache und kostengünstige biotechnologische Produktion von Antigenen. Des weiteren besitzen Hefen keine Toxine, die unerwünschte Nebenwirkungen bei humanmedizinischen Anwendungen hervorrufen würden. Ein weiterer Vorteil besteht darin, dass Hefesysteme bereits für die humane Vakzineproduktion zugelassen sind: Die rekombinante HBV-Vakzine basiert auf Hefe­ exprimiertem HBsAg.The invention makes a new expression system for hantavirus proteins available, this has significant advantages over the previous systems in E. coli or insect cells having. So yeast expression systems allow a simple and inexpensive biotechnological production of antigens. Furthermore, yeasts have no toxins that would cause undesirable side effects in human medical applications. Another advantage is that yeast systems are already for human The following are approved for vaccine production: The recombinant HBV vaccine is based on yeast expressed HBsAg.

Es ist besonders überraschend, dass die Hefezellen die Hantavirusproteine in großer Menge synthetisieren. Außerdem können die rekombinanten Proteine nach der Lyse der Hefezellen in großer Menge mit einfachen Methoden isoliert und gereinigt werden. Durch die Art der Gewinnung aus Hefezellen sind die erfindungsgemäßen Proteine Endotoxin-frei und für humane Anwendungen als Impfstoffe sowie in der Diagnostikaentwicklung geeignet. It is particularly surprising that the yeast cells contain the hantavirus proteins in large quantities synthesize. In addition, the recombinant proteins after lysis of the yeast cells in large quantities can be isolated and cleaned using simple methods. By the nature of the Obtaining from yeast cells, the proteins according to the invention are endotoxin-free and for humane applications suitable as vaccines and in the development of diagnostics.  

Das Wesen der Erfindung besteht in der Bereitstellung von Hantavirus-Impfstoffen, die als wirksame Komponenten rekombinante Hantavirusproteine enthalten, wobei die Proteine ihrerseits in Hefezellen hergestellt werden. Als wirksame Komponenten enthalten sie Nukleokapsidproteine und/oder Glykoproteine von Hantaviren, wie der Hantavirus-Serotypen Puumala, Dobrava und/oder Hantaan, insbesondere der Hantavirus-Stämme Puumala- Vranica/Hällnäs, Dobrava-Slovakia und/oder Hantaan-Fojnica. Als Hefezellen finden Saccharomyces cerevisiae Verwendung, insbesondere des Stammes fh4c.The essence of the invention is the provision of hantavirus vaccines, which as effective components contain recombinant hantavirus proteins, the proteins in turn are produced in yeast cells. They contain as effective components Hantavirus nucleocapsid proteins and / or glycoproteins, such as the Hantavirus serotypes Puumala, Dobrava and / or Hantaan, in particular the Hantavirus strains Puumala- Vranica / Hällnäs, Dobrava-Slovakia and / or Hantaan-Fojnica. Find as yeast cells Saccharomyces cerevisiae use, especially of the strain fh4c.

Ein besonderes Merkmal des erfindungsgemäßen Verfahrens besteht darin, dass ein Hefeexpressionsplasmid eingesetzt wird, das einen Hefe-spezifischen GAL10-PYK1-Hybrid- Promoter und das FDH1-Gen von Candida maltosa als dominanten Selektionsmarker trägt. Die Hefezellen werden in YEPD-Medium (1% Hefe-Extrakt, 2% Pepton, 2% Glukose) mit 5 mM Formaldehyd angezüchtet, danach wird durch Zugabe von Galaktose (Endkonzentration 3%) die Synthese der Hantavirusproteine induziert. Der Aufschluss der Hefezellen erfolgt durch Glasperlen.A special feature of the method according to the invention is that a Yeast expression plasmid is used, which contains a yeast-specific GAL10-PYK1 hybrid Promoter and the FDH1 gene from Candida maltosa as the dominant selection marker. The yeast cells are in YEPD medium (1% yeast extract, 2% peptone, 2% glucose) with 5 mM Formaldehyde grown, then by adding galactose (final concentration 3%) induced the synthesis of the hantavirus proteins. The yeast cells are disrupted through glass beads.

Die rekombinanten Hantavirusproteine werden durch zwei aufeinanderfolgende Cäsiumchlorid-Dichtegradienten-Zentrifugationen oder durch Anreicherung der unlöslichen Proteine und anschließende Nickelchelat-Affinitätschromatografie gereinigt.The recombinant hantavirus proteins are replaced by two consecutive ones Cesium chloride density gradient centrifugations or by enriching the insoluble ones Proteins and subsequent nickel chelate affinity chromatography purified.

Die erfindungsgemäßen Verwendungen der rekombinanten Hantavirusproteine liegen in ihrem Einsatz als wirksame Komponenten in Hantavirus-Impfstoffen sowie in der Diagnostikaentwicklung basierend auf dem ELISA- und/oder Immunoblot-Prinzip.The uses of the recombinant hantavirus proteins according to the invention are in their use as effective components in hantavirus vaccines as well as in the Diagnostics development based on the ELISA and / or immunoblot principle.

Die Merkmale der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Kombinationen vorteilhafte schutzfähige Ausführungen darstellen, für die mit dieser Schrift Schutz beantragt wird. Die Kombination besteht aus bekannten (Hantavirusproteinen, Zentrifugation, Affinitätschromatografie) und neuen Elementen (ein neuartiges Expressionssystem für Hantavirusproteine), die sich gegenseitig beeinflussen und in ihrer neuen Gesamtwirkung einen Gebrauchsvorteil und den erstrebten Erfolg ergeben, der darin liegt, dass nunmehr rekombinante Hantavirus-Proteine in großer Menge aus Hefezellen isoliert, durch einfache Arbeitsschritte (Zentrifugation, Chromatografie) gereinigt und dem Anwender zur Verfügung gestellt werden können.The features of the invention go beyond the claims and also from the description , the individual features each individually or in groups in the form of Combinations represent advantageous protective designs for those with this font Protection is requested. The combination consists of known (hantavirus proteins, Centrifugation, affinity chromatography) and new elements (a novel Expression system for hantavirus proteins) which influence each other and in their new overall effect give a benefit in use and the desired success, which is in it lies that now recombinant Hantavirus proteins in large quantities from yeast cells isolated, cleaned by simple work steps (centrifugation, chromatography) and the Can be made available to users.

Die Erfindung soll nachfolgend durch ein Ausführungsbeispiel näher erläutert werden, ohne auf dieses Beispiel beschränkt zu sein. The invention is to be explained in more detail below using an exemplary embodiment, without to be limited to this example.  

Ausführungsbeispielembodiment 1. Gewinnung der Hantavirus-kodierenden Sequenzen1. Obtaining the hantavirus coding sequences

Die kompletten offenen Leserahmen für PUUV- (Stamm Vranica/Hällnäs; Reip et al., 1995, Arch. Virol. 140, 2011-2026), DOBV- (Slowakischer Stamm 862; Sibold et al., 2001, J. Med. Virol., im Druck) und HTNV- (Stamm Fojnica; Sibold et al., 1999, Am. J. Trop. Med. Hyg. 61, 409-411) N-Proteine werden nach Standardverfahren PCR-amplifiziert unter Verwendung der nachfolgend genannten Primer, die einen XbaI-Restriktionsort tragen:The complete open reading frames for PUUV- (strain Vranica / Hällnäs; Reip et al., 1995, Arch. Virol. 140, 2011-2026), DOBV- (Slovakian tribe 862; Sibold et al., 2001, J. Med. Virol., In press) and HTNV- (strain Fojnica; Sibold et al., 1999, Am. J. Trop. Med. Hyg. 61, 409-411) N proteins are PCR-amplified using standard methods of the following primers that carry an XbaI restriction site:

PUUV (Vranica/Hällnäs; Fig. 1) PUUV (Vranica / Hällnäs; Fig. 1)

Forward primer Forward primer

Reverse primer Reverse primer

DOBV (Slovakia 862; Fig. 2) DOBV (Slovakia 862; Fig. 2)

Forward primer Forward primer

Reverse primer Reverse primer

HTNV (Fojnica; Fig. 3) HTNV (Fojnica; Fig. 3)

Forward primer Forward primer

Reverse primer Reverse primer

Die erhaltenen PCR-Produkte werden in die Klonierungsvektoren pUC57 (Fermentas, Vilnius, Litauen), pCRII (Invitrogen, Groningen, Niederlande) bzw. pCR-Blunt II-TOPO (Invitrogen) inseriert. Durch DNA-Sequenzierung werden die Nukleotidsequenzen der Hantavirus-Inserts der Plasmide pUC57-Vranica N, pCRII-Slovakia N und pCR-Blunt II- TOPO-Fojnica N verifiziert (Fig. 1-3). The PCR products obtained are inserted into the cloning vectors pUC57 (Fermentas, Vilnius, Lithuania), pCRII (Invitrogen, Groningen, the Netherlands) and pCR-Blunt II-TOPO (Invitrogen). The nucleotide sequences of the hantavirus inserts of the plasmids pUC57-Vranica N, pCRII-Slovakia N and pCR-Blunt II-TOPO-Fojnica N are verified by DNA sequencing ( FIGS. 1-3).

Um 6 Histidin-Kodonen mit dem 5'-Ende der N-Protein-kodierenden Sequenzen zu fusionieren, werden die Hantavirus-Sequenzen in den Plasmiden pUC57-Vranica N, pCRII- Slovakia N und pCR-Blunt II-TOPO-Fojnica N mit folgenden Primern PCR-amplifiziert (Fig. 1-3):In order to fuse 6 histidine codons with the 5 'end of the N-protein coding sequences, the hantavirus sequences in the plasmids pUC57-Vranica N, pCRII-Slovakia N and pCR-Blunt II-TOPO-Fojnica N with the following PCR amplified primers ( Fig. 1-3):

His-PUUV (Vranica/Hällnäs; Fig. 1) His-PUUV (Vranica / Hällnäs; Fig. 1)

Forward primer Forward primer

Reverse primer Reverse primer

His-DOBV (Slovakia 862; Fig. 2) His-DOBV (Slovakia 862; Fig. 2)

Forward primer Forward primer

Reverse primer Reverse primer

His-HTNV (Fojnica; Fig. 3) His-HTNV (Fojnica; Fig. 3)

Forward primer Forward primer

Reverse primer Reverse primer

Die His-PUUV- und His-DOBV-PCR-Amplifikate werden in den pCR-Blunt II-TOPO- Vektor, das His-HTNV-Amplifikat in den Vektor pUC57 inseriert. Die komplette kodierende Sequenz von pCR-Blunt II-TOPO-His-Vranica N wird durch DNA-Sequenzierung verifiziert. Bei den beiden anderen Plasmiden werden nur die kodierenden Sequenzen für die N-Termini der N-Proteine bestimmt, und die C-Terminus-kodierenden Teile werden durch entsprechende Fragmente aus den Plasmiden pCRII-Slovakia N und pCR-Blunt II-TOPO-Fojnica N ersetzt (Fig. 1 bis 3). The His-PUUV and His-DOBV-PCR amplificates are inserted into the pCR-Blunt II-TOPO vector, the His-HTNV amplificate into the vector pUC57. The complete coding sequence of pCR-Blunt II-TOPO-His-Vranica N is verified by DNA sequencing. In the case of the other two plasmids, only the coding sequences for the N-termini of the N-proteins are determined, and the parts coding for the C-terminus are separated by corresponding fragments from the plasmids pCRII-Slovakia N and pCR-Blunt II-TOPO-Fojnica N replaced ( Fig. 1 to 3).

Fig. 1 bis 3
PCR-Amplifikation und Klonierung der Hantavirus-N-Protein-kodierenden Sequenzen
Fig. 1 to 3
PCR amplification and cloning of the hantavirus N protein coding sequences

Legende zu den Fig. 1 bis 3Legend to FIGS. 1 to 3

Fig. 1
B Histidine tail generation
A Construction of yeast expression vector for non His tagged N Protein
C Construction of yeast expression vector for His tagged N Protein
Fig. 1
B Histidine tail generation
A Construction of yeast expression vector for non His tagged N Protein
C Construction of yeast expression vector for His tagged N Protein

Fig. 2 und 3
A Histidine tail generation
B Construction of yeast expression vector for non His tagged N Protein
C Construction of yeast expression vector for His tagged N Protein
Fig. 2 and 3
A histidine tail generation
B Construction of yeast expression vector for non His tagged N protein
C Construction of yeast expression vector for His tagged N Protein

2. Herstellung von Hefe-Expressionsvektoren2. Preparation of yeast expression vectors

Das Hefeexpressionsplasmid, vorzugsweise pFX7 (Scherneck, Sasnauskas und Ulrich, Offenlegungsschrift DE 197 50 220 A1, PCT/DE 98/03329; Sasnauskas et al., 1999, Biol. Chem. 380, 381-386; siehe Fig. 4), enthält
einen Hefe-spezifischen GAL10-PYK1-Hybrid-Promoter,
The yeast expression plasmid, preferably pFX7 (Scherneck, Sasnauskas and Ulrich, published application DE 197 50 220 A1, PCT / DE 98/03329; Sasnauskas et al., 1999, Biol. Chem. 380, 381-386; see Fig. 4)
a yeast-specific GAL10-PYK1 hybrid promoter,

  • - eine Transkriptionsterminationssequenz (von PGK1),A transcription termination sequence (from PGK1),
  • - ein 2 µm DNA-Fragment,A 2 µm DNA fragment,
  • - das FDH1-Gen von Candida maltosa als dominanten Selektionsmarker- the FDH1 gene from Candida maltosa as the dominant selection marker
  • - und einen unikalen Restriktionsort für die Restriktionsendonuklease XbaI zur Insertion von Fremdsequenzen, lokalisiert zwischen Promoter und Transkriptionsterminator.- And a unique restriction site for the restriction endonuclease XbaI for insertion of foreign sequences, located between the promoter and transcription terminator.

Die Hantavirus N-Protein-kodierenden Sequenzen (mit eigenem Translationsinitiations- und - terminationssignal) werden durch XbaI- bzw. SpeI-Spaltungen aus den Klonierungsvektoren isoliert und in den mit XbaI linearisierten Hefeexpressionsvektor pFX7 inseriert (in Fig. 5, Fig. 6 ist als Beispiel der Aufbau der pFX7-abgeleiteten Plasmide mit PUUV-N-kodierenden Inserts gezeigt). Rekombinante Plasmide werden nach Transformation in E. coli K12 selektioniert und durch Restriktionskartierung charakterisiert.The Hantavirus N protein-coding sequences (with their own translation initiation and termination signal) are isolated from the cloning vectors by XbaI or SpeI cleavages and inserted into the yeast expression vector pFX7 linearized with XbaI (in FIG. 5, FIG. 6 is as Example of the construction of the pFX7-derived plasmids with PUUV-N coding inserts shown). After transformation into E. coli K12, recombinant plasmids are selected and characterized by restriction mapping.

Fig. 4 bis 6
Aufbau der pFX7-abgeleiteten Expressionsplasmide
Fig. 4 to 6
Construction of the pFX7-derived expression plasmids

Fig. 4: pFX7 Fig. 4: pFX7

Fig. 5: pFX7-PUUV-N Fig. 5: pFX7-PUUV-N

Fig. 6: pFX7-His6-PUUV-N Figure 6: pFX7-His 6 -PUUV-N

3. Expression der Hantavirus-Nukleokapsidproteine in Hefe3. Expression of Hantavirus nucleocapsid proteins in yeast

Die pFX7-abgeleiteten Expressionsplasmide, die die authentischen und His6-getailten PUUV-, DOBV- und HTNV-N-Proteine kodieren, werden in die Hefe Saccharomyces cerevisiae, vorzugsweise in den Wildtypstamm fh4c, transformiert. Zur Anzucht der transformierten Hefezellen werden 100 ml YEPD-Medium (1% Hefe-Extrakt, 2% Pepton, 2% Glukose; mit 5 mM Formaldehyd) mit den Hefezellen beimpft und 24 Stunden bei 30°C unter Schütteln kultiviert. Die Zellkultur wird 1 : 1 mit YEPG-Induktionsmedium (1% Hefe-Extrakt, 2% Pepton, 6% Galaktose; mit 5 mM Formaldehyd) verdünnt und weitere 18 Stunden kultiviert. Die Zellen werden mit PBS gewaschen und das Zellsediment bei -20°C eingefroren. Für die Expressionskontrolle wird ein Aliquot entnommen und mit Lysepuffer (0, 125 M Tris-HCl, pH 6,8; 4% SDS, 20% Glycerin, 10% 2-Mercaptoethanol, 0,2 mg/10 ml Bromphenolblau) denaturiert. Nach Auftrennung im SDS-Polyacrylamidgel werden die rekombinanten Hantavirus-N-Proteine im Western blot unter Verwendung von N- und His6- spezifischen Antikörpern nachgewiesen (Fig. 7).The pFX7-derived expression plasmids which encode the authentic and His 6 -etailed PUUV, DOBV and HTNV-N proteins are transformed into the yeast Saccharomyces cerevisiae, preferably into the wild-type strain fh4c. To grow the transformed yeast cells, 100 ml of YEPD medium (1% yeast extract, 2% peptone, 2% glucose; with 5 mM formaldehyde) are inoculated with the yeast cells and cultivated for 24 hours at 30 ° C. with shaking. The cell culture is diluted 1: 1 with YEPG induction medium (1% yeast extract, 2% peptone, 6% galactose; with 5 mM formaldehyde) and cultivated for a further 18 hours. The cells are washed with PBS and the cell sediment is frozen at -20 ° C. For the expression control, an aliquot is removed and denatured with lysis buffer (0, 125 M Tris-HCl, pH 6.8; 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.2 mg / 10 ml bromophenol blue). After separation in the SDS polyacrylamide gel, the recombinant hantavirus N proteins are detected in a Western blot using N- and His 6 -specific antibodies ( FIG. 7).

Fig. 7
Nachweis der rekombinanten Hantavirus-N-Proteine in Totallysaten von Hefezellen mittels Western blot unter Verwendung des N-spezifischen Antikörpers 1C12 (A) und eines His6- spezifischen Antikörpers (B)
1-DOBV-His-N; 2-DOBV-N; 3-HTNV-His-N; 4-HTNV-N; 5-PUUV-His-N; 6- Negativkontrolle (pFX7).
Fig. 7
Detection of the recombinant Hantavirus-N proteins in totaly lysates of yeast cells by means of Western blot using the N-specific antibody 1C12 (A) and a His 6 -specific antibody (B)
1-DOBV-His-N; 2-DOBV N; 3-HTNV-His-N; 4-HTNV N; 5-PUUV-His-N; 6- Negative control (pFX7).

4. Aufschluss der Hefezellen und Anreicherung der Hantavirus-Nukleokapsidproteine4. Disruption of the yeast cells and enrichment of the hantavirus nucleocapsid proteins

Die, wie unter 3. beschrieben, angezüchteten Hefezellen werden nach Sedimentation in 10 ml Lysepuffer (20 mM PBS, pH 7,6; 2 mM EDTA; 1 mM PMSF) resuspendiert und nach Zugabe eines äquivalenten Volumens von Glasperlen (Durchmesser 0,5 mm) durch Vortexing für 5 Minuten bei 4°C aufgeschlossen. Zur Sedimentierung der Zellbruchstücke werden die Lysate 5 Minuten bei 2000 xg zentrifugiert. Unlösliche Proteine werden durch Zentrifugation bei 10 000 xg für 40 Minuten (4°C) sedimentiert. Da die rekombinanten Hantavirus-N-Proteine fast ausschließlich im Sediment gefunden werden, wird der Überstand verworfen. Um die N- Proteine in der Pelletfraktion weiter anzureichern, werden kontaminierende zelluläre Proteine zwei Mal extrahiert durch Resuspendieren des Pellets in 10 ml Extraktionspuffer (20 mM PBS, pH 7,6; 2 mM EDTA; 1 mM PMSF; 1% Tween 20), Schütteln für 1 Stunde bei 4°C und Zentrifugation bei 10 000 xg für 30 Minuten (4°C). Die im Sediment befindlichen authentischen N-Proteine werden anschließend durch Cäsiumchlorid-Dichtegradienten- Zentrifugation (siehe 5.), die His6-getailten N-Derivate durch Nickelchelat-Affinitäts­ chromatografie gereinigt (siehe 6.).After sedimentation, the yeast cells grown as described under 3. are resuspended in 10 ml lysis buffer (20 mM PBS, pH 7.6; 2 mM EDTA; 1 mM PMSF) and after adding an equivalent volume of glass beads (diameter 0.5 mm ) digested by vortexing for 5 minutes at 4 ° C. To sediment the cell fragments, the lysates are centrifuged at 2000 xg for 5 minutes. Insoluble proteins are sedimented by centrifugation at 10,000 xg for 40 minutes (4 ° C). Since the recombinant hantavirus N proteins are found almost exclusively in the sediment, the supernatant is discarded. In order to further enrich the N-proteins in the pellet fraction, contaminating cellular proteins are extracted twice by resuspending the pellet in 10 ml of extraction buffer (20 mM PBS, pH 7.6; 2 mM EDTA; 1 mM PMSF; 1% Tween 20), Shake for 1 hour at 4 ° C and centrifugation at 10,000 xg for 30 minutes (4 ° C). The authentic N-proteins in the sediment are then purified by cesium chloride density gradient centrifugation (see 5.), the His 6 -etailed N-derivatives by nickel chelate affinity chromatography (see 6.).

5. Reinigung der authentischen Hantavirus-Nukleokapsidproteine5. Purification of the authentic Hantavirus nucleocapsid proteins

Das Sediment, wie unter 4. beschrieben, wird in 4 ml Extraktionspuffer resuspendiert. Zwei ml der Suspension werden auf einen vorgeformten Cäsiumchloridgradienten (Cäsiumchlorid- Dichte von 1,1, 1,2, 1,3, 1,4 und 1,5 g/ml in 20 mM PBS, pH 7,6; 2 mM EDTA, 1% Tween 20) geschichtet und 24 Stunden bei 36000 U/min bei 4°C (Beckman-Ultrazentrifuge) zentrifugiert. Gradientenfraktionen von jeweils 0,5 ml werden durch SDS- Polyacrylamidgelelektrophorese und Western blot-Analyse charakterisiert. Hantavirus- Protein-enthaltende Fraktionen werden einer zweiten Cäsiumchloriddichtegradienten- Zentrifugation unterzogen. Positive Gradientenfraktionen werden gegen PBS dialysiert, aliquotiert und bei -20°C gelagert. Die Ausbeute der 3 rekombinanten Hantavirusproteine, die nach der Bradfordmethode (Bradford-Reagenz von BioRad, München, Deutschland; Bradford, 1976, Analyt. Biochem. 72, 248-254) bestimmt wurde, liegt im Durchschnitt bei etwa 1,5 mg pro g Feuchtgewicht (entspricht ca. 18 mg pro 1 Kulturvolumen).The sediment as described under 4. is resuspended in 4 ml extraction buffer. Two ml of the suspension are placed on a preformed cesium chloride gradient (cesium chloride Density of 1.1, 1.2, 1.3, 1.4 and 1.5 g / ml in 20 mM PBS, pH 7.6; 2mM EDTA, 1% Tween 20) layered and 24 hours at 36000 rpm at 4 ° C (Beckman ultracentrifuge) centrifuged. Gradient fractions of 0.5 ml are separated by SDS Characterized polyacrylamide gel electrophoresis and Western blot analysis. Hantavirus Protein-containing fractions are subjected to a second cesium chloride density gradient Subjected to centrifugation. Positive gradient fractions are dialyzed against PBS, aliquoted and stored at -20 ° C. The yield of the 3 recombinant hantavirus proteins, the Bradford method (Bradford reagent from BioRad, Munich, Germany; Bradford, 1976, analyte. Biochem. 72, 248-254) was determined on average approx. 1.5 mg per g wet weight (corresponds to approx. 18 mg per 1 culture volume).

6. Reinigung von Hexahistidin-tragenden Hantavirus-Nukleokapsidproteinen6. Purification of hexahistidine-bearing hantavirus nucleocapsid proteins

Die sedimentierte unlösliche Proteinfraktion (siehe 4.) wird in 5 ml Qiagen-Puffer A gelöst (6 M Guanidinhydrochlorid; 0,1 M NaH2PO4; 0,01 M Tris-HCl, pH 8,0). Zwei ml Ni+-NTA- Resin, vorher äquilibriert in Puffer A, wird dazugegeben und anschließend 1 Stunde geschüttelt. Die Reinigung der N-Proteine erfolgt mit Hilfe einer Säulenchromatographie, entsprechend der Vorschrift des Herstellers für die denaturierende Reinigung von unlöslichen Proteinen (Qiagen, Hilden, Deutschland). Geringe Mengen der rekombinanten Proteine werden in Puffer D, aber der Hauptteil der N-Proteine wird in Puffer E (8 M Harnstoff; 0,1 M NaH2PO4; 0,01 M Tris-HCl, pH 4,5) eluiert. Fraktionen werden gesammelt und anschließend mittels SDS-Polyacylamid-Gelelektrophorese und Western blot analysiert. Die 3 rekombinanten Proteine wurden mit einer Ausbeute von im Durchschnitt etwa 1,25 mg pro g Feuchtgewicht (entspricht ca. 15 mg pro 1 Kulturvolumen) erhalten.The sedimented insoluble protein fraction (see 4.) is dissolved in 5 ml Qiagen buffer A (6 M guanidine hydrochloride; 0.1 M NaH 2 PO 4 ; 0.01 M Tris-HCl, pH 8.0). Two ml of Ni + -NTA resin, previously equilibrated in buffer A, is added and then shaken for 1 hour. The N proteins are purified using column chromatography, in accordance with the manufacturer's instructions for the denaturing purification of insoluble proteins (Qiagen, Hilden, Germany). Small amounts of the recombinant proteins are in buffer D, but the majority of the N proteins are eluted in buffer E (8 M urea; 0.1 M NaH 2 PO 4 ; 0.01 M Tris-HCl, pH 4.5). Fractions are collected and then analyzed by SDS-polyacylamide gel electrophoresis and Western blot. The 3 recombinant proteins were obtained with an average yield of approximately 1.25 mg per g wet weight (corresponds to approximately 15 mg per 1 culture volume).

7. Schutz von Rötelmäusen gegen Hantavirus-Challenge durch Immunisierung mit authentischem, Hefeexprimiertem Puumalavirus-Nukleokapsidprotein7. Protection of rubella against Hantavirus challenge by immunization with authentic, yeast-expressed Puumala virus nucleocapsid protein

Entsprechend einem Standard-Protokoll (Lundkvist et al., 1996, Virology 216, 397-406; Ulrich et al., 1998, Vaccine 16, 272-280) werden Rötelmäuse, Clethrionomys glareolus, mit Nickelchelatchromatografie-gereinigtem PUUV-His-N-Protein immunisiert. Entsprechend diesem Protokoll werden 3 Immunisierungen mit jeweils 50 µg im Abstand von jeweils 3 Wochen subkutan verabreicht. Die erste Immunisierung erfolgt unter Zusatz von komplettem Freund's Adjuvanz, die zweite mit inkomplettem Freund's Adjuvanz, die dritte ohne zusätzliches Adjuvanz. Das Virus-Challenge erfolgt durch Inokulation mit 104 ID50 Einheiten des PUUV-Stammes Kazan (Lundkvist et al., 1997, J. Virol. 71, 9515-9523). Drei Wochen nach Challenge werden die Tiere bezüglich der Infektionsmarker analysiert. Das Fehlen von N-Antigen und S-Segment-spezifischer RNA in der Lunge (bestimmt mit Hilfe der PCR; Niklasson und Lundkvist, 1999, In: Manual of Hemorrhagic Fever with renal syndrome and hantavirus pulmonary syndrome; H. W. Lee, C. Calisher, C. Schmaljohn, Hrg.; WHO Collaborating Center for Virus Reference and Research, Asian Institute for Life Sciences, Seoul) sowie von G2-spezifischen Antikörpern im Serum (nach Challenge) zeigt eine vollständige sterile Protektion an, während der Nachweis einzelner Infektionsparameter auf eine partielle Protektion hinweist. Alle 4 immunisierten Tiere zeigen keinen der Infektionsmarker an, d. h. sie werden durch die Immunisierung vollständig vor dem Viruschallenge geschützt (Tab. 1). In nicht-vakzinierten Tieren werden nach Challenge alle 3 Infektionsmarker nachgewiesen; in Tieren ohne Challenge fehlen alle 3 Infektionsmarker. According to a standard protocol (Lundkvist et al., 1996, Virology 216, 397-406; Ulrich et al., 1998, Vaccine 16, 272-280), rubella mice, Clethrionomys glareolus, with PUUV-His-N- purified with nickel chelate chromatography. Protein immunized. According to this protocol, 3 immunizations with 50 µg each are administered subcutaneously every 3 weeks. The first immunization is carried out with the addition of complete Freund's adjuvant, the second with incomplete Freund's adjuvant, the third without additional adjuvant. The virus challenge is carried out by inoculation with 10 4 ID 50 units of the PUUV strain Kazan (Lundkvist et al., 1997, J. Virol. 71, 9515-9523). Three weeks after the challenge, the animals are analyzed for the infection markers. The absence of N-antigen and S-segment-specific RNA in the lungs (determined using PCR; Niklasson and Lundkvist, 1999, In: Manual of Hemorrhagic Fever with renal syndrome and hantavirus pulmonary syndrome; HW Lee, C. Calisher, C. Schmaljohn, ed.; WHO Collaborating Center for Virus Reference and Research, Asian Institute for Life Sciences, Seoul) as well as serum G2-specific antibodies (after Challenge) indicates complete sterile protection, while the detection of individual infection parameters points to one partial protection indicates. All 4 immunized animals do not show any of the infection markers, ie they are completely protected from the virus challenge by the immunization (Tab. 1). After challenge, all 3 infection markers are detected in non-vaccinated animals; all 3 infection markers are missing in animals without challenge.

Tabelle 1 Table 1

Nachweis der Induktion einer protektiven Immunantwort in Rötelmäusen Evidence of the induction of a protective immune response in rubella

AbkürzungsverzeichnisList of abbreviations

ATCC American Type Culture Collection
DOBV Hantavirus-Serotyp Dobrava
DNA Desoxyribonukleinsäure (desoxyribonucleic acid)
E. coli Escherichia coli
EDTA Ethylendiamintetraessigsäure
ELISA Enzyme Linked Immunosorbent Assay
EP Europäische Patentanmeldung
FDH1 Gen von Candida maltosa, das eine Formaldehyddehydrogenase kodiert
(vermittelt Resistenz gegen Formaldehyd)
G1 Hantavirus-Glykoprotein G1
G2 Hantavirus-Glykoprotein G2
GAL10-PYK1 Hefe-spezifischer Hybrid-Promoter
HBsAg HBV-Oberflächenantigen
HBV Hepatitis-B-Virus
HFRS Hämorrhagisches Fieber mit Renalem Syndrom
HPS Hantavirales Pulmonales Syndrom
HTNV Hantavirus-Serotyp Hantaan
ID50
ATCC American Type Culture Collection
DOBV Hantavirus serotype Dobrava
DNA deoxyribonucleic acid (deoxyribonucleic acid)
E. coli Escherichia coli
EDTA ethylenediaminetetraacetic acid
ELISA Enzyme Linked Immunosorbent Assay
EP European patent application
FDH1 gene from Candida maltosa that encodes a formaldehyde dehydrogenase
(imparts resistance to formaldehyde)
G1 Hantavirus glycoprotein G1
G2 Hantavirus glycoprotein G2
GAL10-PYK1 yeast-specific hybrid promoter
HBsAg HBV surface antigen
HBV hepatitis B virus
HFRS Hemorrhagic Fever with Renal Syndrome
HPS Hantavirales Pulmonary Syndrome
HTNV Hantavirus serotype Hantaan
ID 50

Infektionsdosis (Prozentsatz)
L3 Labor der Sicherheitsstufe 3
Ni+-NTA Nickel-Nitrilotriacetic acid
PBS Phosphatpuffer (phosphate buffered sahne)
PCR Polymerase-Kettenreaktion (polymerase chain reaction)
PCT Patent Cooperation Treaty
pFX7 Hefeexpressionsplasmid
PGK1 Gen von Saccharomyces cerevisiae, das eine Phosphoglyceratkinase kodiert
PMSF Phenylmethylsulfonylfluorid
PS Patentschrift
PUUV Hantavirus-Serotyp Puumala
RNA Ribonucleinsäure (ribonucleic acid)
SDS Natriumdodecylsulfat (Sodium Dodecylsulfat)
SEOV Serotyp Seoul
Tris Tris-(hydroxymethyl)-aminomethan
Tween 20 Tween. .®: RÖMPP CHEMIE LEXIKON, Georg Thieme Verlag Stuttgart
New York 1995, Tween 20: Polyethoxysorbitanlaurat
VACV Vaccinia Virus
WO Internationale Patentanmeldung über PCT
Infection dose (percentage)
L3 laboratory of security level 3
Ni + -NTA nickel-nitrilotriacetic acid
PBS phosphate buffered cream
PCR polymerase chain reaction
PCT Patent Cooperation Treaty
pFX7 yeast expression plasmid
PGK1 gene from Saccharomyces cerevisiae encoding a phosphoglycerate kinase
PMSF phenylmethylsulfonyl fluoride
PS patent specification
PUUV Hantavirus serotype Puumala
RNA ribonucleic acid
SDS sodium dodecyl sulfate (sodium dodecyl sulfate)
SEOV serotype Seoul
Tris tris (hydroxymethyl) aminomethane
Tween 20 tween. .®: RÖMPP CHEMIE LEXIKON, Georg Thieme Verlag Stuttgart
New York 1995, Tween 20: Polyethoxysorbitan laurate
VACV Vaccinia Virus
WHERE International patent application via PCT

Claims (17)

1. Hantavirus-Impfstoffe, die als wirksame Komponenten rekombinante Hantavirusproteine enthalten, hergestellt in Hefezellen.1. Hantavirus vaccines, which are effective components of recombinant hantavirus proteins contained, produced in yeast cells. 2. Impfstoffe nach Anspruch 1, dadurch gekennzeichnet, dass sie als wirksame Komponenten
  • 1. 2.1. Nukleokapsidproteine und/oder
  • 2. 2.2. Glykoproteine
von Hantaviren enthalten.
2. Vaccines according to claim 1, characterized in that they are effective components
  • 1. 2.1. Nucleocapsid proteins and / or
  • 2. 2.2. glycoproteins
of hantaviruses included.
3. Impfstoffe nach Anspruch 1 und 2, dadurch gekennzeichnet, dass sie Nukleokapsidproteine der Hantavirus-Serotypen Puumala, Dobrava und/oder Hantaan enthalten.3. Vaccines according to claim 1 and 2, characterized in that they are nucleocapsid proteins of the Hantavirus serotypes Puumala, Dobrava and / or Hantaan included. 4. Impfstoffe nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass sie Nukleokapsidproteine der Hantavirus-Stämme Puumala-Vranica/Hällnäs, Dobrava-Slovakia und/oder Hantaan- Fojnica enthalten.4. Vaccines according to claims 1 to 3, characterized in that they contain nucleocapsid proteins of the Hantavirus strains Puumala-Vranica / Hällnäs, Dobrava-Slovakia and / or Hantaan- Fojnica included. 5. Impfstoffe nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass als Hefezellen Saccharomyces cerevisiae Verwendung finden.5. Vaccines according to claim 1 to 4, characterized in that as yeast cells Saccharomyces cerevisiae find use. 6. Impfstoffe nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass als Hefezellen Saccharomyces cerevisiae, Stamm fh4c, verwendet wird.6. Vaccines according to claim 1 to 5, characterized in that as yeast cells Saccharomyces cerevisiae, strain fh4c, is used. 7. Verfahren zur Herstellung von Hantavirus-Impfstoffen der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man als wirksame Komponenten rekombinante Hantavirusproteine einsetzt, die in Hefezellen gewonnen werden.7. A process for the preparation of hantavirus vaccines of claims 1 to 6, characterized characterized in that as effective components recombinant hantavirus proteins uses, which are obtained in yeast cells. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass als wirksame Komponenten Nukleokapsidproteine und/oder Glykoproteine
  • 1. 8.1. von Hantaviren
  • 2. 8.2. der Hantavirus-Serotypen Puumala, Dobrava und/oder Hantaan
  • 3. 8.3. der Hantavirus-Stämme Puumala-Vranica/Hällnäs, Dobrava-Slovakia und/oder Hantaan- Fojnica
eingesetzt werden.
8. The method according to claim 7, characterized in that the active components are nucleocapsid proteins and / or glycoproteins
  • 1.1.1. of hantaviruses
  • 2. 8.2. the Hantavirus serotypes Puumala, Dobrava and / or Hantaan
  • 3. 8.3. the Hantavirus strains Puumala-Vranica / Hällnäs, Dobrava-Slovakia and / or Hantaan- Fojnica
be used.
9. Verfahren nach den Ansprüchen 7 und 8, dadurch gekennzeichnet, dass als Hefezellen Saccharomyces cerevisiae, insbesondere der Stamm fh4c, eingesetzt wird.9. The method according to claims 7 and 8, characterized in that as yeast cells Saccharomyces cerevisiae, in particular the strain fh4c, is used. 10. Verfahren nach den Ansprüchen 7 bis 9, dadurch gekennzeichnet, dass ein Hefeexpressionsplasmid eingesetzt wird, das einen Hefe-spezifischen GAL10-PYK1-Hybrid- Promoter und das FDH1-Gen von Candida maltosa als dominanten Selektionsmarker trägt.10. The method according to claims 7 to 9, characterized in that a Yeast expression plasmid is used, which contains a yeast-specific GAL10-PYK1 hybrid Promoter and the FDH1 gene from Candida maltosa as the dominant selection marker. 11. Verfahren nach den Ansprüchen 7 bis 10, dadurch gekennzeichnet, dass die Hefezellen in YEPD-Medium (1% Hefe-Extrakt, 2% Pepton, 2% Glukose) mit 5 mM Formaldehyd angezüchtet werden und durch Zugabe von Galaktose (Endkonzentration 3%) die Synthese der Hantavirusproteine induziert wird.11. The method according to claims 7 to 10, characterized in that the yeast cells in YEPD medium (1% yeast extract, 2% peptone, 2% glucose) with 5 mM formaldehyde be grown and the synthesis by adding galactose (final concentration 3%) the hantavirus protein is induced. 12. Verfahren nach den Ansprüchen 7 bis 11, dadurch gekennzeichnet, dass die Hefezellen durch Glasperlen aufgeschlossen werden.12. The method according to claims 7 to 11, characterized in that the yeast cells be broken down by glass beads. 13. Verfahren nach den Ansprüchen 7 bis 12, dadurch gekennzeichnet, dass die rekombinanten Hantavirusproteine durch zwei aufeinanderfolgende Cäsiumchlorid- Dichtegradienten-Zentrifugationen oder durch Anreicherung der unlöslichen Proteine und anschließende Nickelchelat-Affinitätschromatografie gereinigt werden.13. The method according to claims 7 to 12, characterized in that the recombinant hantavirus proteins by two consecutive cesium chloride Density gradient centrifugation or by enriching the insoluble proteins and subsequent nickel chelate affinity chromatography. 14. Verwendung der rekombinanten Hantavirusproteine nach Anspruch 1 als wirksame Komponenten in Hantavirus-Impfstoffen.14. Use of the recombinant hantavirus proteins according to claim 1 as effective Components in hantavirus vaccines. 15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass Nukleokapsidproteine und/oder Glykoproteine
  • 1. 15.1. von Hantaviren
  • 2. 15.2. der Hantavirus-Serotypen Puumala, Dobrava und/oder Hantaan
  • 3. 15.3. der Hantavirus-Stämme Puumala-Vranica/Hällnäs, Dobrava-Slovakia und/oder Hantaan- Fojnica
als wirksame Komponenten in Hantavirus-Impfstoffen eingesetzt werden.
15. Use according to claim 14, characterized in that nucleocapsid proteins and / or glycoproteins
  • 1. 15.1. of hantaviruses
  • 2. 15.2. the Hantavirus serotypes Puumala, Dobrava and / or Hantaan
  • 3. 15.3. the Hantavirus strains Puumala-Vranica / Hällnäs, Dobrava-Slovakia and / or Hantaan- Fojnica
can be used as effective components in hantavirus vaccines.
16. Verwendung von Hefezellen nach den Ansprüchen 1, 5 und 6, insbesondere Saccharomyces cerevisiae, vorzugsweise des Stammes fh4c, zur Herstellung rekombinanter Hantavirusproteine.16. Use of yeast cells according to claims 1, 5 and 6, in particular Saccharomyces cerevisiae, preferably of the strain fh4c, for the production of recombinant Hantavirusproteine. 17. Verwendung der rekombinanten Hantavirusproteine nach den Ansprüchen 1 bis 4 in der Diagnostikaentwicklung.17. Use of the recombinant hantavirus proteins according to claims 1 to 4 in the Diagnostics development.
DE10055886A 2000-11-08 2000-11-08 Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use Withdrawn DE10055886A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10055886A DE10055886A1 (en) 2000-11-08 2000-11-08 Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use
PCT/DE2001/004213 WO2002038174A2 (en) 2000-11-08 2001-11-07 Vaccines containing recombinant hantavirus proteins, methods for producing said vaccines and their use
AU2002221553A AU2002221553A1 (en) 2000-11-08 2001-11-07 Vaccines containing recombinant hantavirus proteins, methods for producing said vaccines and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10055886A DE10055886A1 (en) 2000-11-08 2000-11-08 Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use

Publications (1)

Publication Number Publication Date
DE10055886A1 true DE10055886A1 (en) 2002-05-29

Family

ID=7662912

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10055886A Withdrawn DE10055886A1 (en) 2000-11-08 2000-11-08 Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use

Country Status (3)

Country Link
AU (1) AU2002221553A1 (en)
DE (1) DE10055886A1 (en)
WO (1) WO2002038174A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333918B2 (en) 2003-10-27 2012-12-18 Kimberly-Clark Worldwide, Inc. Method for the production of nonwoven web materials
CN101249261B (en) * 2008-03-18 2010-10-27 中国疾病预防控制中心病毒病预防控制所 Kidney syndrome hemorrhagic fever mucosa immune vaccines and method of preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750221A1 (en) * 1996-11-18 1998-05-20 Int Rectifier Corp Semiconductor component with MOS gate control and method for its production
US5916754A (en) * 1995-02-17 1999-06-29 The United States Of America As Represented By The Department Of Health And Human Services Bayou hantavirus and related methods
WO2000044406A2 (en) * 1999-01-29 2000-08-03 U.S. Medical Research Institute Of Infectious Diseases Dna vaccines against hantavirus infections

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000648A1 (en) * 1993-06-24 1995-01-05 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Nucleic acids of a novel hantavirus and reagents for detection and prevention of infection
WO1999001153A1 (en) * 1997-07-03 1999-01-14 The University Of New Mexico Rio mamore hantavirus
DE19750220A1 (en) * 1997-11-13 1999-05-20 Max Delbrueck Centrum Producing polyoma virus-like particles in yeast for gene therapy, vaccine development and diagnosis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916754A (en) * 1995-02-17 1999-06-29 The United States Of America As Represented By The Department Of Health And Human Services Bayou hantavirus and related methods
DE19750221A1 (en) * 1996-11-18 1998-05-20 Int Rectifier Corp Semiconductor component with MOS gate control and method for its production
WO2000044406A2 (en) * 1999-01-29 2000-08-03 U.S. Medical Research Institute Of Infectious Diseases Dna vaccines against hantavirus infections

Also Published As

Publication number Publication date
WO2002038174A3 (en) 2003-08-28
AU2002221553A1 (en) 2002-05-21
WO2002038174A2 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
Nandi et al. Bovine ephemeral fever: a review
DE69229476T2 (en) OSPA PROTEINS BY BORRELIA BURGDORFERI SUB-GROUPS, CODING GENES AND VACCINE SUBSTANCES
Boscia et al. Properties of a filamentous virus isolated from grapevines affected by corky bark
DE69120662T2 (en) RECOMBINANT POX VIRUS INNER CORES
Ahlawat et al. Association of a badnavirus with citrus mosaic disease in India
DE69736185T2 (en) COMPOSITION OF A POLYNUCLEOTIDE VACCINE FOR CATS
EP2102345B1 (en) Rsv f-protein and use thereof
DE69034075T2 (en) RECOMBINANT POXVIRUS AND STREPTOCOCCES CONTAINING AN M-PROTEIN
CH679934A5 (en)
DE69935136T2 (en) DNA equine vaccines adjuvanted with acrylic or methacrylic polymer acids or EMA (R)
CN109810976B (en) The preparation method and application of pig Senecan virus full length infection clones
JP2012519471A (en) Immunogenic compositions, vaccines and diagnostic methods based on canine distemper virus prevalent in North American dogs
DE69534993T2 (en) VACCINE FROM WEAKEN DOG PARVOVIRES
DE69929544T2 (en) Attenuated pestiviruses
DE69627526T2 (en) RECOMBINANT POX VIRUS OF THE INFECTIOUS PERITONITIS OF THE CAT, ITS COMPOSITIONS AND METHODS FOR THE PRODUCTION AND USE
DE69123970T2 (en) EHV-4 GLYCOPROTEIN VAZINE
DE3137300A1 (en) DNA MOLECULE SUITABLE FOR THE EXPRESSION OF PROTEINS FROM FOOT AND CLAW DISEASE VIRUSES, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF FOR THE PRODUCTION OF PROTEINS AND VACCINANTS
WO2014159052A1 (en) Vaccination of companion animals to elicit a protective immune response against tick infestations and tick-borne pathogen transmission
DE69027339T2 (en) Vaccine and diagnostic agent for the swine cholera virus
DE10055886A1 (en) Vaccines containing recombinant hantavirus proteins, processes for their preparation and their use
EP0284791B1 (en) DNA and RNA molecules of the western-subtype TBE virus, polypeptides coded by these molecules and their use
EP1362125B8 (en) METHOD FOR IDENTIFYING of BIOLOGICALLY ACTIVE STRUCTURES OF MICROBIAL PATHOGENS
DE60208854T2 (en) Attenuated recombinant stable rabies virus mutants and live vaccines
DE19627193B4 (en) Recombinant myxomatic virus
DE60035680T2 (en) COMPLETE GENESQUENCE OF THE ELEKTROUS ANEMY VIRUS ASSEMBLY AND THEIR APPLICATION OF THE ELEPHANT-LEUKOCYTE VACCINE STRAIN OF THE EQUINE

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: HUMBOLDT-UNIVERSITAET ZU BERLIN UNIVERSITAETSKLINIKU

Owner name: INSTITUTE OF BIOTECHNOLOGY, VILNIUS, LT

8139 Disposal/non-payment of the annual fee