DE10025855A1 - Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening - Google Patents

Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening

Info

Publication number
DE10025855A1
DE10025855A1 DE2000125855 DE10025855A DE10025855A1 DE 10025855 A1 DE10025855 A1 DE 10025855A1 DE 2000125855 DE2000125855 DE 2000125855 DE 10025855 A DE10025855 A DE 10025855A DE 10025855 A1 DE10025855 A1 DE 10025855A1
Authority
DE
Germany
Prior art keywords
dnase
sle
transgenic
human mammal
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE2000125855
Other languages
German (de)
Inventor
Tarik Moeroey
Branko Zevnik
Holger Karsunky
Hans-Georg Mannherz
Markus Napirei
Harald Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MANNHERZ HANS GEORG
Original Assignee
MANNHERZ HANS GEORG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MANNHERZ HANS GEORG filed Critical MANNHERZ HANS GEORG
Priority to DE2000125855 priority Critical patent/DE10025855A1/en
Publication of DE10025855A1 publication Critical patent/DE10025855A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/99Enzyme inactivation by chemical treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0325Animal model for autoimmune diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Producing, (P), a transgenic, non-human mammal (A) that has at least partial reduction in activity of DNAse I (I), is new. Production of a transgenic, non-human mammal (A) that has at least partial reduction in activity of DNAse I (I), where an embryonal stem cell is transfected with a (I)-targeting vector and stable clones isolated in which the endogenous (I)-encoding gene has been (partially) replaced by other sequences or destroyed, as a result of homologous recombination with parts of the targeting vector. These clones are implanted into a suitably prepared surrogate dam and progeny selected for presence of DNA incorporation. Independent claims are also included for the following: (1) (A) produced by P; (2) recombinant (I)-targeting vector used for homologous recombination; (3) stably transfected cells in which all or part of the (I)-encoding gene has been replaced by another DNA sequence; (4) model system for analysis of either the origins of SLE (systemic lupus erythematosus) or treatments of diseases, specifically SLE, that includes at least one (A); (5) testing new pharmaceuticals for activity against SLE, using (A) or stable cell clones or organs derived from (A); and (6) testing the affects of genetic, biological, chemical and physical factors on development of SLE.

Description

Die Erfindung betrifft ein transgenes nichtmenschliches Säugetier, ein Verfahren zu dessen Herstellung, dessen Verwendung, Zellgewebe daraus, ein Verfahren zur Herstellung solchen Zellgewebes, dessen Verwendung, einen rekombinanten DNS-Targeting Vektor und die Verwendung dieses Vektors. - Der Ausdruck nichtmenschliche Säugetiere bezieht sich auf taxonomisch höhere Einheiten als Tierarten. Transgene Tiere sind Organismen, die ein zusätzliches, nicht von ihrer Art stammendes, also fremdes Gen oder ein Teil davon in ihrem Genom tragen, oder Teile oder die Gesamtheit eines Genes verloren haben (Gendefizienz) und an dessen Stelle ein fremdes nicht aus dieser Tierart stammendes Gen oder ein Teil davon tragen. Im Rahmen der Erfindung sind dabei insbesondere solche gentechnisch veränderten Tiere gemeint, die das fremde Gen oder die Gendefizienz auch in den Keimzellen aufweisen, die also das fremde Gen oder die Gendefizienz vertikal, i. e. von Generation zu Generation weitervererben. Rekombinationsvektoren oder Targeting Vektoren sind DNS Konstrukte, die dergestalt konstruiert sind, daß sie eine Einschleusung fremder DNS in das Genom oder den Ersatz von genomischen Sequenzen von Zellen, Keimzellen oder Organismen erlauben. Da auch Keimzellen Transgene oder Gendefizienzen tragen, können weitere entsprechende transgene Tiere durch Züchtung erhalten werden, wenn ein spezielles transgenes Tier geschaffen worden ist. Transgene Tiere sind in verschiedenen Ausbildungen bekannt und auch verschiedene Verfahren zur Herstellung von transgenen Tieren sind bekannt. Hierzu wird lediglich beispielhaft auf die Literaturstelle ("Gene Targeting, A Practical Approach, Edited by A. L. Joyner IRL Press Oxford University Press, New York, 1993 und R. Jaenisch, Science, Vol 240, 10: 1468 ff 1988), sowie die darin genannten Literaturstellen verwiesen.The invention relates to a transgenic non-human mammal, a method for the same Production, its use, cell tissue therefrom, a process for the production of such Cell tissue, its use, a recombinant DNA targeting vector and the Using this vector. - The term non-human mammals refers to Taxonomically higher units than animal species. Transgenic animals are organisms that have a additional gene that is not of its type, i.e. foreign, or a part of it in your Bear genome, or have lost part or all of a gene (gene deficiency) and in its place a foreign gene not from this animal species or a part thereof wear. Within the scope of the invention, in particular those are genetically modified We mean animals that have the foreign gene or the gene deficiency in the germ cells that that is, the foreign gene or gene deficiency vertically, i. e. from generation to generation pass on. Recombination vectors or targeting vectors are DNA constructs that are constructed in such a way that they introduce foreign DNA into the genome or the Allow replacement of genomic sequences of cells, germ cells or organisms. There too Germ cells carrying transgenes or gene deficiencies can have other corresponding transgenes Animals obtained through breeding when a special transgenic animal has been created is. Transgenic animals are known in various forms and also different Methods for producing transgenic animals are known. This is just exemplary to the literature reference ("Gene Targeting, A Practical Approach, Edited by A. L. Joyner IRL Press Oxford University Press, New York, 1993 and R. Jaenisch, Science, Vol 240, 10: 1468 ff 1988), as well as the references cited therein.

Der Ausdruck Zellgewebe umfaßt komplette Organe oder Teile von Organen eines Tieres, jedoch auch ganz spezifische Zellinien, die daraus isoliert und kultiviert, i. e. vermehrt werden können. Ein rekombinanter DNS-Vektor ist ein Instrument zur Herstellung eines gentechnisch veränderten Tieres, welches die fremde Sequenz, die in Zellen des Tieres eingeschleust werden sollen, trägt und andere weitere Sequenzen enthalten kann.The expression cell tissue encompasses complete organs or parts of organs of an animal, however also very specific cell lines, which are isolated and cultivated therefrom, i. e. be increased can. A recombinant DNA vector is an instrument for producing a gene altered animal, which is the foreign sequence that is introduced into the animal's cells should, carries and can contain other further sequences.

Der allgemeine technologische Hintergrund des mit der Erfindung geschaffenen speziellen transgenen Tieres ist folgender. SLE ist eine chronische Erkrankung unbekannter Ätiologie und verläuft in Schüben. Die Erkrankung tritt beim Menschen bevorzugt bei Frauen zwischen der 2. und 5. Lebensdekade auf und verläuft im ungünstigsten Fall tödlich, wobei die Sterberate bei SLE-Patienten dreimal höher liegt als bei der Normalbevölkerung. Die häufigsten Todesursachen sind Urämie, Herzversagen und innere Blutungen. SLE ist primär gekennzeichnet durch Immunkomplex-induzierte Zell- und Gewebeschädigungen in verschiedenen Organen, wobei antinukleäre Antikörper (ANA) bei der Pathogenese eine zentrale Rolle spielen (< 95%). Im wesentlichen handelt es sich um AK gegen dsDNA, ssDNA, RNA, Histone, Nukleosomen und Ribonukleoproteine (Berden et al., 1999; Eilat and Naparstek, 1999). Ein Weg der Pathogenese besteht in der Ablagerung bzw. Ansammlung von Immunkomplexen z. B. in den Gefäßwänden, den Glomeruli der Niere, den serösen Häuten (Pleura, Peritoneum, Perikard), dem Endokard, den Gelenken und der Haut mit einer anschließenden Hypersensitivitäts-reaktion vom Typ III. Resultierend kommt es zu verschiedenen Entzündungen wie Glomerulonephritis, Arthritis, Serositis, Endokarditis und einer Vaskulitis. Die Glomerulonephritis resultiert in eine Proteinurie und Hämaturie bis hin zur terminalen Niereninsuffizienz (Urämie). Der zweite Weg der Pathogenese erfolgt über die Kreuzreaktion bestimmter ANA mit Oberflächenantigenen von Körperzellen und einer anschließenden AK-vermittelten cytotoxischen Hypersensitivitäts-reaktion (Typ II). Insbesondere sind oftmals Erythrozyten, Thrombozyten, Lymphozyten sowie die Mesangiumzellen und Podozyten der Niere von der Kreuzreaktion betroffen (Raz et al., 1998; Raz et al., 1993; D'Andrea et al., 1996). Symptome wie eine hämolytische Anämie, Splenomegalie, Thrombozytopenie und Leukopenie sind die Folge. Zur Übersicht des Themas SLE siehe: Berg, 1987; Riede and Herbst, 1995; Vierbuchen and Böcker, 1997; Vanholder et al., 1998; Carroll, 1998.The general technological background of the special created with the invention transgenic animal is as follows. SLE is a chronic disease of unknown etiology and runs in spurts. The disease occurs in humans preferably in women between the 2nd and 5th decade of life and in the worst case is fatal, with the death rate at SLE patients are three times higher than the normal population. The most common  The causes of death are uremia, heart failure and internal bleeding. SLE is primary characterized by immune complex-induced cell and tissue damage in various organs, with antinuclear antibodies (ANA) being central in pathogenesis Play a role (<95%). Essentially it is AK against dsDNA, ssDNA, RNA, Histones, nucleosomes and ribonucleoproteins (Berden et al., 1999; Eilat and Naparstek, 1999). One way of pathogenesis is the deposition or accumulation of Immune complexes e.g. B. in the vessel walls, the glomeruli of the kidney, the serous skins (Pleura, peritoneum, pericardium), the endocardium, the joints and the skin with one subsequent type III hypersensitivity reaction. As a result, it happens various inflammations such as glomerulonephritis, arthritis, serositis, endocarditis and vasculitis. Glomerulonephritis results in proteinuria and hematuria up to end-stage renal failure (uremia). The second way of pathogenesis is through Cross-reaction of certain ANA with surface antigens of body cells and one subsequent AK-mediated cytotoxic hypersensitivity reaction (type II). In particular, erythrocytes, platelets, lymphocytes and the Mesangial cells and podocytes of the kidney affected by the cross reaction (Raz et al., 1998; Raz et al., 1993; D'Andrea et al., 1996). Symptoms like hemolytic anemia, Splenomegaly, thrombocytopenia and leukopenia are the result. To overview of the topic SLE see: Berg, 1987; Riede and Herbst, 1995; Vierbuchen and Böcker, 1997; Vanholder et al., 1998; Carroll, 1998.

Um die Auswirkungen von SLE auf einen Organismus studieren zu können wurde bislang sowohl auf natürlich vorkommende Mausmutanten als auch auf bestimmte durch gentechnische Modifkationen hergestellte Mausmodelle für SLE zurückgegriffen. Mäuse der F1-Generation, die aus einer Verpaarung der Stämme NZB und NZW (für New Zealand Black und -White) entstehen (Morel and Wakeland, 1998), aber auch Tiere, die das lpr-Allel des Fas-Rezeptors oder das gld-Allel des Fas-Liganden reinerbig besitzen, zeigen SLE-Symptome (Takahashi et al., 1994). Neben diesen natürlich vorkommende Mausmutanten konnten durch gentechnische Manipulation Mäuse erzeugt werden, die inaktivierende Mutationen im Gen für das Serum Amyloid Protein (SAP) (Bickerstaff et al., 1999) oder den Komplementfaktor C1q (Botto et al., 1998) tragen. Alle diese Tiere zeigen eine verschieden starke Ausprägung SLE-Symptome.So far, in order to study the effects of SLE on an organism both on naturally occurring mouse mutants and on certain ones due to genetic engineering Modifications made mouse models used for SLE. F1 generation mice, from a mating of the strains NZB and NZW (for New Zealand Black and -White) arise (Morel and Wakeland, 1998), but also animals that have the lpr allele of the Fas receptor or have the gld allele of the Fas ligand inherited, show SLE symptoms (Takahashi et al., 1994). In addition to these naturally occurring mouse mutants, genetic engineering Manipulation mice are generated that have inactivating mutations in the gene for the serum Amyloid Protein (SAP) (Bickerstaff et al., 1999) or the complement factor C1q (Botto et al., 1998). All of these animals show different degrees of SLE symptoms.

Die bisher existierende Mausmodelle weisen jedoch mehrere Nachteile auf. Zunächst ist nicht bekannt, ob Serum Amyloid Protein (SAP) als Bestandteil der Komplementkaskade in Patienten mit SLE vermindert vorliegt oder sogar fehlt. Das Fehlen des CD95 Rezeptors in der lpr Mausmutante und in ähnlicherweise das Fehlen des CD95 Liganden in der gld Mausmutante bewirkt lediglich ein Überschießen des Immunsystems und führt nur sekundär zu SLE Symptomen. Tests immunmodulatorischer Arzneimittel zur Therapie des SLE ist an einigen dieser Modellen nicht möglich, da das Immunsystem der Tiere gestört ist. Dies gilt vor allem für die lpr und gld Mausmutanten und für die C1q defiziente Mausmutante. Die NZB, NZW Mausmutanten zeigen erst in der F1 Generation SLE Symptome und sind genetisch nicht eindeutig charakterisiert. Ein Modell, das die pathophysiologischen Gegebenheiten der humanen SLE Erkrankung nachvollzieht existiert also bisher nicht.The mouse models that existed so far have several disadvantages. First is not Known whether serum amyloid protein (SAP) is part of the complement cascade in patients is reduced or even absent with SLE. The lack of the CD95 receptor in the lpr Mouse mutant and similarly the lack of the CD95 ligand in the gld mouse mutant only causes an overshoot of the immune system and only leads to SLE secondarily Symptoms. Tests of immunomodulatory drugs for the therapy of SLE is on some these models are not possible because the animal's immune system is disturbed. This is especially true for  the lpr and gld mouse mutants and for the C1q deficient mouse mutant. The NCB, NZW Mouse mutants show symptoms only in the F1 generation SLE and are not genetically clearly characterized. A model that reflects the pathophysiological conditions of human So far, SLE comprehension does not exist.

Es ist daher Aufgabe der Erfindung diese Nachteile zu überwinden und ein neues auf den pathophysiologischen Gegebenheiten von SLE basierendes Modell bereitzustellen. Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Erzeugung eines transgenen, nichtmenschlichen Säugers, wobei eine embryonale Stammzelle mit einem geeigneten DNA- Vektor (Dnase 1 Targeting Vektor) transfiziert wird, stabile Zellklone isoliert werden und auf homologe Rekombination am Dnase 1 Genort überprüft werden. Diese Überprüfung zeigt ob sich ein Fremd Gen ins Genom inseriert hat und das Dnase 1 Gen teilweise oder vollständig ersetzt hat. Diese stabile Zellklon wir expandiert und einzelne Zellen aus ihm werden in Blastozysten eines nichtmenschlichen Säugers injiziert, die dann geeigneten weiblichen Tieren eines nichtmenschlichen Säugers zur Austragung implantiert werden. Die erhaltenen Nachkommen werden auf das Vorhandensein der DNA-Einschleusung und homologen Rekombination am Dnase 1 Genort selektioniert sind dadurch gekennzeichnet, daß der transgene, nichtmenschliche Säuger infolge der DNA-Einschleusung eine teilweise oder vollständige Reduktion der Dnase 1-Aktivität aufweist. Embryonale Stammzellen sind Zellen, die noch die Fähigkeit besitzen, sich in alle Zellen eines Organismus zu differenzieren. Hierfür können zum Beispiel Zellen mit der Elternlinienbezeichnung E14 verwendet werden. Transfektion bezeichnet den Vorgang, fremde DNA mittels eines Vektors in das Genom einer Zell einzuschleusen. Stabile Zellklone sind Nachkommen einer Zelle, die durch mitotische Zellteilung entstanden sind, die ein durch Transfektion eingebrachtes Gen oder eine durch Transfektion eingebrachte Fremd-DNS stabil im Genom integriert haben und an die Tochterzellen weitergeben. Als geeignete weibliche Tiere eines nichtmenschlichen Säugers werden solche bezeichnet, die gemäß ihres natürlichen oder durch Hormonbehandlung induzierten Reproduktionsstatus für befruchtete Eizellen oder Blastozysten aufnahmebereit sind und zur Austragung sich entwickelnder Nachkommen befähigt sind.It is therefore an object of the invention to overcome these disadvantages and a new one on the provide pathophysiological conditions of SLE based model. This The object is achieved according to the invention by a method for producing a transgenic non-human mammal, an embryonic stem cell with a suitable DNA Vector (Dnase 1 targeting vector) is transfected, stable cell clones are isolated and on homologous recombination at the Dnase 1 gene location can be checked. This check shows whether a foreign gene has been inserted into the genome and the Dnase 1 gene partially or completely has replaced. This stable cell clone is expanded and individual cells from it are transformed into Blastocysts injected into a non-human mammal, then the appropriate female animals implanted by a non-human mammal for delivery. The received Descendants become homologous to the presence of DNA injection and Recombination selected at the Dnase 1 gene location is characterized in that the transgenic, non-human mammals due to the introduction of DNA, a partial or shows complete reduction of Dnase 1 activity. Embryonic stem cells are cells that still have the ability to differentiate into all cells of an organism. Therefor For example, cells with the parent line name E14 can be used. Transfection refers to the process of using a vector in the genome of a foreign DNA Smuggling in cells. Stable cell clones are descendants of a cell that are mitotic Cell division has arisen, which is a gene introduced by transfection or by Transfection introduced foreign DNA have stably integrated in the genome and to the Pass on daughter cells. As suitable female animals of a non-human mammal are referred to those that according to their natural or through hormone treatment induced reproductive status for fertilized eggs or blastocysts are receptive and are capable of carrying off developing offspring.

Durch das erfindungsgemäße Verfahren konnte erstmals ein transgenes nichtmenschliches Säugetier generiert werden, das Dnase 1 defizient ist. Dabei war zunächst überraschend, daß die Dnase 1 Defizienz trotz des Vorhandenseins auch anderer Formen von Dnase in den durch das erfindungsgemäße Verfahren erzeugten nichtmenschlichen Säugern überhaupt Auswirkungen zeigte. Besonders überraschend war jedoch, daß der Mangel an Dnase 1 Aktivität sich nicht, wie bislang angenommen, auf die Fragmentierung von DNA in apoptotischen Prozessen (so genanntes "DNA Laddering") auswirkte. Stattdessen zeigten die erfindungsgemäß generierten Säuger Symptome, die denen des SLE glichen. Durch diese Befunde angeregte Literaturrecherchen der Erfinder zeigten, daß es in der Tat vereinzelte Hinweise auf einen möglichen Zusammenhang zwischen der Dnase 1 Aktivität und SLE in der Vergangenheit gab, welche jedoch weit zurücklagen und wenig Beachtung fanden. So gab es Befunde, die zeigten, daß z. B. die Dnase 1 Aktivität im Serum und Urin von SLE Patienten signifikant erniedrigt war. Dies galt vor allem für Patienten mit akuter Glomerulonephritis (entzündliche Reaktion in den Glomeruli der Niere) (Chitrabamrung et al., 1981). Erst die Bereitstellung der durch das erfindungsgemäße Verfahren hergestellten Dnase 1 defizienten nichtmenschlichen Säuger erlaubt jedoch die Einordnung dieser vereinzelten Befunde in ein nun allmählich entstehendes Bild von der Ätiologie des SLE. Aus der Erfordernis der effektiven Elimination nukleärer Antigene zum Schutz vor Autoimmunität ergibt sich somit möglicherweise die Funktion der Dnase 1 in Serum und Lymphe. So kann angenommen werden, daß die Dnase I freigesetzte genomische DNA eliminiert, um eine Immunantwort zu unterbinden. Bei einigen SLE-Patienten scheint diese Funktion negativ beeinträchtigt zu sein.The method according to the invention was the first to enable a transgenic non-human Mammal can be generated that Dnase 1 is deficient. It was initially surprising that the Dnase 1 deficiency despite the presence of other forms of Dnase in those caused by the Methods according to the invention produced effects at all in non-human mammals showed. It was particularly surprising, however, that the lack of Dnase 1 activity did not as previously assumed, on the fragmentation of DNA in apoptotic processes (see called "DNA laddering"). Instead, the generated according to the invention Symptoms similar to those of SLE in mammals. Inspired by these findings  Literature research by the inventors showed that there were indeed isolated references to one possible connection between Dnase 1 activity and SLE in the past, which, however, were far behind and received little attention. So there were findings that showed that z. B. Dnase 1 activity in the serum and urine of SLE patients was significantly reduced. This was especially true for patients with acute glomerulonephritis (inflammatory response in the Kidney glomeruli) (Chitrabamrung et al., 1981). Only the provision of the by Dnase 1 deficient non-human mammals produced by the method according to the invention however, allows the classification of these isolated findings into a gradually emerging one Image from the etiology of SLE. From the requirement of effective nuclear elimination Antigens for protection against autoimmunity may thus result in the function of Dnase 1 in serum and lymph. So it can be assumed that Dnase I released genomic DNA eliminated to prevent an immune response. In some SLE patients this function seems to be negatively affected.

Das erfindungsgemäße Verfahren weist somit gegenüber herkömmlichen Verfahren überraschenderweise den Vorteil auf, daß es transgene nichtmenschliche Säuger bereitstellt, welche nicht nur Symptome aufweisen, die denen von SLE Patienten ähneln, sondern die überdies auch durch die gleichen Defekte verursacht werden.The method according to the invention thus points over conventional methods surprisingly has the advantage of providing transgenic non-human mammals, which not only have symptoms similar to those of SLE patients, but the also caused by the same defects.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird als Vektor ein geeigneter Rekombinationsvektor (Targeting Vektor) verwendet und die teilweise oder vollständige Reduktion der Dnase 1-Aktivität wird durch das Rekombinationsereignis verursacht. Dies kann beispielsweise erreicht werden durch die Expression einer dominant negativen Mutante von Dnase 1, eines spezifischen Inhibitors von Dnase 1 oder durch Deletion eines Teils oder der gesamten kodierenden Region des Dnase 1 Gens durch homologe Rekombination mittels eines geeigneten Targeting Vektors, oder durch die Expression eines Dnase 1 Antisensekonstruktes, das die Expression einer Dnase 1 kodierenden mRNA verhindert. In einem solchen Verfahren wird durch das Rekombinationsereignis die Gesamtheit oder ein Teil des Dnase 1 Gens durch eine andere DNA Sequenz ausgetauscht. Vorteilhafterweise wird das Verfahren so durchgeführt daß es bei einem Sequenzaustausch bei Verwendung eines Dnase 1 Targeting Vektors zu einem mindestens teilweisen, vorzugsweise jedoch vollständigem Verlust der Transkription von Dnase 1 mRNA in allen Geweben und Organen des transgenen nichtmenschlichen Säugers führt. Der zu verwendende Vektor enthält dabei unter anderem die Sequenz des 5' nichtkodierenden Teils des Dnase 1 Gens (EMBL Datenbank Zulassungsnummer AJ000062). Vorteilhafterweise wird als transgener nichtmenschlicher Säuger ein Nagetier, vorzugsweise eine Maus verwendet. Die Erfindung beinhaltet weiterhin die Herstellung transgener, nichtmenschlicher Säuger, in denen eine gentechnische Veränderung eine verringerte Dnase 1 Aktivität, vorzugsweise aber keine Dnase 1 Aktivität aufweist. Diese Defizienz in der Aktivität der Dnase 1 bezieht sich im Zusammenhang mit der Erfindung vorzugsweise auf alle Zellen und Organe des Säugers, vorzugsweise erreicht durch die partielle oder vollständige Deletion des Dnase 1 Gens aus dem Genom des Säugers. Außerdem erstreckt sich die Erfindung auf transgene nichtmenschliche Säuger, in denen ein Teil oder die Gesamtheit des Dnase 1 Gens durch ein anderes, fremdes Gen ersetzt ist oder daß die Gesamtheit oder ein Teil seines Dnase 1 Gens durch ein nicht-Dnase 1 Gen ausgetauscht ist. Dieses nicht-Dnase 1 Gen kann ein Gen sein, welches durch seine Expression eine Resistenz gegen bestimmte Chemikalien, anderer niedermolekulare Stoffe oder bestimmte Antibiotika vermittelt. Vorzugsweise wird das Gen für eine Resistenz gegen G418 ("Neo Gen") verwendet. Im Zusammenhang mit der Herstellung gendefizienter Mäuse ist das Neo Gen innerhalb des Ausgangsvektors pPNT beschrieben in Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991. Im Hinblick auf den Austausch des endogenen Dnase 1 Gens in einem transgenen nichtmenschlichen Säuger bezieht sich die Erfindung auf Nagetiere, vorzugsweise Mäuse. In einer vorteilhaften Weiterbildung der Erfindung werden transgene, nichtmenschliche Säuger generiert, die neben der teilweisen oder vollständigen Zerstörung oder des teilweisen oder vollständigen Austausches des endogenen Dnase 1 Gens weitere Mutationen enthalten, die entweder durch Kreuzung, chemische Mutagenese, Bestrahlung oder sonstige biologische chemische oder physikalische Manipulation zusätzlich eingeführt werden. Unter Mutationen werden hier alle genetischen Veränderungen verstanden, die die Intaktheit des Genoms betreffen. Dabei eingeschlossen sind natürlich vorkommende Mutationen und solche die durch gentechnische Veränderung hervorgerufen worden sind. Die Erfindung betrifft auch einen Dnase 1 Targeting Vektor, der es erlaubt durch Transfektion von embryonalen Stammzellen das Dnase 1 Gen im Genom einen nichtmenschlichen Säugers teilweise oder vollständig zu deletieren oder das Dnase 1 Gen eines nichtmenschlichen Säuger teilweise oder vollständig durch andere DNA Sequenzen zu ersetzen. Die Herstellung des Vektors geht von einem Basisvektor pPNT aus, der unter folgender Literaturstelle beschrieben ist: Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991. Damit verbunden ist die Herstellung eines Dnase 1 Targeting Vektors der die Sequenz (AJ000062) also Teile des 5' Bereichs des murinen Dnase 1 Gens enthält, ausserdem den 3' nichtkodierenden Teil des Dnase 1 Gens enthält und ansonsten auf dem Basisgerüst des pPNT Vektors aufbaut. Erfindungsgemäß kann ein Dnase 1 Targeting Vektor, der in der Lage ist das endogene Maus Dnase 1 Gen durch homologe Rekombination ganz oder teilweise durch das "Neo Gen" zu ersetzen, zur Herstellung gentechnisch veränderter Zellen und/oder gentechnisch veränderter nichtmenschlicher Säuger verwendet werden. Teil der Erfindung ist ebenso ein stabiler Zellklon, dessen Dnase 1 Gen ganz oder teilweise durch eine andere DNA Sequenz, vorzugsweise durch DNA enthaltend die Sequenz für das "Neo Gen" ausgetauscht wurde. Die Erfindung umschließt in dieser Beziehung alle eukaryotischen Zellen mit Ausnahme menschlicher embryonaler Stammzellen. Klone, die mit dem Dnase 1 Targeting Vektor aus embryonale Stammzellen der Maus gewonnen wurden, werden vorzugsweise zur Herstellung eines transgenen, nichtmenschlichen Säugers oder zur Herstellung einzelner transgener, nichtmenschlicher Organe verwendet. Weiterhin ist die Verwendung eines gentechnisch veränderten, transgenen nichtmenschlichen Säugers nach einem der obenstehenden Definitionen zum Austesten von Arzneistoffen oder Chemikalien (insbesondere mit Bezug auf SLE) Bestandteil der Erfindung wie auch die Etablierung eines Modellsystems zur Analyse der Entstehung von SLE oder zur Analyse der Behandlung von Erkrankungen, insbesondere SLE, dadurch gekennzeichnet, daß dieses Modellsystem mindestens einen nichtmenschlichen Säuger nach einem der oben genannte Definitionen und Verfahren enthält.In a preferred embodiment of the method according to the invention, a is used as the vector suitable recombination vector (targeting vector) is used and the partial or complete reduction of Dnase 1 activity is achieved by the recombination event caused. This can be achieved, for example, by expressing a dominant negative mutant of Dnase 1, a specific inhibitor of Dnase 1, or by deletion of part or all of the coding region of the Dnase 1 gene by homologous Recombination using a suitable targeting vector, or by expressing a Dnase 1 antisense construct, which expresses the expression of a Dnase 1 mRNA prevented. In such a process, the recombination event turns the whole or a part of the Dnase 1 gene was replaced by another DNA sequence. Advantageously, the method is carried out in such a way that when a sequence is exchanged Use of a Dnase 1 targeting vector for an at least partial, preferably however complete loss of Dnase 1 mRNA transcription in all tissues and Organs of the transgenic non-human mammal. The vector to be used contains among other things, the sequence of the 5 'non-coding part of the Dnase 1 gene (EMBL Database approval number AJ000062). Is advantageously used as a transgenic non-human mammal uses a rodent, preferably a mouse. The invention also involves the production of transgenic, non-human mammals in which one genetic modification a reduced Dnase 1 activity, but preferably no Dnase 1  Has activity. This deficiency in the activity of Dnase 1 is related preferably achieved with the invention on all cells and organs of the mammal by partial or complete deletion of the Dnase 1 gene from the mammalian genome. In addition, the invention extends to transgenic non-human mammals, in which a part or the entirety of the Dnase 1 gene is replaced by another, foreign gene or that the All or part of its Dnase 1 gene is replaced by a non-Dnase 1 gene. This non-Dnase 1 gene can be a gene which is resistant due to its expression against certain chemicals, other low-molecular substances or certain antibiotics mediated. The gene is preferably used for resistance to G418 (“Neo gene”). In connection with the production of gene deficient mice, the Neo gene is within the Starting vector pPNT described in Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991. Im With regard to the exchange of the endogenous Dnase 1 gene in a transgenic non-human mammals, the invention relates to rodents, preferably mice. In An advantageous further development of the invention will be transgenic, non-human mammals generated in addition to the partial or complete destruction or the partial or complete exchange of the endogenous Dnase 1 gene contain further mutations that either by crossing, chemical mutagenesis, radiation or other biological chemical or physical manipulation can also be introduced. Under mutations all genetic changes are understood here that affect the integrity of the genome affect. This includes naturally occurring mutations and those caused by genetic modification have been caused. The invention also relates to a Dnase 1 targeting vector that allows the transfection of embryonic stem cells Dnase 1 gene in the genome of a non-human mammal partially or completely delete or partially or completely the Dnase 1 gene of a non-human mammal to be replaced by other DNA sequences. The production of the vector starts from one Base vector pPNT, which is described in the following literature: Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991. This involves the production of a Dnase 1 targeting Vector of the sequence (AJ000062), ie parts of the 5 'region of the murine Dnase 1 gene contains, also contains the 3 'non-coding part of the Dnase 1 gene and otherwise on builds the basic structure of the pPNT vector. According to the invention, a Dnase 1 targeting Vector capable of the endogenous mouse Dnase 1 gene by homologous recombination to be replaced in whole or in part by the "neo gene" for the production of genetically modified Cells and / or genetically modified non-human mammals are used. part of The invention is also a stable cell clone whose Dnase 1 gene is wholly or partly by a other DNA sequence, preferably by DNA containing the sequence for the "neo gene" was exchanged. In this respect, the invention encompasses all eukaryotic cells with the exception of human embryonic stem cells. Clones targeting with Dnase 1 Vector obtained from mouse embryonic stem cells are preferably used for Production of a transgenic, non-human mammal or for the production of individual  transgenic, non-human organs used. Furthermore, the use of a genetically modified, transgenic non-human mammal according to one of the above definitions for testing drugs or chemicals (in particular with reference to SLE) part of the invention as well as the establishment of a model system to analyze the development of SLE or to analyze the treatment of diseases, in particular SLE, characterized in that this model system has at least one contains non-human mammals according to one of the above definitions and methods.

Die Erfindung umfaßt weiterhin Verfahren zum Test neuer Arzneistoffe auf Wirksamkeit gegen SLE, dadurch gekennzeichnet, daß ein transgener, nichtmenschlichen Säuger, der nach dem obenstehenden Verfahren hergestellt worden ist, mit mindestens einem Arzneistoff (oder auch Arzneistoff Kombinationen) behandelt wird und dessen Wirkung auf SLE bestimmt wird. In diesem Zusammenhang bezieht sich die Erfindung auch auf Tests, die die Auswirkungen genetischer Einflüsse auf die Entstehung von SLE überprüfen, was dadurch gekennzeichnet ist, daß in einem transgenen, nichtmenschlichen Säuger, der nach den oben anstehenden Verfahren hergestellt worden ist, durch Kreuzung oder andere Verfahren wie oben angegeben weitere genetische oder andere Veränderungen eingeführt werden und dann Tests zur Wirkung von Arzneistoffen durchgeführt werden. Darüber hinaus umfaßt die Erfindung Verfahren zum Test der Auswirkung biologischer, chemischer oder physikalischer Einflüsse, dadurch gekennzeichnet, daß man einen transgenen, nichtmenschlichen Säuger, der nach dem oben angeführten Verfahren hergestellt worden ist, viralen, bakteriellen, chemischen und/oder physikalischen Einwirkungen aussetzt.The invention further includes methods for testing new drugs for effectiveness against SLE, characterized in that a transgenic, non-human mammal, which according to the above method has been produced, with at least one drug (or Drug combinations) is treated and its effect on SLE is determined. In In this context, the invention also relates to tests that have the effects check genetic influences on the development of SLE, which is characterized by that in a transgenic, non-human mammal, according to the above procedures has been produced by crossing or other methods as indicated above genetic or other changes are introduced and then tests for the effects of Drugs are carried out. The invention also includes methods for testing the impact of biological, chemical or physical influences, thereby characterized that one is a transgenic, non-human mammal, which according to the above has been produced, viral, bacterial, chemical and / or exposed to physical influences.

Die Erfindung ermöglicht erstmals die Darstellung einer direkten Korrelation zwischen der Höhe an Dnase 1-Aktivität und dem Risiko der Ausbildung einer SLE-ähnlichen Autoimmunerkrankung in der Maus. So zeigen Dnase 1 defiziente Mäuse beispielsweise, daß sowohl eine vollständige Defizienz der Aktivität als auch eine erniedrigte Aktivität als ein SLE- Risikofaktor angesehen werden muß. Erniedrigte Dnase 1-Serumspiegel bei SLE-Patienten, vor allem bei Patienten mit Nierenbeteiligung (Chitrabamrung et al., 1981), sprechen dafür, daß dies möglicherweise auch im humanen System der Fall ist. Neben einer oftmals zu beobachtenden C1q-Defizienz bei SLE-Patienten (Navratil et al., 1999) ist die Dnase 1 nun das zweite identifizierte Protein, das sowohl bei der Maus als auch beim Menschen als ein potentieller SLE-fördernder Faktor im Falle einer Reduktion oder Defizienz anzusehen ist.For the first time, the invention enables the representation of a direct correlation between the height of Dnase 1 activity and the risk of developing an SLE-like Autoimmune disease in the mouse. Dnase 1 deficient mice, for example, show that both full activity deficiency and decreased activity as an SLE- Risk factor must be considered. Decreased Dnase 1 serum levels in SLE patients, especially in patients with kidney involvement (Chitrabamrung et al., 1981), suggest that this may also be the case in the human system. Besides one often too observing C1q deficiency in SLE patients (Navratil et al., 1999), Dnase 1 is now that second identified protein, which is present in both mouse and human as one potential SLE-promoting factor in the event of a reduction or deficiency.

Da die Dnase 1 stringent die Halbwertszeit von DNA und DNA-Proteinkomplexen, die als ausschlaggebende Antigene für die Ausprägung des SLE angesehen werden, im Organismus beeinflußt, kann die Dnase 1 defiziente Maus als ein ideales Modell zur Erforschung der initiierenden und fördernden Ereignisse zur Ausprägung einer SLE-Erkrankung dienen. Aufgrund der engen Korrelation zu den Verhältnissen bei der humanen SLE-Erkrankung eignet sich dieses SLE-Mausmodell besser sowohl zum Studium der humanen Erkrankung als auch zur Entwicklung von therapeutischen Ansätzen für den Menschen. Ein solches Mausmodell erlaubt z. B. eine direkte Prüfung von Arzneimitteln, die auf die Wiederherstellung (durch Substitution) normaler Dnase 1-Konzentrationen im Serum abzielen. Vor allem kann die Wirksamkeit von solchen Arzneimitteln vor dem Ausbruch der Krankheit getestet werden, da die Latenzzeit, mit der sich die Symptome in der Dnase 1-defizienten Maus entwickeln, bekannt ist. Andere bisher existierende Mausmodelle mit intakter Dnase 1 können dies nicht leisten. Auch der Test immunmodulatorischer Arzneimittel zur Therapie des SLE ist möglich, da im Gegensatz zu anderen SLE-Mausmodellen (lpr- und gld-Mutationen) das Immunsystem der Tiere intakt ist. Wissenschaftlich kann die Bedeutung einzelner Kern- bzw. -Chromatinbestandteile als ausschlaggebende Antigene zur Initiation eines SLE mit Hilfe von Immunisierungen getestet werden.Since the Dnase 1 stringent the half-life of DNA and DNA-protein complexes, which as crucial antigens for the expression of SLE are considered in the organism influenced, the Dnase 1 deficient mouse as an ideal model for researching the initiating and promoting events for the development of an SLE disease. Suitable due to the close correlation to the conditions in human SLE disease  this SLE mouse model works better both for studying human disease as well for the development of therapeutic approaches for humans. Such a mouse model allowed z. B. Direct testing of medicinal products based on recovery (through Target substitution) of normal Dnase 1 concentrations in the serum. Above all, it can Efficacy of such drugs should be tested before the onset of the disease the latency with which symptoms develop in Dnase 1 deficient mouse is. Other existing mouse models with intact Dnase 1 cannot do this. The test of immunomodulatory drugs for the therapy of SLE is also possible, because in the Contrary to other SLE mouse models (lpr and gld mutations) the immune system of the Animals is intact. Scientifically, the importance of individual core or -Chromatin components as crucial antigens for the initiation of an SLE with the help of Immunizations are tested.

Im folgenden wird die Erfindung in Ausführungsbeispielen erläutert.The invention is explained below in exemplary embodiments.

Beispiel 1example 1

Die Desoxyribonuklease I (Dnase 1) ist eine Ca2+/Mg2+ abhängige Endonuklease mit neutralem pH-Optimum. Ihre primäre physiologische Funktion wird in dem Abbau von Nahrungs-DNA zu resorbierbaren Oligonukleotiden gesehen, was mit einer hohen Expression des Enzyms in Organen des Verdauungstraktes von Säugetieren korreliert (Lacks, 1981). Eine Expression in der Niere und weiteren anderen Organen sowie ein Vorkommen der Nuklease im Serum und Urin wurde beschrieben, so daß sich Fragen bezüglich weiterer Aufgaben der Nuklease anhand ihres Expressionsmusters ergeben. Zusätzliche physiologische Funktionen, die in Verbindung mit der Dnase 1 gebracht werden, sind zum einen die Fragmentierung des zellulären Genoms beim programmierten Zelltod (Apoptose) (Peitsch et al., 1994; Mannherz et al., 1995) und zum anderen der Schutz vor einer Autoimmunreakdon gegen DNA und DNA-Proteinkomplexe (Lachmann, 1961). Drei weitere Mitglieder einer Dnase 1-Genfamilie wurden in den letzten Jahren beschrieben (Rodriguez et al., 1997), so daß vermutet werden kann, daß es zum Teil zu einer überschneidenden Charakterisierung der Nukleasen in bezug auf Expressionsorte und Funktionen gekommen ist. Dies gilt insbesondere für Untersuchungen, in denen indirekte Nachweisverfahren angewendet wurden.Deoxyribonuclease I (Dnase 1) is a Ca 2+ / Mg 2+ dependent endonuclease with a neutral pH optimum. Their primary physiological function is seen in the degradation of food DNA to resorbable oligonucleotides, which correlates with a high expression of the enzyme in organs of the digestive tract of mammals (Lacks, 1981). An expression in the kidney and other other organs as well as an occurrence of the nuclease in serum and urine has been described, so that questions regarding further tasks of the nuclease arise from its expression pattern. Additional physiological functions associated with Dnase 1 include fragmentation of the cellular genome during programmed cell death (apoptosis) (Peitsch et al., 1994; Mannherz et al., 1995) and protection against one Autoimmune freakdon against DNA and DNA-protein complexes (Lachmann, 1961). Three other members of a Dnase 1 gene family have been described in recent years (Rodriguez et al., 1997), so that it can be assumed that the nucleases have been partially characterized in terms of expression sites and functions. This applies in particular to examinations in which indirect detection methods were used.

Zur Klärung offener Fragen in bezug auf die Expression und Funktion der Dnase 1 wurde ein Dnase 1-Knock-Out-Maus-Modell etabliert und beginnend charakterisiert. Dazu wurde das Dnase 1-Gen der Maus mit seinen 5'- und 3'-flankierenden Bereichen aus einer genomischen Phagen-Bank isoliert und das subklonierte Phageninsert zur Detektion des Dnase 1-Gens auf Chromosom 16A1-3 durch FISH-Analyse an Metaphasechromosomen einer Maus-Zellinie verwendet. Ein Rekombinationsvektor mit Dnase 1-Null-Allel, das durch den Austausch des vollständigen Dnase 1-Gens gegen ein Neomycin-Resistenzgen charakterisiert war, wurde kloniert, embryonale Stammzellen (Es-Zellen) der Maus mit diesem Vektor transfiziert und Klone mit homologem Rekombinationsereignis selektiert (Abb. 1a). Zellen dieser Klone wurden in Blastozysten der Maus injiziert und diese zur Produktion chimärer Mäuse verwendet. Die Chimären wurden anschließend mit Wildtyp (Wt)-Mäusen gekreuzt, um heterozygote Dnase 1-Knock-Out-Mäuse zu züchten. Durch Kreuzung heterozygoter Knock-Out-Mäuse wurden letztendlich homozygote Dnase 1-defiziente Tiere erzeugt (Abb. 1b).
To clarify open questions regarding the expression and function of Dnase 1, a Dnase 1 knock-out mouse model was established and characterized beginning. For this purpose, the mouse Dnase 1 gene with its 5'- and 3'-flanking regions was isolated from a genomic phage library and the subcloned phage insert for detection of the Dnase 1 gene on chromosome 16A1-3 by FISH analysis on metaphase chromosomes Mouse cell line used. A recombination vector with Dnase 1 null allele, which was characterized by the replacement of the complete Dnase 1 gene with a neomycin resistance gene, was cloned, mouse embryonic stem cells (Es cells) were transfected with this vector and clones with a homologous recombination event were selected (Fig. 1a). Cells from these clones were injected into mouse blastocysts and used to produce chimeric mice. The chimeras were then crossed with wild-type (Wt) mice to breed heterozygous Dnase 1 knock-out mice. By crossing heterozygous knock-out mice, homozygous Dnase 1-deficient animals were ultimately created ( Fig. 1b).

Abb. 1 Fig. 1 Dnase 1-Gen-Targeting bei der MausDnase 1 gene targeting in the mouse

a: Schematische Darstellung des Wildtyp (Wt)-Dnase 1-Allels, des Targeting-Vektors und des Aufbaus des durch homologe Rekombination erzeugten Dnase 1-Null-Allels. Dnase 1-Exons sind als gefüllte, numerierte Kästchen und die angegebenen Restriktionsschnittstellen als Pfeile dargestellt. Ebenfalls sind die Positionen des Neomycin- Resistenzgens (Neo) und des Herpes Simplex Virus-Thymidinkinase-Gens (HSV-Tk) als Kästchen gezeigt. Die verwendeten DNA-Sonden zum Nachweis einer korrekten homologen Rekombination (dargestellt als Kreuze) im 5'- und 3'-flankierenden Bereich des Dnase 1-Gens in DNA-Proben von gezüchteten Dnase 1-defizienten Mäusen mit Hilfe der Southern Blot-Technik sind mit A und B gekennzeichnet. b: Southern Blot genomischer DNA von Nachkommen aus Verpaarungen heterozygoter Dnase 1-Knock-Out-Mäuse zum Nachweis des Genotyps dieser Tiere. Der linke Blot zeigt das Bandenmuster von DNA, die mit Hind III/Xho I geschnitten und mit der Sonde A hybridisiert wurde (Nachweis der korrekten Rekombination im 5'-Bereich des Dnase 1-Gens). Homozygote Dnase 1-Knock-Out-Mäuse (-/-) zeigen nur die für das Null-Allel spezifische Bande von 5,8 kb wohingegen Wildtyp-Mäuse (+/+) nur die für das Wildtyp-Allel spezifische Bande von 11 kb aufweisen. Heterozygote Dnase 1-Knock-Out-Mäuse (+/-), die sowohl ein Dnase 1-Wt- als auch ein Null-Allel besitzen, zeigen beide Banden. Der rechte Blot zeigt den Nachweis der korrekten homologen Rekombination für den 3'-Bereich des Dnase 1-Gens. Die genomische DNA wurde hierzu mit Xho I geschnitten und der Blot mit der Sonde B hybridisiert. c: Northern Blot-Analyse von RNA der Parotis, der Niere und des Dünndarms von Wt- sowie hetero- und homozygoten Dnase 1-Knock-Out-Mäusen unter Verwendung einer Dnase 1-spezifischen Dnase 1-cDNA-Sonde der Ratte. Die Menge an Dnase 1-Transkript ist in den heterozygoten Knock-Out-Mäusen gegenüber den Wt-Tieren reduziert, was eine kodominante Expression beider Allele des Dnase 1-Gens in Wt-Tieren belegt. d-f: Zymogramme (Ethidiumbromid-gefärbte, renaturierte SDS-Polyacrylamidgele mit eingegossener DNA als Nukleasesubstrat, Lacks, 1981) zum Nachweis von Dnase 1-Aktivität in Organextrakten sowie im Serum und Urin von Wt-, hetero- und homozygoten Dnase 1-Knock-Out-Mäusen. Die Reduktion der Aktivität in den Proben der heterozygoten Knock-Out-Mäuse gegenüber den Wt-Tieren belegen wiederum die kodominante Expression beider Dnase 1-Allele in den Wt-Tieren. M: Molekulargewichts-Marker (das Molekulargewicht der Kaninchen Lactat-Dehydrogenase ist angegeben), C: Rind-Pankreas-Dnase 1-Kontrolle.a: Schematic representation of the wild-type (Wt) -Dnase 1 allele, the targeting vector and the structure of the homologous recombination generated Dnase 1 zero alleles. Dnase 1 exons are filled, numbered boxes and the specified restriction interfaces are shown as arrows. The positions of the neomycin Resistance gene (Neo) and the herpes simplex virus thymidine kinase gene (HSV-Tk) are shown as boxes. The used DNA probes to detect correct homologous recombination (shown as crosses) in the 5 'and 3' flanking region of the Dnase 1 gene in DNA samples from cultured Dnase 1 deficient mice using the Southern blot technique are labeled A and B. b: Southern blot of genomic DNA from Progeny from matings of heterozygous Dnase 1 knock-out mice to prove their genotype Animals. The left blot shows the banded pattern of DNA cut with Hind III / Xho I and with the probe A was hybridized (detection of correct recombination in the 5 'region of the Dnase 1 gene). Homozygote Dnase 1 knock-out mice (- / -) only show the band of 5.8 kb specific for the zero allele Wild-type mice (+ / +) only have the 11 kb band specific for the wild-type allele. Heterozygote Dnase 1 knock-out mice (+/-), which have both a Dnase 1 Wt and a zero allele, both show Gangs. The right blot shows the proof of the correct homologous recombination for the 3 'region of the Dna 1 gene. The genomic DNA was cut with Xho I and the blot with probe B hybridizes. c: Northern blot analysis of RNA of the parotid, kidney and small intestine of Wt- as well as hetero- and homozygous Dnase 1 knock-out mice using a Dnase 1 specific Dnase Rat 1 cDNA probe. The amount of Dnase 1 transcript is higher than that in the heterozygous knock-out mice Wt animals reduced, which shows codominant expression of both alleles of the Dnase 1 gene in Wt animals. d-f: Zymograms (ethidium bromide-stained, renatured SDS-polyacrylamide gels with embedded DNA as Nuclease substrate, Lacks, 1981) for the detection of Dnase 1 activity in organ extracts as well as in serum and Urine from Wt, hetero- and homozygous Dnase 1 knock-out mice. The reduction in activity in the samples the heterozygous knock-out mice compared to the Wt animals again demonstrate codominant expression both Dnase 1 alleles in the Wt animals. M: Molecular weight marker (the molecular weight of the rabbits Lactate dehydrogenase is given), C: bovine pancreatic dnase 1 control.

Der Verlust beider Dnase 1-Wt-Allele in diesen Tieren ging mit einem vollständigen Verlust an Dnase 1-Transkripten und -Protein in den hochexprimierenden Organen Parotis, Niere und Dünndarm einher. Weiterhin konnte durch Vergleich der Dnase 1-Expression von Wt- und heterozygoten Knock-Out-Mäusen gezeigt werden, daß zur vollständigen Expression der Dnase 1 beide Allele des Gens kodominant in Wt-Tieren exprimiert werden (Abb. 1c-f). Weiterhin konnte das Expressionsmuster der Dnase 1 eindeutig geklärt werden. Neben den Mundspeicheldrüsen und der Niere wurde erstmals ein definitiver Beweis für eine Expression des Enzyms im Dünndarm erbracht. Auch die Haupt-Nuklease-Aktivität des Serums wurde erstmals eindeutig der Dnase 1 zugeordnet. Im Urin bildet die Dnase 1 die einzige Nuklease- Aktivität. Nicht bestätigt werden konnten die beschriebenen Dnase 1-Expressionen im Samenbläschen, in der Leber, Prostata, im Hoden, Ovar und Magen. The loss of both Dnase 1 wt alleles in these animals was associated with complete loss of Dnase 1 transcripts and protein in the highly expressive organs parotid, kidney and small intestine. Furthermore, by comparing the Dnase 1 expression of Wt and heterozygous knock-out mice, it could be shown that both alleles of the gene are codominantly expressed in Wt animals for the complete expression of Dnase 1 ( Fig. 1c-f). Furthermore, the expression pattern of Dnase 1 was clearly clarified. In addition to the salivary glands and the kidney, definitive evidence for an expression of the enzyme in the small intestine was provided for the first time. The main nuclease activity of the serum was also clearly assigned to Dnase 1 for the first time. Dnase 1 is the only nuclease activity in urine. The described Dnase 1 expressions in the seminal vesicles, in the liver, prostate, in the testicles, ovary and stomach could not be confirmed.

Dnase 1-Knock-Out-Mäuse zeigen zum Teil Symptome einer Erkrankung, die dem Systemischen Lupus Erythematodes beim Menschen gleichen. Hierbei handelt es sich um eine Autoimmunerkrankung, bei der es zur Durchbrechung der Selbsttoleranz gegenüber nukleären Antigenen insbesondere DNA und DNA-Protein-Komplexen kommt. Infolge der Ausbildung von antinukleären AK (ANA) kommt es im wesentlichen zu Immunkomplex-induzierten Überempfindlichkeitsreaktionen (Typ III) in verschiedenen Geweben, wie z. B. der Niere. In einer breit angelegten Studie wurden zum Nachweis der SLE-Symptomatik in Dnase 1- defizienten Tieren 37 Wt-Mäuse, 78 hetero- und 69 homozygote Dnase 1-Knock-Out-Mäuse gleichen genetischen Hintergrundes im Alter von acht Monaten untersucht. Dabei stellte sich heraus, daß Dnase 1-defiziente Tiere ANA zu einem hohen Prozentsatz und in hohen Titern ausbilden. Dies wurde durch indirekte Immunfärbung von fixierten Zellen mit den Seren der untersuchten Tiere gezeigt (Abb. 2). So stieg die Prävalenzrate der ANA in der heterozygoten- auf 55,1% und in der homozygoten Dnase 1-Knock-Out Population auf 62,3% gegenüber 24,3% bei der Wt-Population an (beide Geschlechter zusammen).Dnase 1 knock-out mice show symptoms of a disease that are similar to systemic lupus erythematosus in humans. This is an autoimmune disease in which self-tolerance to nuclear antigens, in particular DNA and DNA-protein complexes, is breached. As a result of the formation of antinuclear AK (ANA) there are essentially immune complex-induced hypersensitivity reactions (type III) in various tissues, such as. B. the kidney. In a large-scale study, 37 Wt mice, 78 hetero- and 69 homozygous Dnase 1 knock-out mice of the same genetic background at the age of eight months were examined in Dnase 1-deficient animals to prove the SLE symptoms. It turned out that Dnase 1-deficient animals form ANA to a high percentage and in high titers. This was shown by indirect immunostaining of fixed cells with the sera of the animals examined ( Fig. 2). The prevalence rate of ANA rose to 55.1% in the heterozygous and 55.3% in the homozygous Dnase 1 knock-out population compared to 24.3% in the Wt population (both sexes together).

Abbildung 2Figure 2 Antinukleäre Antikörper (ANA) in Seren Dnase 1-defizienter MäuseAntinuclear antibodies (ANA) in sera Dnase 1 deficient mice

Links: Prävalenz von ANA in Seren von Wt- (+/+) sowie hetero- (+/-) und homozygoten (-/-) Dnase 1-Knock-Out-Mäusen. ANA wurden durch indirekte Immunfärbung von fixierten NIH 3T3-Zellen mit den entsprechenden Seren unter Verwendung eines FITC-markierten Zweitantikörpers nachgewiesen. Alle Seren, die eine nachweisbare Immunreaktivität bei oder über einer Verdünnung von 1/100 zeigten, wurden als ANA-positiv bewertet. Die ANA-Titer wurden anhand der Immunfärbung in vier Intentsitätsstufen eingeteilt: negativ, gering (+), mittel (++) und hoch (+++). Unterhalb der Balken ist die Anzahl ANA-positiver Tiere im Verhältnis zur Gesamtzahl untersuchter Tiere angegeben. Rechts: ANA-Nachweis durch indirekte Immunfluoreszenz in Seren einer ANA-negativen Wt-Maus (a) und von drei ANA-positiven Dnase 1-defizienten Mäusen mit geringem (b), mittlerem (c) und hohem (d) Titer. Die Immunfärbung verdeutlicht die Reaktivität der ANA u. a. gegen Interphase-Chromatin und Metaphase-Chromosomen (e).Left: Prevalence of ANA in sera from Wt- (+ / +) and hetero- (+/-) and homozygous (- / -) dnase 1-knock-out mice. ANA were determined by indirect immunostaining with the appropriate NIH 3T3 cells Sera detected using a FITC-labeled second antibody. All serums, one Detectable immunoreactivity at or above a 1/100 dilution were found to be ANA positive rated. The ANA titers were divided into four levels of intentions based on the immunostaining: negative, low (+), medium (++) and high (+++). Below the bars is the number of ANA-positive animals in relation to Total number of animals examined. Right: ANA detection by indirect immunofluorescence in sera an ANA-negative Wt mouse (a) and three ANA-positive Dnase 1-deficient mice with low (b),  medium (c) and high (d) titer. The immunostaining shows the reactivity of the ANA u. a. against Interphase chromatin and metaphase chromosomes (e).

Weiterhin wurde eine Subklassifizierung der ANA bezüglich des Antigens mit Hilfe der ELISA- Technik (Enzyme-Linked Immunosorbent Assay) durchgeführt, wobei sich zeigte, daß die antinukleären Autoantikörper Dnase 1-defizienter Tiere im wesentlichen gegen Nukleosomen und Einzelstrang-(ss)DNA gerichtet sind (Tab. 1).Furthermore, a subclassification of the ANA with respect to the antigen was carried out using the ELISA Technique (Enzyme-Linked Immunosorbent Assay) performed, whereby it was shown that the antinuclear autoantibodies Dnase 1-deficient animals essentially against nucleosomes and single-stranded (ss) DNA are directed (Tab. 1).

Tabelle 1Table 1 Subklassifizierung von ANA in Seren Dnase 1-defizienter MäuseSubclassification of ANA in sera Dnase 1 deficient mice

Subklassifizierung von ANA in Seren mit hohen ANA-Titern von 17 männlichen und 16 weiblichen Dnase 1-defizienten Mäusen mit Hilfe des ELISA-Tests (Enzyme-Linked Immunosorbent Assay) unter Verwendung kommerziell erworbener, präplattierter Mikrotiterplatten mit Einzelstrang-(ss)DNA, Doppelstrang-(ds)DNA, Histonen, Nukleosomen sowie den nicht-nukleären, Lupus-assoziierten Antigenen ribosomale P-Proteine (Elkon et al., 1985) und Sm-Antigene (Moore et al., 1981). Alle Seren, deren Test-Wert im ELISA über einem Hintergrund-Wert (cut-off) lagen, wurden als positiv bewertet. Der cut off ergab sich aus dem Durchschnitt von 20 in der Immunfärbung negativen Seren für ANA plus dem dreifachen Wert der Standardabweichung. Die Signifikanz der Ergebnisse (p-Wert) wurde mit Hilfe des Fisher's exact Tests bestimmt (n. s. = nicht signifikant).Subclassification of ANA in sera with high ANA titers of 17 male and 16 female doses 1-deficient mice using the enzyme-linked immunosorbent assay (ELISA) test commercially acquired, pre-plated microtiter plates with single-strand (ss) DNA, double-strand (ds) DNA, Histones, nucleosomes and the non-nuclear, lupus-associated antigens ribosomal P proteins (Elkon et al., 1985) and Sm antigens (Moore et al., 1981). All sera whose test value in the ELISA was over one Background values (cut-off) were rated as positive. The cut off was the average of 20 sera negative in immunostaining for ANA plus three times the standard deviation. The The significance of the results (p-value) was determined using the Fisher's exact test (n / a = not significant).

Neben ANA zeigten ein Teil der Tiere parallel die Ausbildung einer Immunkomplex-induzierten Glomerulonephritis (GN), was durch Immunfärbungen an Kryoschnitten gegen Maus-IgG und die Komplementkomponente C3 sowie durch lichtmikrokopische Untersuchungen PAS­ gefärbter (Perjodsäure-Schiffs-Reagenz-Färbung) Paraffinschnitte der Niere festgestellt wurde (Abb. 3). Die Prävalenzrate einer GN betrug bei den Wt-Tieren 5,4%. Sie stieg in den heterozygoten- auf 16,7% und den homozygoten Knock-Out-Mäusen auf 23,2% an (Tab. 2). Eine Präferenz weiblicher Tiere zur Ausbildung von ANA und einer GN konnte gezeigt werden. Auch dies spiegelt die Verhältnisse bei der humanen SLE-Erkrankung wieder. In addition to ANA, some of the animals showed the development of immune complex-induced glomerulonephritis (GN), which was due to immunostaining on cryosections against mouse IgG and the complement component C3 as well as light microscopic examinations of PAS-stained (periodic acid Schiff reagent staining) paraffin sections of the kidney was found ( Fig. 3). The prevalence rate of a GN was 5.4% in the Wt animals. It increased to 16.7% in the heterozygous and to 23.2% in the homozygous knock-out mice (Table 2). A preference of female animals for the training of ANA and a GN could be shown. This also reflects the situation in human SLE disease.

Abb. 3 Fig. 3 Immunkomplex-induzierte Glomerulonephritis (GN) in Dnase 1-defizienten MäusenImmune complex-induced glomerulonephritis (GN) in Dnase 1-deficient mice

a: Histologische Schnitte Carnoy-fixierter und Paraffineingebetteter Nieren. Oben links: PAS-Färbung (Perjodsäure-Schiffs-Reagenz) eines gesunden Nierenkörperchens. Oben rechts: PAS-Färbung eines Nierenkörperchens einer Dnase 1-defizienten Maus, bei dem eine erhöhte Zellularität und eine beginnende mesangiale Proliferation zu erkennen ist (typisch für die GN-Stadien II-III). Unten links: PAS-Färbung eines sklerotischen Nierenkörperchens einer Dnase 1-defizienten Maus. Ein Halbmond infolge der Proliferation des Kapselepithels hat sich ausgebildet. Der Zustand repräsentiert eine glomerulonephritische Endstadium-Niere (GN-Stadium IV). Unten rechts: HE-Färbung (Hämatoxylin/Eosin) eines Nierenschnitts, der die zum Teil massiven perivaskulären Infiltrate von Leukozyten in glomerulonephritischen Nieren Dnase 1-defizienter Tiere verdeutlicht. b: Repräsentative konfokale Mikroskopie von Immunfärbungen an Kryoschnitten der Niere einer Dnase 1-defizienten Maus mit GN-Stadium 11 (obere Reihe) und einer gesunden Wt-Maus (untere Reihe). Oben links: Die direkte Immunfärbung mit FITC-markierten Antikörpern (AK) gegen Maus-Immunglobulin G (IgG) zeigt eine granuläre Ablagerung von IgG in den Glomerulus-Kapillarwänden. Oben Mitte: Die indirekte Immunfärbung mit AK gegen den Komplementfaktor C3 und TRITC-markierten Zweit-AK zeigt ebenfalls eine granuläre Ablagerung von C3 in den Wänden der Kapillaren. Oben rechts: Die Überlagerung beider Fluoreszenzaufnahmen verdeutlicht die Kolokalisation der Ablagerungen von IgG und C3. Dies deutet auf eine Korrelation zwischen der Glomerulonephritis und einer Ablagerung von Immunkomplexen mit anschließender Komplement-vermittelter Entzündungsreaktion hin. Untere Reihe: Die Immunfärbungen an Nierenschnitten der gesunden Wt-Maus zeigen keine signifikante kolokalisierte Ablagerung von IgG und C3 in den Glomerulus- Kapillaren.a: Histological sections of Carnoy-fixed and paraffin-embedded kidneys. Top left: PAS staining (Periodic acid Schiff's reagent) of a healthy kidney body. Top right: PAS staining one Kidney body of a Dnase 1-deficient mouse, in which an increased cellularity and an incipient mesangial proliferation can be seen (typical for GN stages II-III). Bottom left: PAS staining a sclerotic kidney body of a Dnase 1-deficient mouse. A crescent moon as a result of proliferation of the capsular epithelium has developed. The condition represents an end-stage glomerulonephritic kidney (GN stage IV). Bottom right: HE staining (hematoxylin / eosin) of a kidney section that partially massive perivascular infiltrates of leukocytes in glomerulonephritic kidneys Dnase 1-deficient animals clarifies. b: Representative confocal microscopy of immunostaining on cryosections of the kidney  Dnase 1-deficient mouse with GN stage 11 (top row) and a healthy Wt mouse (bottom row). Above left: direct immunostaining with FITC-labeled antibodies (AK) against mouse immunoglobulin G (IgG) shows a granular deposition of IgG in the glomerulus capillary walls. Top middle: the indirect one Immunostaining with AK against the complement factor C3 and TRITC-labeled secondary AK also shows one granular deposition of C3 in the capillary walls. Top right: the overlay of both Fluorescence images show the colocalization of the IgG and C3 deposits. This indicates one Correlation between glomerulonephritis and a deposition of immune complexes with subsequent Complement-mediated inflammatory response. Bottom row: The immunostaining on kidney sections of the healthy Wt mouse show no significant colocalized deposition of IgG and C3 in the glomerular Capillaries.

Tabelle 2Table 2 Prävalenzrate von Glomerulonephritis Dnase 1-defizienter TierePrevalence rate of glomerulonephritis dnase 1 deficient animals

Hetero- (+/-) und homozygote (-/-) Dnase 1-Knock-Out-Mäuse wurden im Vergleich zu Wildtyp-Tieren (+/+) durch histopathologische Untersuchungen in bezug auf die Prävalenzrate einer Immunkomplex-induzierten Glomerulonephritis (GN) hin untersucht. Die Anzahl betroffener und nicht-betroffener Tiere ist in bezug auf das Geschlecht (m = männlich, w = weiblich) und den Genotyp angegeben. Der Schweregrad der GN wurde in fünf Stadien unterteilt: Stadium 0: keine pathologischen Veränderungen, Stadium I-III: Glomeruläre Veränderungen in 0%-25%, 25%-50% und 50%-75% der gesamten Glomeruli. Stadium IV: mehr als 90% der Glomeruli waren sklerotisch und/oder zeigten Halbmonde (Proliferation des äußeren Kapselepithels). Die Signifikanz der Ergebnisse (p-Wert) wurde mit Hilfe des Fisher's exact Tests bestimmt.Hetero- (+/-) and homozygous (- / -) Dnase 1 knock-out mice were compared to wild-type animals (+ / +) by histopathological studies related to the prevalence rate of an immune complex-induced Glomerulonephritis (GN) examined. The number of affected and unaffected animals is related to that Gender (m = male, w = female) and the genotype. The severity of the GN was rated in five Stages divided: stage 0: no pathological changes, stage I-III: glomerular changes in 0% -25%, 25% -50% and 50% -75% of the total glomeruli. Stage IV: more than 90% of the glomeruli were sclerotic and / or showed crescents (proliferation of the outer capsular epithelium). The significance of the Results (p-value) were determined using the Fisher's exact test.

Einige der Tiere starben in dem genannten Untersuchungszeitraum. Sofern eine Autopsie noch möglich war, konnte als Todesursache eine glomerulonephritische Endstadium-Niere diagnostiziert werden. Die Mortalität der heterozygoten- lag bei 12,1% und die der homozygoten Knock-Out-Mäuse bei 13,7%. Im gleichen Zeitraum starben keine Wt-Mäuse. Some of the animals died during the study period mentioned. Unless an autopsy is still taking place was possible, a terminal glomerulonephritic kidney could be the cause of death be diagnosed. The mortality of the heterozygotes was 12.1% and that of the homozygous knock-out mice at 13.7%. No Wt mice died during the same period.  

Weitere SLE-assoziierte Symptome wie eine Splenomegalie, perivaskuläre Infiltrationen von Leukozyten (Abb. 3a) sowie eine Leukopenie und Anämie wurden oftmals in diesen Tieren beobachtet.
Other SLE-associated symptoms such as splenomegaly, perivascular infiltration of leukocytes ( Fig. 3a), and leukopenia and anemia were often observed in these animals.

Abb. 4 Fig. 4 Dnase 1-Aktivität in Seren von Patienten mit Nephropathien im Vergleich zu Kontroll-PersonenDnase 1 activity compared in sera from patients with nephropathy Control persons

Die Dnase 1-Aktivität in Seren von 10 Patienten mit verschiedenen Formen von Nephropathien (Quadrate) wurden mit Hilfe der Single Radial Diffusion Method (SRED) (Nadano et al., 1993) bestimmt. 4 dieser Patienten litten an einer Lupus-Nephritis (schwarze Quadrate). Diese Patienten zeigten eine deutlich niederige Dnase 1- Serumaktivität (7 ± 0 ng/ml) im Vergleich zu gesunden männlichen (16 ± 5.5 ng/ml, schwarze Rauten) und weiblichen (14.2 ± 6.5 ng/ml, schwarze Kreise) Kontrollpersonen. Da nicht alle Patienten eine erniederigte Dnase 1-Aktivität aufwiesen kann eine Proteinurie als Ursache des Befundes ausgeschlossen werden. Die einfache Standardabweichung der Kontrollpersonen ist angegeben.Dnase 1 activity in sera from 10 patients with different forms of nephropathy (squares) were determined using the Single Radial Diffusion Method (SRED) (Nadano et al., 1993). 4 of these patients suffered from lupus nephritis (black squares). These patients showed a clearly low nose 1- Serum activity (7 ± 0 ng / ml) compared to healthy male (16 ± 5.5 ng / ml, black diamonds) and female (14.2 ± 6.5 ng / ml, black circles) control subjects. Because not all patients are humiliated Dnase 1 activity can be ruled out proteinuria as the cause of the finding. The simple one The standard deviation of the control persons is given.

Die Prävalenzrate der Ausbildung einer SLE-ähnlichen Erkrankung in Dnase 1-Knock-Out- Mäusen korreliert mit der Dnase 1-Konzentration in den Tieren, d. h. sie ist bei Dnase 1- defizienten Tieren höher als bei den heterozygoten Knock-Out-Tieren (Abb. 2, Tab. 2). Dies verdeutlicht, daß sowohl eine Reduktion als auch der Verlust der Dnase 1-Aktivität in den Mäusen als ein Risikofaktor für eine SLE-ähnliche Erkrankung angesehen werden kann. Dies wiederum korreliert mit einer erniedrigten Dnase 1-Aktivität im Serum von SLE-Patienten mit Nierenbeteiligung, so wie sie in der Literatur beschrieben wurde (Chitrabamrung et al., 1981) und durch eigene Analysen bestätigt werden konnte (Abb. 4). Es kann also behauptet werden, daß der Dnase 1 eine Funktion bei der Aufrechterhaltung der Selbsttoleranz gegenüber nukleären, DNA-haltigen Antigenen zukommt. Diese Funktion paßt in das sich entwicklende Bild der Ursachen der SLE-Erkrankung. So wird angenommen, daß eine gestörte Elimination bzw. eine erhöhte Freisetzung apoptotischen Materials die Erkrankung initiiert bzw. fördert (Rosen and Casciola-Rosen, 1999).The prevalence rate of the development of an SLE-like disease in Dnase 1 knock-out mice correlates with the Dnase 1 concentration in the animals, ie it is higher in Dnase 1-deficient animals than in the heterozygous knock-out animals ( Fig . 2, Tab. 2). This illustrates that both a reduction and a loss of Dnase 1 activity in the mice can be seen as a risk factor for an SLE-like disease. This in turn correlates with a reduced Dnase 1 activity in the serum of SLE patients with kidney involvement, as described in the literature (Chitrabamrung et al., 1981) and could be confirmed by our own analyzes ( Fig. 4). It can therefore be said that Dnase 1 has a function in maintaining self-tolerance towards nuclear, DNA-containing antigens. This function fits into the evolving picture of the causes of SLE disease. It is assumed that impaired elimination or increased release of apoptotic material initiates or promotes the disease (Rosen and Casciola-Rosen, 1999).

Literaturliterature

Berg P. A. (1987): Kollagenkrankheiten und immunologisch bedingte Vaskulotiden. In: Lehrbuch der Inneren Medizin. (Hrsg.: Siegenthaler W., Kaufmann W., Hornbostel H. and Waller H. D.), 687-709, Georg Thieme Verlag, Stuttgart.
Berden J. H. M., Licht R., Van Bruggen M. C. J. and Tax W. J. M. (1999): Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8, 299-306.
Bickerstaff M. C. M., Botto M., Hutchinson W. L., Herbert J., Tennent G. A., Bybee A., Mitchell D. A., Cook H. T., Butler P. J. G., Walport M. J. and Pepys M. B. (1999): Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nature Medicine 5, 694-697.
Botto M., Dell'Agnola C., Bygrave A. E., Thompson E. M., Cook H. T., Petry F., Loos M., Pandolfi P. P. and Walport M. J. (1998): Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature genet. 19, 56-59.
Carroll M. C. (1998): The lupus paradox. Nature genet. 19, 3-4.
Chitrabamrung S., Rubin R. L. and Tan E. M. (1981): Serum Deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int. 1, 55-60.
D'Andrea D. M., Coupaye-Gerard B., Kleyman T. R., Foster M. H. and Madaio M. P. (1996): Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. Kidney Intern. 49, 1214-1221.
Eilat D. and Naparstek Y. (1999): Anti-DNA autoantibodies: a puzzle of autoimmune phenomena. Trends Immunol. Today 20, 339-342.
Elkon K. B., Parnassa A. P. and Foster C. L. (1985): Lupus autoantibodies target ribosomal P proteins. J. Exp. Med. 162, 459-471.
Lachmann P. J. (1961): An attempt to characterize the lupus erythematosus cell antigen. Immunology 4, 153-163.
Lacks S. A. (1981): Deoxyribonuclease I in mammalian tissues. J. Biol. Chem. 256, 2644-2648.
Mannherz H. G., Peitsch M. C., Zanotti S., Paddenberg R. and Polzar B. (1995): A new function for an old enzyme: the role of DNase I in apoptosis. Curr. Topics in Microbiol. and Immunol. 198, Pathways of cytolysis (eds: Griffiths G. M. and Tschopp J.) pp 161-174, Springer-Verlag Heidelberg.
Moore T. L., Weiss T. D., Neucks S. H., Baldassare A. R. and Zuckner J. (1981): Extractable nuclear antigens. Semin. Arthr. Rheumatism. 10, 309-318.
Morel L. and Wakeland E. K. (1998): Susceptibility to lupus nephritis in the NZB/W model system. Curr. Opin. Immunol. 10, 718-725.
Nadano D., Yasuda T. and Kishi K. (1993): Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 39, 448-452.
Navratil J. S., Korb L. C. and Ahearn J. M. (1999): Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 42, 47-52.
Peitsch M. C., Polzar B., Tschopp J. and Mannherz H. G. (1994): About the involvement of deoxyribonuclease I in apoptosis. Cell Death Differ. 1, 1-6.
Raz E., Brezis M., Rosenmann E. and Eilat D. (1989): Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J. Immunol. 142, 3076-3082.
Raz E., Ben-Bassat H., Davidi T., Shlomai Z. and Eilat D. (1993): Cross-reactions of anti-DNA autoantibodies with cell surface proteins. Eur. J. Immunol. 23, 383-390.
Riede U. N. and Herbst E. W. (1995): Immunpathologie. In: Allgemeine und spezielle Pathologie (Hrsg.: Riede U. N. and Schaefer H. E.), 3. Auflg., 170-206, Georg Thieme Verlag, Stuttgart.
Rodriguez A. M., Rodin D., Nomura H., Morton C. C., Weremowicz S. and Schneider M. C. (1997): Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics 42, 507-513.
Rosen A. and Casciola-Rosen L. (1999): Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 6, 6-12.
Takahashi T, Tanaka M., Brannan C. L, Jenkins N. A., Copeland N. G., Suda T. and Nagata S. (1994): Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 76, 969-976.
Vanholder R., De Keyser F., Kips J., Praet M. and Naeyaert J. M. (1998): The pathophysiology of lupus erythematosus. Eur. J. Dermatol. 1, 4-7.
Vierbuchen M. and Böcker W. (1997): Generalisierte immunologische Krankheiten. In: Pathologie (Hrsg.: Böcker W., Denk H., Heitz U.), 975-989, Urban und Schwarzenberg, München.
Berg PA (1987): Collagen diseases and immunological vasculotides. In: Textbook of Internal Medicine. (Ed .: Siegenthaler W., Kaufmann W., Hornbostel H. and Waller HD), 687-709, Georg Thieme Verlag, Stuttgart.
Berden JHM, Licht R., Van Bruggen MCJ and Tax WJM (1999): Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8, 299-306.
Bickerstaff MCM, Botto M., Hutchinson WL, Herbert J., Tennent GA, Bybee A., Mitchell DA, Cook HT, Butler PJG, Walport MJ and Pepys MB (1999): Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity . Nature Medicine 5, 694-697.
Botto M., Dell'Agnola C., Bygrave AE, Thompson EM, Cook HT, Petry F., Loos M., Pandolfi PP and Walport MJ (1998): Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature genet. 19, 56-59.
Carroll MC (1998): The lupus paradox. Nature genet. 19, 3-4.
Chitrabamrung S., Rubin RL and Tan EM (1981): Serum Deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int. 1, 55-60.
D'Andrea DM, Coupaye-Gerard B., Kleyman TR, Foster MH and Madaio MP (1996): Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. Kidney Intern. 49, 1214-1221.
Eilat D. and Naparstek Y. (1999): Anti-DNA autoantibodies: a puzzle of autoimmune phenomena. Trends immunol. Today 20, 339-342.
Elkon KB, Parnassa AP and Foster CL (1985): Lupus autoantibodies target ribosomal P proteins. J. Exp. Med. 162, 459-471.
Lachmann PJ (1961): An attempt to characterize the lupus erythematosus cell antigen. Immunology 4, 153-163.
Lacks SA (1981): Deoxyribonuclease I in mammalian tissues. J. Biol. Chem. 256, 2644-2648.
Mannherz HG, Peitsch MC, Zanotti S., Paddenberg R. and Polzar B. (1995): A new function for an old enzyme: the role of DNase I in apoptosis. Curr. Topics in microbiol. and Immunol. 198, Pathways of cytolysis (eds: Griffiths GM and Tschopp J.) pp 161-174, Springer-Verlag Heidelberg.
Moore TL, Weiss TD, Neucks SH, Baldassare AR and Zuckner J. (1981): Extractable nuclear antigens. Semin. Arthr. Rheumatism. 10, 309-318.
Morel L. and Wakeland EK (1998): Susceptibility to lupus nephritis in the NZB / W model system. Curr. Opin. Immunol. 10, 718-725.
Nadano D., Yasuda T. and Kishi K. (1993): Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 39, 448-452.
Navratil JS, Korb LC and Ahearn JM (1999): Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 42, 47-52.
Peitsch MC, Polzar B., Tschopp J. and Mannherz HG (1994): About the involvement of deoxyribonuclease I in apoptosis. Cell Death Differ. 1, 1-6.
Raz E., Brezis M., Rosenmann E. and Eilat D. (1989): Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J. Immunol. 142, 3076-3082.
Raz E., Ben-Bassat H., Davidi T., Shlomai Z. and Eilat D. (1993): Cross-reactions of anti-DNA autoantibodies with cell surface proteins. Eur. J. Immunol. 23, 383-390.
Riede UN and Herbst EW (1995): Immunopathology. In: General and special pathology (ed .: Riede UN and Schaefer HE), 3rd edition, 170-206, Georg Thieme Verlag, Stuttgart.
Rodriguez AM, Rodin D., Nomura H., Morton CC, Weremowicz S. and Schneider MC (1997): Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics 42, 507-513.
Rosen A. and Casciola-Rosen L. (1999): Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 6, 6-12.
Takahashi T, Tanaka M., Brannan C. L, Jenkins NA, Copeland NG, Suda T. and Nagata S. (1994): Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas ligand. Cell 76, 969-976.
Vanholder R., De Keyser F., Kips J., Praet M. and Naeyaert JM (1998): The pathophysiology of lupus erythematosus. Eur. J. Dermatol. 1, 4-7.
Vierbuchen M. and Böcker W. (1997): Generalized immunological diseases. In: Pathologie (ed .: Böcker W., Denk H., Heitz U.), 975-989, Urban and Schwarzenberg, Munich.

Beispiel 2Example 2

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that affects over 1 million people in the United States. Typical for SLE is the presence of anti-nuclear antibodies (ANA) directed against naked DNA and entire nucleosomes. It is thought that the resulting immune-complexes accumulate in vessel walls, glomeruli and joints and cause a hypersensitivity reaction type III which manifests as glomerulonephritis (GN), arthritis and general vasculitis. The aetiology of SLE remains obscure but several studies suggest that increased liberation or a disturbed clearance of nuclear DNA-protein complexes after cell death may initiate and propagate the disease1-6. Consequently, Dnase 1 which is the major nuclease present in serum, urine and secreta may be held responsible for the removal of DNA from nuclear antigens at sites of high cell turnover and thus for the prevention of SLE7-11. To test this hypothesis we have generated Dnase 1 deficient mice by gene targeting. We report here that these animals show the classical symptoms of SLE namely the presence of ANA, the deposition of immune-complexes in glomeruli and full blown glomerulonephritis in a Dnase 1 dose­ dependent manner. Moreover, in agreement with earlier reports10 we find Dnase 1 activities in serum to be lower in SLE patients than in normal subjects. Both findings strongly suggest that lack or reduction of Dnase 1 is a critical factor in the initiation of human SLE.Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that affects over 1 million people in the United States. Typical for SLE is the presence of anti-nuclear antibodies (ANA) directed against naked DNA and entire nucleosomes. It is thought that the resulting immune-complexes accumulate in vessel walls, glomeruli and joints and cause a hypersensitivity reaction type III which manifests as glomerulonephritis (GN), arthritis and general vasculitis. The aetiology of SLE remains obscure but several studies suggest that increased liberation or a disturbed clearance of nuclear DNA-protein complexes after cell death may initiate and propagate the disease 1-6 . Consequently, Dnase 1 which is the major nuclease present in serum, urine and secreta may be held responsible for the removal of DNA from nuclear antigens at sites of high cell turnover and thus for the prevention of SLE 7-11 . To test this hypothesis we have generated Dnase 1 deficient mice by gene targeting. We report here that these animals show the classical symptoms of SLE namely the presence of ANA, the deposition of immune-complexes in glomeruli and full blown glomerulonephritis in a Dnase 1 dose dependent manner. Furthermore, in agreement with earlier reports 10 we find Dnase 1 activities in serum to be lower in SLE patients than in normal subjects. Both findings strongly suggest that lack or reduction of Dnase 1 is a critical factor in the initiation of human SLE.

The Dnase 1 gene locus comprises 9 exons12 which were entirely removed in a targeting vector based on the plasmid pPNT and replaced by the neomycin resistance gene (Neo). Genomic sequences flanking the Dnase 1 coding region were inserted 3' and 5' of the Neo cassette followed at the 5' end by the gene for the Herpes Simplex Virus thymidine kinase (HSV-Tk). Both the Neo and Tk genes were driven by the mouse pGK1 promotor. Transfection in E14 embryonic stem (ES) cells yielded 90 clones after selection in G418 and counterselection in gancyclovir. Seven of these 90 clones had undergone homologous recombination at the Dnase 1 locus as verified by Southern blotting. The correct recombination of the targeted allele was checked at the 3' and the 5' end with the indicated probes (Fig. 1). Four of the targeted ES cell clones were injected into blastocysts of C57BL/6 mice and produced in every case chimeras that were able to transmit the targeted allele. Two lines of Dnase 1 deficient animals were established from two independently generated ES cell clones by backcrossing the chimeras with C57BL/6 wild type (wt) mice. Dnase 1 heterozygous mice were obtained and again crossed with C57BL/6 wt animals. All mice used in this study resulted from intercrosses of these F2 Dnase 1 heterozygous mice. Dnase 1+/- mice were fertile and healthy and produced homozygous Dnase 1 deficient mice in a mendelian fashion. Mice from both lines showed the same characteristics in all aspects and thus were not further distinguished.The Dnase 1 gene locus comprises 9 exons 12 which were entirely removed in a targeting vector based on the plasmid pPNT and replaced by the neomycin resistance gene (Neo). Genomic sequences flanking the Dnase 1 coding region were inserted 3 'and 5' of the Neo cassette followed at the 5 'end by the gene for the Herpes Simplex Virus thymidine kinase (HSV-Tk). Both the Neo and Tk genes were driven by the mouse pGK1 promotor. Transfection in E14 embryonic stem (ES) cells yielded 90 clones after selection in G418 and counterselection in gancyclovir. Seven of these 90 clones had undergone homologous recombination at the Dnase 1 locus as verified by Southern blotting. The correct recombination of the targeted allele was checked at the 3 'and the 5' end with the indicated probes ( Fig. 1). Four of the targeted ES cell clones were injected into blastocysts of C57BL / 6 mice and produced in every case chimeras that were able to transmit the targeted allele. Two lines of Dnase 1 deficient animals were established from two independently generated ES cell clones by backcrossing the chimeras with C57BL / 6 wild type (wt) mice. Dnase 1 heterozygous mice were obtained and again crossed with C57BL / 6 wt animals. All mice used in this study resulted from intercrosses of these F2 Dnase 1 heterozygous mice. Dnase 1 +/- mice were fertile and healthy and produced homozygous Dnase 1 deficient mice in a mendelian fashion. Mice from both lines showed the same characteristics in all aspects and thus were not further distinguished.

The absence of Dnase 1 specific mRNA in Dnase 1-/- mice could be demonstrated by Northern blotting of RNA from parotids, kidney and small intestine. Significantly, the level of Dnase 1 mRNA was reduced to about 50% of wt levels in Dnase 1 heterozygous animals (Fig. 1). Further, Dnase 1 activity was absent in all organs of animals homozygous for the disrupted allele, but was reduced in small intestine, kidney, serum and urine of heterozygous animals compared to wt mice (Fig. 1). This demonstrated that the Dnase 1 expression level depends on both alleles of the gene and that in the presence of a single Dnase 1 allele only reduced expression levels are reached. Young mice that lacked both Dnase 1 alleles or were heterozygous were healthy. However, at the age of 6-8 months several animals showed symptoms of disease and eventually died. An increased mortality of 12% in Dnase 1+/- and 14% in Dnase 1-/- deficient mice in comparison to 0% in the wt population was observed and a first analysis of both Dnase 1+/- and Dnase 1-/- animals revealed the presence of ANA and signs of GN. This suggested a correlation between the activity of Dnase 1 and an SLE like disease and prompted us to perform a more detailed analysis.The absence of Dnase 1 specific mRNA in Dnase 1 - / - mice could be demonstrated by Northern blotting of RNA from parotids, kidney and small intestine. Significantly, the level of Dnase 1 mRNA was reduced to about 50% of wt levels in Dnase 1 heterozygous animals ( Fig. 1). Further, Dnase 1 activity was absent in all organs of animals homozygous for the disrupted allele, but was reduced in small intestine, kidney, serum and urine of heterozygous animals compared to wt mice ( Fig. 1). This demonstrated that the Dnase 1 expression level depends on both alleles of the gene and that in the presence of a single Dnase 1 allele only reduced expression levels are reached. Young mice that lacked both Dnase 1 alleles or were heterozygous were healthy. However, at the age of 6-8 months several animals showed symptoms of disease and eventually died. An increased mortality of 12% in Dnase 1 +/- and 14% in Dnase 1 - / - deficient mice in comparison to 0% in the wt population was observed and a first analysis of both Dnase 1 +/- and Dnase 1 - / - animals revealed the presence of ANA and signs of GN. This suggested a correlation between the activity of Dnase 1 and an SLE like disease and prompted us to perform a more detailed analysis.

We sacrificed 78 Dnase 1+/-, 69 Dnase 1-/- animals and 37 wt controls at the age of 8 months and analysed their sera for the presence of ANA and the severity of GN. The percentage of male mice positive for ANA rose from 15% found in the wt population to 48% (p:0.008, Fisher's exact test) in Dnase 1+/- and to 56% (p: 0.0018) among Dnase 1-/- mice (Table 1). In the female population this difference was less striking. The percentage of ANA positive wt females was at 35% and rose to 65% (p: 0.031) in Dnase 1+/- female animals and to 73% (p:0.013) in Dnase 1-/- female mice (Table 1). Immunofluorescence confirmed that the ANA found in Dnase 1 deficient mice were directed against chromatin structures (Fig. 2). Quantification of ANA was made by end point titration in an indirect immunostaining of NIH 3T3 cells and three titer ranges were defined with a cut off rate at 1/100 (low: 1/100-1/640, medium: 1/1280-1/2560, high: 1/5120-1/20480). We found that significantly more Dnase 1+/- and Dnase 1-/- females had high titer ANA than wt controls (Table 1). In the male Dnase 1 deficient population, this was also true for the medium titer range (Table 1). Next, we further subclassified ANA using high titer sera from Dnase 1+/- and Dnase 1-/- mice by ELISA with respect to their reactivity against ssDNA, dsDNA, histones, nucleosomes and the lupus-associated antigens ribosomal P-proteins and Sm-antigens. A high percentage of sera from male and female Dnase 1 deficient mice contained antibodies against nucleosomes and ssDNA (Table 2). Female Dnase 1 deficient mice contained also antibodies against dsDNA (Table 2). The frequency of antibodies against histones alone was low and against ribosomal P-protein not significant (Table 2) suggesting that ANA found in Dnase 1 deficient animals are mostly directed against DNA-protein complexes.We sacrificed 78 Dnase 1 +/- , 69 Dnase 1 - / - animals and 37 wt controls at the age of 8 months and analyzed their sera for the presence of ANA and the severity of GN. The percentage of male mice positive for ANA rose from 15% found in the wt population to 48% (p: 0.008, Fisher's exact test) in Dnase 1 +/- and to 56% (p: 0.0018) among Dnase 1 - / - mice (Table 1). In the female population this difference was less striking. The percentage of ANA positive wt females was at 35% and rose to 65% (p: 0.031) in Dnase 1 +/- female animals and to 73% (p: 0.013) in Dnase 1 - / - female mice (Table 1) . Immunofluorescence confirmed that the ANA found in Dnase 1 deficient mice were directed against chromatin structures ( Fig. 2). Quantification of ANA was made by end point titration in an indirect immunostaining of NIH 3T3 cells and three titer ranges were defined with a cut off rate at 1/100 (low: 1 / 100-1 / 640, medium: 1 / 1280-1 / 2560, high: 1 / 5120-1 / 20480). We found that significantly more Dnase 1 +/- and Dnase 1 - / - females had high titer ANA than wt controls (Table 1). In the male Dnase 1 deficient population, this was also true for the medium titer range (Table 1). Next, we further subclassified ANA using high titer sera from Dnase 1 +/- and Dnase 1 - / - mice by ELISA with respect to their reactivity against ssDNA, dsDNA, histones, nucleosomes and the lupus-associated antigens ribosomal P-proteins and Sm -antigen. A high percentage of sera from male and female Dnase 1 deficient mice contained antibodies against nucleosomes and ssDNA (Table 2). Female Dnase 1 deficient mice contained also antibodies against dsDNA (Table 2). The frequency of antibodies against histones alone was low and against ribosomal P-protein not significant (Table 2) suggesting that ANA found in Dnase 1 deficient animals are mostly directed against DNA-protein complexes.

The prevalence of GN in the wt population was 0% in male mice and rose to 15% (p:0.080, Fisher's exact test) in Dnase 1+/- and to 19% (p: 0.037) in Dnase 1-/- male animals (Table 3, Fig. 3a). In female mice the prevalence of GN was at 12% in the wt control population and rose to 19% (p:0.26) in Dnase 1+/- and to 31% (p:0.11) in Dnase 1-/- animals (Table 3). This suggested that the prevalence of GN is significantly increased in Dnase 1 deficient animals over wt controls. It appeared that GN frequency was higher in male than in female Dnase 1 deficient mice. However, we suspect that the overall frequency of female Dnase 1 deficient animals suffering from GN is higher than the calculated 19% or 31%, respectively, because we found a high number of dead animals among the female Dnase 1 deficient population most of which could not be analysed due to post mortem autolysis. But all those dead animals that still could be analysed showed symptoms of GN stage IV (data not shown). In addition, we found that GN coincided with the deposition of IgG and the complement component C3 at identical locations of the glomerular basement membrane (GBM) in all 22 Dnase 1-/- and Dnase 1+/- animals with GN that were tested (Fig. 3b). Deposition of IgG and C3 increased with the severity of GN being marginal at stage I (not shown). A high prevalence of ANA in connection with immune- complex GN are strong indicators for an SLE like disease in Dnase 1 deficient animals. As additional symptoms of SLE, 24 of 66 Dnase 1+/- and 21 of 49 Dnase 1-/- animals tested showed perivascular leukocyte infiltration in the kidney. 10 of 66 Dnase 1+/- and 17 of 49 Dnase 1-/- animals tested suffered from splenomegaly (not shown).The prevalence of GN in the wt population was 0% in male mice and rose to 15% (p: 0.080, Fisher's exact test) in Dnase 1 +/- and to 19% (p: 0.037) in Dnase 1 - / - male animals (Table 3, Fig. 3a). In female mice the prevalence of GN was at 12% in the wt control population and rose to 19% (p: 0.26) in Dnase 1 +/- and to 31% (p: 0.11) in Dnase 1 - / - animals (Table 3). This suggested that the prevalence of GN is significantly increased in Dnase 1 deficient animals over wt controls. It appeared that GN frequency was higher in male than in female Dnase 1 deficient mice. However, we suspect that the overall frequency of female Dnase 1 deficient animals suffering from GN is higher than the calculated 19% or 31%, respectively, because we found a high number of dead animals among the female Dnase 1 deficient population most of which could not be analyzed due to post mortem autolysis. But all those dead animals that still could be analyzed showed symptoms of GN stage IV (data not shown). In addition, we found that GN coincided with the deposition of IgG and the complement component C3 at identical locations of the glomerular basement membrane (GBM) in all 22 Dnase 1 - / - and Dnase 1 +/- animals with GN that were tested ( FIG. 3b). Deposition of IgG and C3 increased with the severity of GN being marginal at stage I (not shown). A high prevalence of ANA in connection with immune-complex GN are strong indicators for an SLE like disease in Dnase 1 deficient animals. As additional symptoms of SLE, 24 of 66 Dnase 1 +/- and 21 of 49 Dnase 1 - / - animals tested showed perivascular leukocyte infiltration in the kidney. 10 of 66 Dnase 1 +/- and 17 of 49 Dnase 1 - / - animals tested suffered from splenomegaly (not shown).

The fact that Dnase 1+/- mice exhibited a 50% lower Dnase 1 expression in comparison to wt mice (Fig. 1) might explain the observation that these animals developed the same phenotype as Dnase 1-/- animals albeit with lower prevalence. The lower Dnase 1 expression correlated with decreased enzyme activities which in turn may have been insufficient to overcome the effect of natural occurring Dnase 1 inhibitors in the serum11,13. These data support the hypothesis that Dnase 1 is a crucial factor in the aetiology of SLE being responsible for the clearance of DNA and DNA-protein complexes accidentally present in the serum or at sites of high cell turnover as potential autoantigens.The fact that Dnase 1 +/- mice exhibited a 50% lower Dnase 1 expression in comparison to wt mice ( Fig. 1) might explain the observation that these animals developed the same phenotype as Dnase 1 - / - animals albeit with lower prevalence. The lower Dnase 1 expression correlated with decreased enzyme activities which in turn may have been insufficient to overcome the effect of natural occurring Dnase 1 inhibitors in the serum 11,13 . These data support the hypothesis that Dnase 1 is a crucial factor in the aetiology of SLE being responsible for the clearance of DNA and DNA-protein complexes accidentally present in the serum or at sites of high cell turnover as potential autoantigen.

The features described here for Dnase 1 deficient animals did not occur in all animals at the same time. The Dnase 1 deficient mice showing SLE like symptoms could be divided into three groups. Whereas almost all Dnase 1-/- animals with few exceptions were positive for ANA, the 1st group showed in addition to GN perivascular kidney infiltration and splenomegaly, the 2nd group lacked GN but still had a high prevalence of perivascular kidney infiltration and splenomegaly and the 3rd group only displayed serum ANA without other significant signs of SLE or renal disease (Table 4). This heterogeneity of symptoms is characteristic for a multifactorial disease and argues for the requirement of additional events.The features described here for Dnase 1 deficient animals did not occur in all animals at the same time. The Dnase 1 deficient mice showing SLE like symptoms could be divided into three groups. Almost all Dnase 1 - / - animals with few exceptions were positive for ANA, the 1 st group showed in addition to GN perivascular kidney infiltration and splenomegaly, the 2 nd group lacked GN but still had a high prevalence of perivascular kidney infiltration and splenomegaly and the 3 rd group only displayed serum ANA without other significant signs of SLE or renal disease (Table 4). This heterogeneity of symptoms is characteristic of a multifactorial disease and argues for the requirement of additional events.

To further test the possible link between Dnase 1 and SLE, we analyzed the serum of 10 patients which had undergone renal biopsy because of nephropathic diseases. Among these 10 patients, 4 patients suffered from SLE with GN and had a significantly lower Dnase 1 activity (7 ± 0 ng/ml) with a p-value (student's T-test) of 0.007 when compared to healthy male controls (16 ± 5.5 ng/ml) and a p-value of 0.054 when compared to healthy female controls (14.2 ± 6.5 ng/ml) than patients suffering nephritis for reasons other than SLE (n = 6) (Fig. 4). Only one patient with diabetic nephropathy had a lower Dnase 1 activity (5 ng/ml) than the SLE patients (Fig. 4). All 10 patients showed proteinuria. Since the level of Dnase 1 activity was not generally lower in all 10 patients, a decrease of Dnase 1 due to general proteinuria could be excluded. These results are in agreement with earlier data reporting low Dnase 1 levels in SLE patients10 and SLE-prone NZB/NZW (F1) mice11 and provide additional support for a causative link between low Dnase 1 activities and SLE.To further test the possible link between Dnase 1 and SLE, we analyzed the serum of 10 patients which had undergone renal biopsy because of nephropathic diseases. Among these 10 patients, 4 patients suffered from SLE with GN and had a significantly lower Dnase 1 activity (7 ± 0 ng / ml) with a p-value (student's T-test) of 0.007 when compared to healthy male controls (16 ± 5.5 ng / ml) and a p-value of 0.054 when compared to healthy female controls (14.2 ± 6.5 ng / ml) than patients suffering nephritis for reasons other than SLE (n = 6) ( Fig. 4). Only one patient with diabetic nephropathy had a lower Dnase 1 activity (5 ng / ml) than the SLE patients ( Fig. 4). All 10 patients showed proteinuria. Since the level of Dnase 1 activity was not generally lower in all 10 patients, a decrease of Dnase 1 due to general proteinuria could be excluded. These results are in agreement with earlier data reporting low Dnase 1 levels in SLE patients 10 and SLE-prone NZB / NZW (F1) mice 11 and provide additional support for a causative link between low Dnase 1 activities and SLE.

Our data suggest that Dnase 1, besides its digestive role in the alimentary tract, may have an additional protective task, which comprises the removal of DNA from soluble or deposited autoantigenic nucleoprotein complexes in order to prevent immune stimulation and to reduce inflammation in target tissues. It is evident that Dnase 1 is expressed at sites where high cell turnover makes the removal of residual nuclear debris necessary such as the gastrointestinal and genitourinary tract, mammary gland, skin and haematopoetic system7,8,14,15. Apparently, reduction or loss of Dnase 1 activity could result in a high risk to produce ANA as a potential prerequisite to develop a SLE-like disease in connection with environmental factors. The fact that ANA in SLE patients are directed against own cellular DNA or DNA-protein complexes favours this hypothesis3,16. In support of this suggested novel role of Dnase 1 are reports showing that application of Dnase 1 to SLE-prone NZB/NZW (F1) mice results in a dose­ dependent reduction of anti-DNA IgG antibodies17,18.Our data suggest that Dnase 1, besides its digestive role in the alimentary tract, may have an additional protective task, which comprises the removal of DNA from soluble or deposited autoantigenic nucleoprotein complexes in order to prevent immune stimulation and to reduce inflammation in target tissues. It is evident that Dnase 1 is expressed at sites where high cell turnover makes the removal of residual nuclear debris necessary such as the gastrointestinal and genitourinary tract, mammary gland, skin and haematopoetic system 7,8,14,15 . Apparently, reduction or loss of Dnase 1 activity could result in a high risk to produce ANA as a potential prerequisite to develop a SLE-like disease in connection with environmental factors. The fact that ANA in SLE patients are directed against own cellular DNA or DNA-protein complexes favors this hypothesis 3,16 . In support of this suggested novel role of Dnase 1 are reports showing that application of Dnase 1 to SLE-prone NZB / NZW (F1) mice results in a dose dependent reduction of anti-DNA IgG antibodies 17,18 .

Further indications of the necessity for "cleaning up" after cell death in order to prevent SLE- like diseases come from mutant mice deficient for the complement component C1q19 or serum amyloid P component (SAP)20. Mice targeted for Dnase 1 (this study), SAP and C1q genes show a striking similarity in prevalence and gender distribution of ANA19,20. The prevalence of GN was also similar among the three types of mice with the exception of male SAP deficient animals20. These mice do not show a predisposition for GN. It has been suggested that both SAP and C1q prevent the emergence of DNA-protein complexes as autoimmunogens. C1q mediates its effect by supporting the elimination of apoptotic bodies as a potential source of DNA autoantigens. In contrast, SAP binds to chromatin and possibly prevents its recognition by antigen receptors. The strikingly similar outcome of deficiency for SAP, C1q and Dnase 1 suggests that the elimination of DNA-protein complexes is a crucial process for an organism to prevent autoimmune disease of the SLE-type and if any of these fails, SLE-development becomes a likely event. In this respect, our results warrant further evaluation of Dnase 1 in therapeutic strategies21 or as a prognostic indicator for the development of SLE.Further indications of the necessity for "cleaning up" after cell death in order to prevent SLE-like diseases come from mutant mice deficient for the complement component C1q 19 or serum amyloid P component (SAP) 20 . Mice targeted for Dnase 1 (this study), SAP and C1q genes show a striking similarity in prevalence and gender distribution of ANA 19.20 . The prevalence of GN was also similar among the three types of mice with the exception of male SAP deficient animals 20 . These mice do not show a predisposition for GN. It has been suggested that both SAP and C1q prevent the emergence of DNA-protein complexes as autoimmunogens. C1q mediates its effect by supporting the elimination of apoptotic bodies as a potential source of DNA autoantigens. In contrast, SAP binds to chromatin and possibly prevents its recognition by antigen receptors. The strikingly similar outcome of deficiency for SAP, C1q and Dnase 1 suggests that the elimination of DNA-protein complexes is a crucial process for an organism to prevent autoimmune disease of the SLE-type and if any of these fails, SLE-development becomes a likely event. In this respect, our results warrant further evaluation of Dnase 1 in therapeutic strategies 21 or as a prognostic indicator for the development of SLE.

Materials and MethodsMaterials and Methods Dnase 1 activityDnase 1 activity

For the zymograms, 12% SDS polyacrylamide gels containing 10 µg/ml calf thymus DNA were run with protein extracts from parotids (0.5 µg), small intestine (30 µg), kidney (20 µg) or with 1 µl of urine or 2 µl of serum. After electrophoresis, proteins in the gel were renaturated in reactivation buffer (20 mM TrisfHCl, pH 7.3, 5 mM CaCl2, 5 mM MgCl2, 5% skim milk powder) for 16 hours, stained with ethidium bromide and photographed7. Dnase 1 activity manifests as lack of ethidium bromide staining at distinct locations in the gel due to the hydrolysis of the co-polymerized calf thymus DNA. The positive control (C) was 0,5 u bovine pancreas Dnase 1 (Stratagene GmbH, Germany). For the measurement of Dnase 1 activity in patient sera, the single radial enzyme-diffusion method (SRED) was used as previously described22. The positive control here was human recombinant Dnase 1 (Dornase alfa, Hoffmann-La Roche AG, Germany). For the zymograms, 12% SDS polyacrylamide gels containing 10 µg / ml calf thymus DNA were run with protein extracts from parotids (0.5 µg), small intestine (30 µg), kidney (20 µg) or with 1 µl of urine or 2 µl of serum. After electrophoresis, proteins in the gel were renaturated in reactivation buffer (20 mM TrisfHCl, pH 7.3, 5 mM CaCl 2 , 5 mM MgCl 2 , 5% skim milk powder) for 16 hours, stained with ethidium bromide and photographed 7 . Dnase 1 activity manifests as lack of ethidium bromide staining at distinct locations in the gel due to the hydrolysis of the co-polymerized calf thymus DNA. The positive control (C) was 0.5 u bovine pancreas Dnase 1 (Stratagene GmbH, Germany). For the measurement of Dnase 1 activity in patient sera, the single radial enzyme-diffusion method (SRED) was used as previously described 22 . The positive control here was human recombinant Dnase 1 (Dornase alfa, Hoffmann-La Roche AG, Germany).

Detection, quantification and subclassification of ANADetection, quantification and subclassification of ANA

Anti-nuclear antibodies (ANA) were revealed by indirect immunofluorescence on methanol­ acetone fixed NIH 3T3 cells using a FITC conjugated goat anti-mouse Ig secondary antibody (DAKO Diagnostika GmbH, Germany). All sera showing detectable reactivity at or above a dilution of 1/100 were considered ANA positive. The staining was evaluated in three different titer ranges: low (1/100-1/640), medium (1/1280-1/2560) and high (1/5120-1/20480) (see Table 1, Fig. 2). Subclassification was performed by ELISA using precoated plates for ssDNA, dsDNA, histones, ribosomal P-proteins23 and Sm-antigens24 according to instructions given by the manufacturer (Euroimmun GmbH, Germany). Plates precoated with nucleosomes (reconstituted with histone H1) from Medipan Diagnostika GmbH (Germany) were used according to their instructions. As a secondary antibody a horseradish peroxidase labeled goat anti-mouse Ig was used (Sigma Aldrich, Germany). To determine the cut off for the ANA subclassification we used 20 ANA negative sera from wt mice and determined their reactivity in the ELISA. The mean of these values plus 3 standard deviations was set as the lower limit for positive results.Anti-nuclear antibodies (ANA) were revealed by indirect immunofluorescence on methanol acetone fixed NIH 3T3 cells using a FITC conjugated goat anti-mouse Ig secondary antibody (DAKO Diagnostika GmbH, Germany). All sera showing detectable reactivity at or above a dilution of 1/100 were considered ANA positive. The staining was evaluated in three different titer ranges: low (1 / 100-1 / 640), medium (1 / 1280-1 / 2560) and high (1 / 5120-1 / 20480) (see Table 1, Fig. 2 ). Subclassification was performed by ELISA using precoated plates for ssDNA, dsDNA, histones, ribosomal P-proteins 23 and Sm-antigens 24 according to instructions given by the manufacturer (Euroimmun GmbH, Germany). Plates precoated with nucleosomes (reconstituted with histone H1) from Medipan Diagnostika GmbH (Germany) were used according to their instructions. As a secondary antibody a horseradish peroxidase labeled goat anti-mouse Ig was used (Sigma Aldrich, Germany). To determine the cut off for the ANA subclassification we used 20 ANA negative sera from wt mice and determined their reactivity in the ELISA. The mean of these values plus 3 standard deviations was set as the lower limit for positive results.

Histopathology and immunofluorescenceHistopathology and immunofluorescence

Organs were removed from autopsied animals, fixed in Carnoy solution (60% ethanol, 30% chloroform, 10% acetic acid), embedded in parafin and stained with either hematoxylin/eosin (HE) or according to the Periodic Acid-Schiff (PAS) procedure. For cryosections organs were frozen in liquid nitrogen and sectioned on a cryotome, dried and stained with the appropriate antibodies. Glomerular damages were scored by a blinded observer as follows19: stage 0: no involvement, stage I to III: glomerular changes in 0%-25%, 25%-50% and 50%-75% of total glomeruli. Stage IV: greater than 90% of glomeruli were sclerotic and/or formed crescents.Organs were removed from autopsied animals, fixed in Carnoy solution (60% ethanol, 30% chloroform, 10% acetic acid), embedded in parafin and stained with either hematoxylin / eosin (HE) or according to the Periodic Acid-Schiff (PAS) procedure. For cryosections organs were frozen in liquid nitrogen and sectioned on a cryotome, dried and stained with the appropriate antibodies. Glomerular damages were scored by a blinded observer as follows 19 : stage 0: no involvement, stage I to III: glomerular changes in 0% -25%, 25% -50% and 50% -75% of total glomeruli. Stage IV: greater than 90% of glomeruli were sclerotic and / or formed crescents.

Figure LegendsFigure Legends

Fig. 1 Deletion of the Dnase 1 gene12 by gene targeting. a, Schematic representation of the Dnase 1 allele, the targeting vector and the structure of the targeted gene. Dnase 1 exons are depicted as filled boxes, the neomycin resistance gene (Neo) and the Herpes Simplex Virus thymidine kinase gene (HSV-Tk) are indicated. The probes used to verify homologous recombination at the 3' and 5' end were denoted A and B. The restriction fragments generated by the diagnostic digests are shown under the scheme of the targeted Dnase 1 allele; the wt DNA fragment lengths are depicted above the scheme of the wt Dnase 1 allele. Restriction sites are indicated. b, Southern blot of genomic DNA derived from offspring generated from intercrosses between Dnase 1+/- animals. Left panel: Hind III/Xho I digests hybridized with probe A show the presence of the wt allele of 11 kb and the targeted allele of 5.8 kb in heterozygous animals and the absence of the wt allele in homozygous mice. Right panel: Xho I digests hybridized with probe B show the presence of the wt allele of 13.8 kb, the targeted allele of 6.8 kb in heterozygous animals and the absence of the wt allele in homozygous Dnase 1-/- mice. c, Northern blot analysis of RNA from parotids, kidney and small intestine of wt (+/+), heterozygous (+/-) and homozygous (-/-) Dnase 1 deficient animals hybridized with a labeled rat Dnase 1 cDNA25 as a probe. The size of the Dnase 1 specific transcript is indicated as 1.2 kb8. Uniform loading of the gel was controlled by staining the filter after the transfer with Ponceau S. d-f, Zymograms showing Dnase 1 activity were prepared using cell extracts from parotids, small intestine and kidney as well as serum and urine of wt (+/+), heterozygous (+/-) and homozygous (-/-) Dnase 1 deficient animals. The molecular weight of the glycosylation isoforms of Dnase 1 is between 32 and 38 kD. M: molecular weight marker (the size of rabbit lactic dehydrogenase is indicated), C: bovine pancreas Dnase 1 control. All data shown in c-f are representative for 10 tested animals of each genotype. Fig. 1 Deletion of the nose 1 gene 12 by gene targeting. a, Schematic representation of the Dnase 1 allele, the targeting vector and the structure of the targeted gene. Dnase 1 exons are depicted as filled boxes, the neomycin resistance gene (Neo) and the Herpes Simplex Virus thymidine kinase gene (HSV-Tk) are indicated. The probes used to verify homologous recombination at the 3 'and 5' end were denoted A and B. The restriction fragments generated by the diagnostic digests are shown under the scheme of the targeted Dnase 1 allele; the wt DNA fragment lengths are depicted above the scheme of the wt Dnase 1 allele. Restriction sites are indicated. b, Southern blot of genomic DNA derived from offspring generated from intercrosses between Dnase 1 +/- animals. Left panel: Hind III / Xho I digests hybridized with probe A show the presence of the wt allele of 11 kb and the targeted allele of 5.8 kb in heterozygous animals and the absence of the wt allele in homozygous mice. Right panel: Xho I digests hybridized with probe B show the presence of the wt allele of 13.8 kb, the targeted allele of 6.8 kb in heterozygous animals and the absence of the wt allele in homozygous Dnase 1 - / - mice. c, Northern blot analysis of RNA from parotids, kidney and small intestine of wt (+ / +), heterozygous (+/-) and homozygous (- / -) Dnase 1 deficient animals hybridized with a labeled rat Dnase 1 cDNA 25 as a sample. The size of the Dnase 1 specific transcript is indicated as 1.2 kb 8 . Uniform loading of the gel was controlled by staining the filter after the transfer with Ponceau S. df, Zymograms showing Dnase 1 activity were prepared using cell extracts from parotids, small intestine and kidney as well as serum and urine of wt (+ / +) , heterozygous (+/-) and homozygous (- / -) Dnase 1 deficient animals. The molecular weight of the glycosylation isoforms of Dnase 1 is between 32 and 38 kD. M: molecular weight marker (the size of rabbit lactic dehydrogenase is indicated), C: bovine pancreas Dnase 1 control. All data shown in cf are representative for 10 tested animals of each genotype.

Fig. 2 Anti-nuclear antibodies (ANA) in Dnase 1 deficient mice. Immunofluorescence staining demonstrating that ANA in Dnase 1 deficient mice are directed against nuclear structures and chromatin. Upper left panel: staining with serum from a wt control animal showing no reaction against nuclear structures. Upper right panel: staining with serum from a C57BL/6-Faslpr/lpr animal positive for ANA (medium titer range), lower left panel: staining with serum from a Dnase 1-/- animal positive for ANA (high titer range). Lower right panel: staining with serum from a Dnase 1-/- animal at higher magnification showing the reaction of ANA against metaphase chromosomes. Fig. 2 Anti-nuclear antibodies (ANA) in Dnase 1 deficient mice. Immunofluorescence staining demonstrating that ANA in Dnase 1 deficient mice are directed against nuclear structures and chromatin. Upper left panel: staining with serum from a wt control animal showing no reaction against nuclear structures. Upper right panel: staining with serum from a C57BL / 6-Fas lpr / lpr animal positive for ANA (medium titer range), lower left panel: staining with serum from a Dnase 1 - / - animal positive for ANA (high titer range) . Lower right panel: staining with serum from a Dnase 1 - / - animal at higher magnification showing the reaction of ANA against metaphase chromosomes.

Fig. 3 Immune-complex nephritis in Dnase 1 deficient mice. a, paraffin embedded kidney sections after Carnoy fixation. Upper left panel: PAS staining of a normal glomerulus from a wt control animal. Upper right panel: PAS staining of a glomerulus from a Dnase 1-/- animal showing increased cellularity and beginning mesangioproliferation. Lower left panel: PAS staining of a sclerotic glomerulus forming a crescent from a Dnase 1-/- mouse representative for GN stage IV. Lower right panel: HE staining demonstrating a perivascular leukocyte infiltration of a kidney vessel. b, representative confocal micrographs of immunostainings from cryosections of a diseased kidney with GN stage II from a Dnase 1+/- mouse (upper row) and of a normal wt kidney (lower row). Upper leftmost panel: staining with FITC conjugated goat anti­ mouse IgG antibodies (Rockland Inc., USA) shows granular deposits of IgG in the GBM. Upper middle panel: staining with a polyclonal sheep anti-mouse C3 antibody (Biotrend GmbH, Germany) and a TRITC conjugated rabbit anti-sheep Ig secondary antibody (Rockland Inc., USA). Upper rightmost panel: merge of both FITC and TRITC signals demonstrates the colocalisation of IgG deposits and the C3 component of the complement system. Lower row: micrographs of a normal wt kidney treated identically as the diseased Dnase 1+/- kidney (upper row). Significant deposition or colocalisation of IgG and C3 are missing in wt kidneys. Fig. 3 Immune-complex nephritis in Dnase 1 deficient mice. a, paraffin embedded kidney sections after Carnoy fixation. Upper left panel: PAS staining of a normal glomerulus from a wt control animal. Upper right panel: PAS staining of a glomerulus from a Dnase 1 - / - animal showing increased cellularity and beginning mesangioproliferation. Lower left panel: PAS staining of a sclerotic glomerulus forming a crescent from a Dnase 1 - / - mouse representative for GN stage IV. Lower right panel: HE staining demonstrating a perivascular leukocyte infiltration of a kidney vessel. b, representative confocal micrographs of immunostainings from cryosections of a diseased kidney with GN stage II from a Dnase 1 +/- mouse (upper row) and of a normal wt kidney (lower row). Upper leftmost panel: staining with FITC conjugated goat anti mouse IgG antibodies (Rockland Inc., USA) shows granular deposits of IgG in the GBM. Upper middle panel: staining with a polyclonal sheep anti-mouse C3 antibody (Biotrend GmbH, Germany) and a TRITC conjugated rabbit anti-sheep Ig secondary antibody (Rockland Inc., USA). Upper rightmost panel: merge of both FITC and TRITC signals demonstrates the colocalization of IgG deposits and the C3 component of the complement system. Lower row: micrographs of a normal wt kidney treated identically as the diseased Dnase 1 +/- kidney (upper row) . Significant deposition or colocalization of IgG and C3 are missing in wt kidneys.

Fig. 4 Dnase 1 activity in sera of patients with nephropathic diseases. Activities of 10 patients which had undergone renal biopsies for various reasons (squares) were measured with the single radial enzyme-diffusion method (SRED). 4 of these 10 patients suffered from SLE (filled squares). The Dnase 1 activity was calculated from a reference series using human recombinant Dnase 1. The levels of patients were compared to the levels found in healthy male (n = 12, black diamonds) or female (n = 9, black dots) subjects. For the controls a mean value ±1 standard deviation is given. Fig. 4 Dnase 1 activity in sera of patients with nephropathic diseases. Activities of 10 patients which had undergone renal biopsies for various reasons (squares) were measured with the single radial enzyme-diffusion method (SRED). 4 of these 10 patients suffered from SLE (filled squares). The Dnase 1 activity was calculated from a reference series using human recombinant Dnase 1. The levels of patients were compared to the levels found in healthy male (n = 12, black diamonds) or female (n = 9, black dots) subjects. For the controls a mean value ± 1 standard deviation is given.

Table LegendsTable Legends

Table 1 The number of animals positive for ANA is given and is specified according to gender, genotype and titer range. Percentages of positive mice are given in parentheses. Statistical evaluation was performed by using the Fisher's exact test (p values). n. s., not significant.Table 1 The number of animals positive for ANA is given and is specified according to gender, genotype and titer range. Percentages of positive mice are given in parentheses. Statistical evaluation was performed by using the Fisher's exact test (p values). n. s., not significant.

Table 2 Sera with high ANA titers from 17 male and 16 female Dnase 1 deficient mice (Dnase 1+/- and Dnase 1-/-) were tested for their reactivity against different nuclear components as ssDNA, dsDNA, histones, nucleosomes and Sm-antigens as well as against ribosomal P- proteins. Given are the percentages of sera that were positive for a specific antigen. Statistical evaluation was performed by using the Fisher's exact test (p values). n. s., not significant.Table 2 Sera with high ANA titers from 17 male and 16 female Dnase 1 deficient mice (Dnase 1 +/- and Dnase 1 - / - ) were tested for their reactivity against different nuclear components as ssDNA, dsDNA, histones, nucleosomes and Sm- antigens as well as against ribosomal P proteins. Given are the percentages of sera that were positive for a specific antigen. Statistical evaluation was performed by using the Fisher's exact test (p values). ns, not significant.

Table 3 Animals that were homozygous and heterozygous for the targeted Dnase 1 allele were compared to wt controls with regard to prevalence and grade of GN by histopathological evaluation19. The number of mice afflicted with GN is specified according to genotype and gender. Percentages and significance levels (p values, Fisher's exact test) are given underneath.Table 3 Animals that were homozygous and heterozygous for the targeted Dnase 1 allele were compared to wt controls with regard to prevalence and grade of GN by histopathological evaluation 19 . The number of mice afflicted with GN is specified according to genotype and gender. Percentages and significance levels (p values, Fisher's exact test) are given underneath.

Table 4 Summary of phenotypic abnormalities observed in homozygous Dnase 1-/- deficient mice. The presence and titer range of ANA was determined by immunofluorescence, the diagnosis of GN and perivascular leukocyte infiltration in the kidney was based on the inspection of histopathological sections19, splenomegaly was determined by comparing the size of the spleen to wt controls. Kidney infiltration was judged absent (-) or of low (+), medium (++) and high (+++) degree. Splenomegaly was either absent (-) or present (+). Table 4 Summary of phenotypic abnormalities observed in homozygous Dnase 1 - / - deficient mice. The presence and titer range of ANA was determined by immunofluorescence, the diagnosis of GN and perivascular leukocyte infiltration in the kidney was based on the inspection of histopathological sections 19 , splenomegaly was determined by comparing the size of the spleen to wt controls. Kidney infiltration was judged absent (-) or of low (+), medium (++) and high (+++) degree. Splenomegaly was either absent (-) or present (+).

ReferencesReferences

1. Carroll, M. C. The lupus paradox. Nature Genet. 19, 3-4 (1998).
2. Vanholder, R., De Keyser, F., Kips, J., Praet, M. & Naeyaert, J. M. The pathophysiology of lupus erythematosus. Eur. J. Dermat. 1, 4-7 (1998).
3. Berden, J. H. M., Licht, R., Van Bruggen, M. C. J. & Tax, W. J. M. Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8, 299-306 (1999).
4. Rosen, A. & Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 6, 6- 12 (1999).
5. Eilat, D. & Naparstek, Y. Anti-DNA autoantibodies: a puzzle of autoimmune phenomena. Immunol. Today 20, 339-342 (1999).
6. Lachmann, P. J. An attempt to characterize the lupus erythematosus cell antigen. Immunology 4, 153-63 (1961).
7. Lacks, S. A. Deoxyribonuclease I in mammalian tissues. J. Biol. Chem. 256, 2644-2648, (1981).
8. Takeshita, H. et al. Mouse deoxyribonuclease I (Dnase I): biochemical and immunological characterization, cDNA structure and tissue distribution. Biochem. Mol. Biol. Int. 42, 65- 75 (1997).
9. Peitsch, M. C., Polzar, B., Tschopp, J. & Mannherz, H. G. About the involvement of deoxyribonuclease I in apoptosis. Cell Death Differ. 1, 1-6 (1994).
10. Chitrabamrung, S., Rubin, R. L. & Tan, E. M. Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int. 1, 55-60 (1981).
11. Macanovic, M. & Lachmann, P. J. Measurement of deoxyribonuclease I (DNase) in the serum and urine of systemic lupus erythematosus (SLE)-prone NZB/NZW mice by a new radial enzyme diffusion assay. Clin. Exp. Immnuol. 108, 220-226 (1997).
12. Peitsch, M. C., Irmler, M., French, L. E. & Tschopp, J. Genomic Organisation and expression of mouse deoxyribonuclease I. Biochem. Biophys. Res. Commun. 207, 62-68 (1995).
13. Prince, W. S. et al. Pharmacodynamics of recombinant human DNase I in serum. Clin. Exp. Immunol. 113, 289-296 (1998).
14. Shimoda, M. et al. Anti-DNA IgA autoantibodies are spontaneously generated in mouse Peyer's patches. Immunology 95, 200-207 (1998).
15. Polzar, B. et al. Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur. J. Cell Biol. 64, 200-210 (1994).
16. Rumore, P. M. & Steinman, C. R. Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J. Clin. Invest. 86, 69-74 (1990).
17. Macanovic, M. et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1
1. Carroll, MC The lupus paradox. Nature Genet. 19, 3-4 (1998).
2. Vanholder, R., De Keyser, F., Kips, J., Praet, M. & Naeyaert, JM The pathophysiology of lupus erythematosus. Eur. J. Dermat. 1, 4-7 (1998).
3. Berden, JHM, Licht, R., Van Bruggen, MCJ & Tax, WJM Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens. 8, 299-306 (1999).
4. Rosen, A. & Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 6, 6-12 (1999).
5. Eilat, D. & Naparstek, Y. Anti-DNA autoantibodies: a puzzle of autoimmune phenomena. Immunol. Today 20, 339-342 (1999).
6. Lachmann, PJ An attempt to characterize the lupus erythematosus cell antigen. Immunology 4, 153-63 (1961).
7. Lacks, SA Deoxyribonuclease I in mammalian tissues. J. Biol. Chem. 256, 2644-2648, (1981).
8. Takeshita, H. et al. Mouse deoxyribonuclease I (Dnase I): biochemical and immunological characterization, cDNA structure and tissue distribution. Biochem. Mol. Biol. Int. 42, 65-75 (1997).
9. Peitsch, MC, Polzar, B., Tschopp, J. & Mannherz, HG About the involvement of deoxyribonuclease I in apoptosis. Cell Death Differ. 1, 1-6 (1994).
10. Chitrabamrung, S., Rubin, RL & Tan, EM Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol. Int. 1, 55-60 (1981).
11. Macanovic, M. & Lachmann, PJ Measurement of deoxyribonuclease I (DNase) in the serum and urine of systemic lupus erythematosus (SLE) -prone NZB / NZW mice by a new radial enzyme diffusion assay. Clin. Exp. Immnuol. 108: 220-226 (1997).
12. Peitsch, MC, Irmler, M., French, LE & Tschopp, J. Genomic Organization and expression of mouse deoxyribonuclease I. Biochem. Biophys. Res. Commun. 207, 62-68 (1995).
13. Prince, WS et al. Pharmacodynamics of recombinant human DNase I in serum. Clin. Exp. Immunol. 113, 289-296 (1998).
14. Shimoda, M. et al. Anti-DNA IgA autoantibodies are spontaneously generated in mouse Peyer's patches. Immunology 95, 200-207 (1998).
15. Polzar, B. et al. Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur. J. Cell Biol. 64, 200-210 (1994).
16. Rumore, PM & Steinman, CR Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J. Clin. Invest. 86: 69-74 (1990).
17. Macanovic, M. et al. The treatment of systemic lupus erythematosus (SLE) in NZB / WF 1

hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106, 243-252 (1996).
18. Verthelyi, D., Dybdal, N., Elias, K. A. & Klinman, D. M. DNAse treatment does not improve the survival of lupus prone (NZB/NZW) F1
hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106: 243-252 (1996).
18. Verthelyi, D., Dybdal, N., Elias, KA & Klinman, DM DNAse treatment does not improve the survival of lupus prone (NZB / NZW) F 1

mice. Lupus 7, 223-230 (1998).
19. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56-59 (1998).
20. Bickerstaff, M. C. M. et al. Serum amyloid P component controls chromatin degradation and prevents anti-nuclear autoimmunity. Nature Medicine 5, 694-697 (1999).
21. Davis, J. C. et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68-76 (1999).
22. Nadano, D., Yasuda, T. & Kishi, K. Measurement of deoxyribonuclease 1 activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 39, 448-452 (1993)
23. Elkon, K. B., Parnassa, A. P. & Foster, C. L. Lupus autoantibodies target ribosomal P proteins. J. Exp. Med. 162, 459-471 (1985).
24. Moore, T. L., Weiss, T. D., Neucks, S. H., Baldassare, A. R. & Zuckner, J. Extractable nuclear antigens. Semin. Arthr. Rheumatism. 10, 309-318 (1981).
25. Polzar, B. & Mannherz, H. G. Nucleotide sequence of a full length cDNA clone encoding the deoxyribonuclease I from the rat parotid gland. Nucleic Acids Res. 18, 7151 (1990).
mice. Lupus 7, 223-230 (1998).
19. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56-59 (1998).
20. Bickerstaff, MCM et al. Serum amyloid P component controls chromatin degradation and prevents anti-nuclear autoimmunity. Nature Medicine 5, 694-697 (1999).
21. Davis, JC et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68-76 (1999).
22. Nadano, D., Yasuda, T. & Kishi, K. Measurement of deoxyribonuclease 1 activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 39, 448-452 (1993)
23. Elkon, KB, Parnassa, AP & Foster, CL Lupus autoantibodies target ribosomal P proteins. J. Exp. Med. 162, 459-471 (1985).
24. Moore, TL, Weiss, TD, Neucks, SH, Baldassare, AR & Zuckner, J. Extractable nuclear antigens. Semin. Arthr. Rheumatism. 10: 309-318 (1981).
25. Polzar, B. & Mannherz, HG Nucleotide sequence of a full length cDNA clone encoding the deoxyribonuclease I from the rat parotid gland. Nucleic Acids Res. 18, 7151 (1990).

Table 1 Table 1

Anti-nuclear antbodies (ANA) in Dnase 1 deficient and wt mice Anti-nuclear antbodies (ANA) in Dnase 1 deficient and wt mice

Table 2 Table 2

Sub-classification of ANA in high titer sera of Dnase 1 +/- and -/- animals Sub-classification of ANA in high titer sera of Dnase 1 +/- and - / - animals

Table 3 Table 3

Histopathology of Dnase 1 deficient animals (kidney) Histopathology of Dnase 1 deficient animals (kidney)

Table 4 Table 4

Phenotypic characterization of representative Dnase 1 deficient mice Phenotypic characterization of representative Dnase 1 deficient mice

Claims (24)

1. Verfahren zur Erzeugung eines transgenen, nichtmenschlichen Säugers, wobei eine embryonale Stammzelle mit einem geeigneten Dnase 1-Targeting Vektor transfiziert wird, stabile Zellklone isoliert werden, in denen das endogene Dnase 1 Gen durch homologe Rekombination mit Teilen des Targeting Vektors teilweise oder vollständig durch andere Sequenzen ersetzt oder teilweise oder vollständig zerstört wurde, in geeignet vorbereitete weibliche Tiere eines nichtmenschlichen Säugers implantiert werden und die erhaltenen Nachkommen auf das Vorhandensein der DNA-Einschleusung selektioniert werden dadurch gekennzeichnet, daß der gentechnisch veränderte, nichtmenschliche Säuger infolge der DNA-Einschleusung eine teilweise oder vollständige Reduktion der Dnase 1-Aktivität aufweist.1. A method for producing a transgenic, non-human mammal, wherein an embryonic stem cell is transfected with a suitable Dnase 1 targeting vector, stable cell clones are isolated in which the endogenous Dnase 1 gene is partially or completely by homologous recombination with parts of the targeting vector other sequences have been replaced or partially or completely destroyed, are implanted in suitably prepared female animals of a non-human mammal and the progeny obtained are selected for the presence of the DNA introduction are characterized in that the genetically modified, non-human mammal has a partial consequence of the DNA introduction or complete reduction of Dnase 1 activity. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Vektor ein geeigneter Rekombinationsvektor (Dnase 1 Targeting Vektor) verwendet wird und die teilweise oder vollständige Reduktion der Dnase 1-Aktivität durch das Rekombinationsereignis verursacht wird.2. The method according to claim 1, characterized in that a suitable vector Recombination vector (Dnase 1 targeting vector) is used and the partial or complete reduction of Dnase 1 activity caused by the recombination event becomes. 3. Verfahren nach Anspruch 2, indem durch einen geeigneten Rekombinationsvektor die Expression transdominant negativer Dnase 1 Mutanten erreicht wird, die die Aktivität von Dnase 1 reduzieren oder ausschalten.3. The method according to claim 2, by the by a suitable recombination vector Expression of transdominant negative Dnase 1 mutants is achieved which inhibits the activity of Reduce or switch off nose 1. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß durch das Rekombinationsereignis die Gesamtheit oder ein Teil des Dnase 1 Gens durch eine andere DNA Sequenz ausgetauscht wird.4. The method according to claim 2, characterized in that by the Recombination event all or part of the Dnase 1 gene by another DNA sequence is exchanged. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Sequenzaustausch zu einem mindestens teilweisen, vorzugsweise jedoch vollständigem Verlust der Transkription von Dnase 1 mRNA in allen Organen und Zellen des betreffenden transgenen nichtmenschlichen Säugers führt.5. The method according to claim 4, characterized in that the sequence exchange to one at least partial but preferably complete loss of transcription from Dnase 1 mRNA in all organs and cells of the transgenic non-human concerned Leads mammal. 6. Verfahren nach einem der vorhergehenden Ansprüche mit einem Vektor enthaltend die Sequenz, die mit der Zulassungsnummer AJ000062 in der EMBL Genbank deponiert wurden und gleichzeitig Sequenzen des pPNT Vektors enthalten (s. o.)6. The method according to any one of the preceding claims with a vector containing the Sequence deposited with the approval number AJ000062 in the EMBL gene bank and simultaneously contain sequences of the pPNT vector (see above) 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der nichtmenschliche Säuger ein Nagetier, vorzugsweise eine Maus ist. 7. The method according to any one of the preceding claims, characterized in that the non-human mammal is a rodent, preferably a mouse.   8. Nichtmenschlicher Säuger nach einem der Ansprüche 1-7.8. A non-human mammal according to any one of claims 1-7. 9. Transgener, nichtmenschlicher Säuger dadurch gekennzeichnet, daß er durch die gentechnische Veränderung eine verringerte Dnase 1 Aktivität, vorzugsweise aber keine Dnase 1 Aktivität mehr aufweist.9. Transgenic, non-human mammal characterized in that it is characterized by the genetic modification a reduced Dnase 1 activity, but preferably none Dnase has 1 more activity. 10. Transgener nichtmenschlicher Säuger nach Anspruch 9, dadurch gekennzeichnet, daß die Verringerung oder Defizienz der Dnase 1 Aktivität in allen Zellen und Organen des Säugers vorliegt.10. Transgenic non-human mammal according to claim 9, characterized in that the Reduction or deficiency of Dnase 1 activity in all mammalian cells and organs is present. 11. Transgener, nichtmenschlicher Säuger nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Gesamtheit oder ein Teil seines Dnase 1 Gens durch eine andere DNA Sequenz ausgetauscht ist.11. Transgenic, non-human mammal according to claim 9 or 10, characterized in that that all or part of its Dnase 1 gene is from another DNA sequence is exchanged. 12. Transgener, nichtmenschlicher Säuger nach Anspruch 11, dadurch gekennzeichnet, daß die das Dnase 1-Gen vollständig oder teilweise austauschende DNA die Sequenz das "Neo Gen", näher bezeichnet und identifiziert in der Literaturstelle Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991 und den darin angegebenen Literaturstellen, enthält.12. Transgenic, non-human mammal according to claim 11, characterized in that the the Dnase 1 gene completely or partially replacing DNA the sequence the "Neo Gen ", specified and identified in the reference Tybulewicz et al., Cell, Vol 65: 1153-1163, 1991 and the references cited therein. 13. Transgener, nichtmenschlicher Säuger nach einem der Ansprüche 9-12 dadurch gekennzeichnet, daß er ein Nagetier, vorzugsweise eine Maus ist.13. Transgenic, non-human mammal according to one of claims 9-12 characterized in that it is a rodent, preferably a mouse. 14. Säuger nach einem der oben aufgeführten Ansprüche (1-14), dadurch gekennzeichnet, daß er zusätzlich natürliche und/oder gentechnische Veränderungen, vorzugsweise zusätzliche Transgene, teilweise oder vollständige Deletion von anderen nicht Dnase 1 Genen, teilweise oder vollständiger Ersatz oder Austausch von nicht Dnase 1 Genen durch andere DNS Sequenzen, insbesondere eine C1Q oder eine SAP Defizienz aufweist.14. Mammal according to one of the above claims (1-14), characterized in that he additionally natural and / or genetic modifications, preferably additional Transgenic, partial or complete deletion of other non-Dnase 1 genes, partial or complete replacement or replacement of non-Dnase 1 genes with other DNA Sequences, especially a C1Q or a SAP deficiency. 15. Rekombinationsvektor (Dnase 1 Targeting Vektor) zur homologen Rekombination in Verfahren gemäß oben aufgeführter Ansprüche (1-7)15. Recombination vector (Dnase 1 targeting vector) for homologous recombination in Method according to the above claims (1-7) 16. Rekombinationsvektor, dadurch gekennzeichnet, daß er Sequenz, die mit der Zulassungsnummer AJ000062 in der EMBL Genbank deponiert wurde und gleichzeitig Sequenzen des pPNT Vektors enthält (s. o.).16. recombination vector, characterized in that it has sequence which with the Approval number AJ000062 has been deposited in the EMBL gene bank and at the same time Contains sequences of the pPNT vector (see above). 17. Verwendung eines Rekombinationsvektors gemäß einem der Ansprüche 15-16 zur Herstellung gentechnisch veränderter Zellen und/oder gentechnisch veränderter, transgener nichtmenschlicher Säuger. 17. Use of a recombination vector according to one of claims 15-16 for Production of genetically modified cells and / or genetically modified, transgenic non-human mammals.   18. Stabil transfizierter Zellklon, dadurch gekennzeichnet, daß die Gesamtheit oder ein Teil des Dnase 1 Gens durch eine andere DNA Sequenz, vorzugsweise durch DNA enthaltend die Sequenz wie unter Anspruch 16 beschrieben ausgetauscht wurde.18. Stable transfected cell clone, characterized in that all or part of the Dnase 1 gene by another DNA sequence, preferably by DNA containing the Sequence was exchanged as described in claim 16. 19. Verwendung eines stabil transfizierten Zellklons nach Anspruch 18 zur Herstellung gentechnisch veränderter, transgener nichtmenschlicher Säuger oder zur Herstellung einzelner Organe.19. Use of a stably transfected cell clone according to claim 18 for the production genetically modified, transgenic non-human mammals or for production individual organs. 20. Verwendung eines transgenen, nichtmenschlichen Säugers nach einem der Ansprüche 1-14, zum Austesten von Arzneistoffen oder Chemikalien, insbesondere mit Bezug auf SLE.20. Use of a transgenic, non-human mammal according to one of claims 1-14, for testing drugs or chemicals, especially with regard to SLE. 21. Modellsystem zur Analyse der Entstehung von SLE oder zur Analyse der Behandlung von Erkrankungen, insbesondere SLE, dadurch gekennzeichnet, daß es mindestens einen nichtmenschlichen Säuger nach einem der Ansprüche 1-14 enthält.21. Model system for analyzing the development of SLE or for analyzing the treatment of Diseases, especially SLE, characterized in that there is at least one contains non-human mammals according to any one of claims 1-14. 22. Verfahren zum Test neuer Arzneistoffe auf Wirksamkeit gegen SLE, dadurch gekennzeichnet, daß man einen nichtmenschlichen Säuger nach einem der Ansprüche 1-14 oder einen stabilen Zellklon nach Anspruch 18 oder eines Organs nach Anspruch 19 mit mindestens einem Arzneistoff (auch Arzneistoff Kombinationen) behandelt und dessen Wirkung auf SLE bestimmt.22. A method for testing new drugs for efficacy against SLE, thereby characterized in that a non-human mammal according to one of claims 1-14 or a stable cell clone according to claim 18 or an organ according to claim 19 treated at least one drug (also drug combinations) and its Effect on SLE determined. 23. Verfahren zum Test der Auswirkung genetischer Einflüsse auf die Entstehung von SLE, dadurch gekennzeichnet, daß man in einem nichtmenschlichen Säuger nach einem der Ansprüche 1-14 durch Kreuzung oder durch andere Verfahren weitere genetische Veränderungen insbesondere die C1Q und SAP Mutationen oder natürlich vorkommende Mutationen, insbesondere die der lpr, gld und die NZB/NZW Mausvarianten zugrundeliegenden Mutationen, einführt.23. Procedure for testing the impact of genetic influences on the development of SLE, characterized in that in a non-human mammal according to one of the Claims 1-14 by crossing or by other methods of further genetic Changes in particular the C1Q and SAP mutations or naturally occurring ones Mutations, especially those of the lpr, gld and the NZB / NZW mouse variants underlying mutations. 24. Verfahren zum Test der Auswirkung biologischer, chemischer oder physikalischer Einflüsse auf SLE, dadurch gekennzeichnet, daß man einen nichtmenschlichen Säuger nach einem der Ansprüche 1-14 viralen, bakteriellen, chemischen, physikalischen oder mutagenen Einwirkungen aussetzt.24. Method for testing the effects of biological, chemical or physical influences on SLE, characterized in that a non-human mammal according to one of the Claims 1-14 viral, bacterial, chemical, physical or mutagenic Exposures.
DE2000125855 2000-05-25 2000-05-25 Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening Pending DE10025855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2000125855 DE10025855A1 (en) 2000-05-25 2000-05-25 Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000125855 DE10025855A1 (en) 2000-05-25 2000-05-25 Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening

Publications (1)

Publication Number Publication Date
DE10025855A1 true DE10025855A1 (en) 2001-12-06

Family

ID=7643493

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000125855 Pending DE10025855A1 (en) 2000-05-25 2000-05-25 Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening

Country Status (1)

Country Link
DE (1) DE10025855A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028239A2 (en) * 2002-09-27 2004-04-08 Minoru Fujimoto Mammal model for autoimmune diseases with dysfunction of socs-1 gene
EP3351094A1 (en) * 2017-01-20 2018-07-25 Universitätsklinikum Hamburg-Eppendorf Animal model for drug development
WO2018134419A1 (en) * 2017-01-20 2018-07-26 Universitätsklinikum Hamburg-Eppendorf Animal model for drug development

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028239A2 (en) * 2002-09-27 2004-04-08 Minoru Fujimoto Mammal model for autoimmune diseases with dysfunction of socs-1 gene
WO2004028239A3 (en) * 2002-09-27 2004-07-15 Minoru Fujimoto Mammal model for autoimmune diseases with dysfunction of socs-1 gene
EP3351094A1 (en) * 2017-01-20 2018-07-25 Universitätsklinikum Hamburg-Eppendorf Animal model for drug development
WO2018134419A1 (en) * 2017-01-20 2018-07-26 Universitätsklinikum Hamburg-Eppendorf Animal model for drug development

Similar Documents

Publication Publication Date Title
Vikstrom et al. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy
Nasir et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes
Kuro-o et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing
Esmaeili et al. Premature death of TDP‐43 (A 315 T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis
Giovannini et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein
Print et al. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant
Xia et al. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A
Ordway et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse
Xu et al. Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice
Sleat et al. A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration
Zhang et al. Endonuclease G is required for early embryogenesis and normal apoptosis in mice
DE69233477T2 (en) TRANSGENIC NON-HUMAN ANIMALS WITHOUT PRION PROTEIN
Marazziti et al. Altered dopamine signaling and MPTP resistance in mice lacking the Parkinson's disease-associated GPR37/parkin-associated endothelin-like receptor
Zekri et al. Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP
Manson et al. Complementation of null CF mice with a human CFTR YAC transgene
AU2005302854B2 (en) Prematurely ageing mouse models for the role of DNA damage in ageing and intervention in ageing-related pathology
Tsukiyama et al. Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease
He et al. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits
He et al. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model
DE60034817T2 (en) METHOD FOR MODULATING THE ACTIVITY OF TH2 CELLS BY MODULATING THE ACTIVITY OF XBP-1
JP2008531004A (en) Transgenic animals as models for fibrotic diseases
DE10025855A1 (en) Producing transgenic mammal comprising reduced expression of DNAse I, useful for studying development of systemic lupus erythematosus and in drug screening
Guo et al. The commonly used β-actin-GFP transgenic mouse strain develops a distinct type of glomerulosclerosis
DE69629563T2 (en) DETERMINATION OF THE FUNCTION OF CALCINEURIN IN IMMUNOSUPPRESSION AND NEUROTOXICITY
Aigner et al. Genetically tailored pig models for translational biomedical research

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law