CZ37444U1 - Jaderné palivo s palivovým pokrytím ze Zr-slitiny - Google Patents
Jaderné palivo s palivovým pokrytím ze Zr-slitiny Download PDFInfo
- Publication number
- CZ37444U1 CZ37444U1 CZ2023-41329U CZ202341329U CZ37444U1 CZ 37444 U1 CZ37444 U1 CZ 37444U1 CZ 202341329 U CZ202341329 U CZ 202341329U CZ 37444 U1 CZ37444 U1 CZ 37444U1
- Authority
- CZ
- Czechia
- Prior art keywords
- fuel
- alloy
- chromium
- coating
- nuclear
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims description 38
- 229910001093 Zr alloy Inorganic materials 0.000 title claims description 21
- 239000003758 nuclear fuel Substances 0.000 title claims description 19
- 238000000576 coating method Methods 0.000 claims description 26
- 239000011651 chromium Substances 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 24
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 20
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 239000011135 tin Substances 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 18
- 239000011241 protective layer Substances 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910019580 Cr Zr Inorganic materials 0.000 description 2
- 229910019817 Cr—Zr Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910019912 CrN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
- G21C3/07—Casings; Jackets characterised by their material, e.g. alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Catalysts (AREA)
Description
Jaderné palivo s palivovým pokrytím ze Zr-slitiny
Oblast techniky
Technické řešení se týká pokrytí jaderného paliva ze standardních zirkoniových slitiny, na které je deponována ochranná vrstva. Palivové pokrytí disponuje zvýšenou korozní a mechanickou odolností. Palivové proutky tohoto jaderného paliva mají pokrytí ze zirkoniové slitiny a alespoň část palivového pokrytí je z vnější strany pokryta kombinovanou vrstvou chromu a nitridu zirkonia.
Dosavadní stav techniky
Prakticky všechny lehkovodní jaderné reaktory na světě využívají jaderné palivo v podobě keramického UO2 uzavřeného v palivovém pokrytí ze zirkoniových slitin. Tento standardní palivový systém je využíván v uvedených reaktorech desítky let a jsou s ním velmi dobré provozní zkušenosti. Zirkoniové slitiny mají dobrou korozní odolnost, velmi dobré mechanické vlastnosti a zároveň velmi nízký účinný průřez pro absorpci neutronů.
Již v 70. letech 20. století bylo navrženo, že by mělo být možné využívat tenkých povlakových vrstev na bázi chromu ke zlepšení chování palivového pokrytí. Ve varných reaktorech bylo také využíváno povlakování regulačních elementů ke zvýšení jejich odolnosti proti otěru při provozu. Tyto postupy byly dále zkoumány po havárii v japonské Fukušimě, kdy došlo k výraznému urychlení vývoje nových typů jaderných paliv v rámci vývoje tzv. Accident Tolerant Fuels. Jako jeden z hlavních kandidátů splňující požadavky na pokročilé palivové pokrytí se později ukázalo standardní zirkoniové pokrytí povlakované ochrannou vrstvou.
Ve světě jsou ve vývoji desítky možných typů ochranných vrstev nanášených různými metodami. Může jít o keramické materiály, kovové materiály, multivrstvy s tloušťkou od stovek nanometrů po desítky mikrometrů v závislosti na použité technologii.
Jako jeden z nejperspektivnějších kandidátů se ukázalo povlakování čistým chromem použitím fyzikální depozice z plynné fáze (PVD) a laserových technologií nebo studeného nástřiku. Bylo ovšem zjištěno, že při provozu a zejména při havarijních stavech dochází k inter-difuzi chromu do zirkoniové slitiny a jejímu následnému křehnutí. Toto křehnutí je způsobeno zejména skutečností, že chrom stabilizuje fázi β-Zr, která umožňuje rychlou difúzi kyslíku po celé stěně pokrytí, a tak ztrátu jeho celkové tažnosti. Druhým zjištěným problémem je vznik eutektika mezi zirkoniem a chromem a následné tavení kolem teploty 1330 °C.
Mezi další možné kandidáty ochranných vrstev patří keramické materiály jako TiN, CrN, TiAlN apod. a jejich kombinace, u kterých nedochází, nebo pouze omezeném rozsahu, k difúzi povlakového materiálu do substrátu. Díky své tvrdosti a dalším pozitivním vlastnostem jsou dlouhou dobu využívány v nástrojovém průmyslu a jsou s nimi bohaté zkušenosti. Tyto materiály mají velmi vysokou tvrdost, ale nejsou tažné a plastické. V plastické oblasti tak praskají a ztrácí svou ochrannou funkci již při malých deformacích. Tento problém lze částečně vyřešit nanášením multivrstev s různými typy keramických materiálů.
Tyto dva uvedené typy ochranných vrstev byly nanášeny pomocí PVD a konkrétně magnetronového naprašování nebo reaktivního magnetronového naprašování. V principu lze však tyto povlaky nanést také laserovými, chemickými nebo jinými fyzikálními metodami.
Cílem nanesení ochranných vrstev je zlepšení chování paliva v různých oblastech provozu jaderné elektrárny. Při standardním nominálním provozu dochází ke korozi palivového pokrytí a nabírání vodíku. Dále může při nominálním provozu docházet k poškození palivových proutků pomocí
- 1 CZ 37444 U1 kontaktu s cizími předměty nebo s jinými součástmi aktivní zóny reaktoru, což má vážné provozní a ekonomické důsledky pro provozovatele elektrárny.
V postulovaných havarijních stavech dochází k urychlení oxidace palivového pokrytí a následnému uvolnění velkého množství vodíku a tepla, které vedou k radikálnímu zhoršení havárie. Pokud podobně jako při havárii ve Fukušimě v roce 2011 selžou systémy havarijního chlazení reaktoru, může dojít k vážné havárii s vážnými následky pro samotnou elektrárnu, ale i okolní životní prostředí.
Po vyvezení jaderného paliva z jaderného reaktoru je před konečným uložením do hlubinného úložiště palivo skladováno. Při skladování, jak mokrém, tak suchém, může nastat mnoho jevů, které ohrožují integritu palivového pokrytí. Integrita musí být zachována tak, aby bylo možné s palivem v budoucnu bezpečně manipulovat. Mezi základní jevy ohrožující integritu patří tečení pokrytí, vodíková poškození, tj. DHC, reorientace nebo mechanický náraz.
Podstata technického řešení
Výše uvedené nedostatky jsou do značné míry odstraněny jaderným palivem s palivovým pokrytím ze Zr-slitiny podle tohoto technického řešení. Jeho podstatou je to, že palivové pokrytí ze Zr-slitiny obsahuje zirkonium v množství více než 80 % hmotn. a dále niob, cín a molybden, a na jeho povrchu je deponována vrstva nitridu zirkonia s obsahem dusíku až 20 % hmotn. o tloušťce 0,1 až 15 μm, na které je vrstva na bázi chromu s obsahem chromu více než 20 % hmotn. o tloušťce 0,5 až 50 μm.
Jaderné palivo je s výhodou tvořeno palivovou tyčí, která je alespoň na části svojí délky opatřena předmětným palivovým pokrytím.
K vyřešení problémů, které byly nalezeny pro uvedené koncepty, bylo proto navrženo využití kombinace kovových a keramických vrstev na bázi chromu (Cr) a nitridu zirkonia (ZrN). Chrom je znám svou velmi dobrou korozní odolností a odolností vůči radiačnímu poškození. Vrstva ZrN je velmi stabilní a k jejímu rozkladu nedochází ani při nejvyšších teplotách, proto je vhodnou difúzní bariérou.
Řešení spočívá v navrhovaném konceptu doplnění spodní keramické ZrN vrstvy, s hmotnostním poměrem prvků Zr/N 5 až 95 %, vrstvou kovového chromu, aby byla zvýšena odolnost proti haváriím. Vrstva ZrN s hmotnostním poměrem prvků Zr/N 5 až 95 % musí být dostatečně silná, tj. 0,1 až 15 pm tak, aby nedošlo k nežádoucí difúzi chromu do Zr-slitiny a zároveň zabraňovala vzniku Cr-Zr eutektika. Tento princip je základem navrhovaného řešení. Při absenci chromu ve fázi β-Zr nedochází ke zvýšení její stabilizace, a proto kyslík, který prodifunduje do Zr-substrátu, formuje zrna a-Zr(O), kde se koncentruje. Ve zbývající části pokrytí je ho tedy méně, čímž je zvýšena tažnost materiálu.
Nanášení je prováděno pomocí PVD metod. Nanesená vrstva sníží korozi, navodíkování a také zvýší odolnosti proti otěru v normálních provozních podmínkách i při manipulaci s palivem. Je také chemicky kompatibilní se substrátem na bázi zirkonia, což vylučuje tvorbu nežádoucích fází nebo eutektik i za extrémně vysokých teplot. Zároveň sníží oxidaci a deformaci v havarijních podmínkách, což vede ke zvýšení bezpečnostních rezerv lehkovodních reaktorů jak tradičních, tak malých modulárních.
- 2 CZ 37444 U1
Objasnění výkresů
Jaderné palivo s palivovým pokrytím ze Zr-slitiny podle tohoto technického řešení bude podrobněji popsáno na konkrétním příkladu provedení s pomocí přiloženého obr. 1, kde je v řezu znázorněna zirkoniová slitina s deponovanými vrstvami ZrN a Cr.
Příklady uskutečnění technického řešení
Pokrytí jaderného paliva na bázi zirkoniové slitiny s ochrannými vrstvami ZrN a Cr se podle technického řešení skládá z části palivového pokrytí, tj. Zr-slitina a deponované multi-vrstvy nitridu zirkonia a chromu. Palivové pokrytí je libovolná zirkoniová slitina používaná jako palivové pokrytí, viz obr. 1.
Příkladné jaderné palivo s palivovým pokrytím ze Zr-slitiny má palivové pokrytí ze Zr-slitiny obsahující zirkonium v množství 95 % hmotn., niob, cín, molybden a další prvky a na jeho povrchu je deponována vrstva nitridu zirkonia s obsahem dusíku 15 % hmotn. o tloušťce 0,4 μm, na které je vrstva na bázi chromu s obsahem chromu 80 % hmotn. o tloušťce 40 pm.
V dalším příkladném provedení je jaderné palivo s palivovým pokrytím ze Zr-slitiny obsahující zirkonium v množství 80 % hmotn., niob, cín, molybden a další prvky a na jeho povrchu je deponována vrstva nitridu zirkonia s obsahem dusíku 5 % hmotn. o tloušťce 12 pm, na které je vrstva na bázi chromu s obsahem chromu 30 % hmotn. o tloušťce 0,8 pm.
Příkladné jaderné palivo je tvořeno palivovou tyčí, která je alespoň na části svojí délky opatřena předmětným palivovým pokrytím.
Výroba pokrytí jaderného paliva s kombinovanou vrstvou pro zvýšení odolnosti je podle tohoto technického řešení následující.
Na palivové pokrytí ze Zr-slitiny se pomocí PVD metod nanese tenká vrstva ZrN a následně vrstva Cr.
Uvedené technické řešení zvyšuje korozní a mechanickou odolnost i do vysokých teplot, nad bodem vzniku eutektika Cr-Zr- 1330 °C. Tento koncept paliva tak poskytuje jadernému palivu bezpečnostní rezervu i v případě nadprojektových havárií a umožňuje dosažení vyššího využití paliva.
Průmyslová využitelnost
Jaderné palivo podle tohoto technického řešení nalezne použití zejména u lehkovodních jaderných reaktorů.
Claims (2)
- NÁROKY NA OCHRANU1. Jaderné palivo s palivovým pokrytím ze Zr-slitiny, vyznačující se tím, že palivové pokrytí ze Zr-slitiny obsahuje zirkonium v množství více než 80 % hmotn. a dále niob, cín a molybden; a na 5 jeho povrchu je deponována vrstva nitridu zirkonia s obsahem dusíku až 20 %. hmotn. o tloušťce0,1 až 15 μm, na které je vrstva na bázi chromu s obsahem chromu více než 20 % hmotn. o tloušťce 0,5 až 50 pm.
- 2. Jaderné palivo podle nároku 1, vyznačující se tím, že je tvořeno palivovou tyčí, která je alespoň na části svojí délky opatřena předmětným palivovým pokrytím.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CZ2023-41329U CZ37444U1 (cs) | 2023-09-27 | 2023-09-27 | Jaderné palivo s palivovým pokrytím ze Zr-slitiny |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CZ2023-41329U CZ37444U1 (cs) | 2023-09-27 | 2023-09-27 | Jaderné palivo s palivovým pokrytím ze Zr-slitiny |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CZ37444U1 true CZ37444U1 (cs) | 2023-11-02 |
Family
ID=88695308
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CZ2023-41329U CZ37444U1 (cs) | 2023-09-27 | 2023-09-27 | Jaderné palivo s palivovým pokrytím ze Zr-slitiny |
Country Status (1)
| Country | Link |
|---|---|
| CZ (1) | CZ37444U1 (cs) |
-
2023
- 2023-09-27 CZ CZ2023-41329U patent/CZ37444U1/cs active IP Right Grant
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yeom et al. | Cold spray technology in nuclear energy applications: A review of recent advances | |
| Cheng et al. | Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding | |
| Kim et al. | Development status of accident-tolerant fuel for light water reactors in Korea | |
| CN104395069B (zh) | 在核环境中抗氧化的多层材料 | |
| Kim et al. | Development of surface modified Zr cladding by coating technology for ATF | |
| KR20180031052A (ko) | 지르코늄 합금 클래딩 상의 내부식성 및 내마모성 피막 | |
| US4445942A (en) | Method for forming nuclear fuel containers of a composite construction and the product thereof | |
| Kim et al. | Characterization of eutectic reaction of Cr and Cr/CrN coated zircaloy accident tolerant fuel cladding | |
| KR20240014490A (ko) | 지르코늄 합금 핵연료 클래딩 상에 캐소드 아크 적용된 무작위 그레인 구조 코팅 | |
| CZ37444U1 (cs) | Jaderné palivo s palivovým pokrytím ze Zr-slitiny | |
| RU2740701C2 (ru) | Тепловыделяющий элемент с композитным защитным покрытием | |
| US20030000926A1 (en) | Laminated rare earth structure and method of making | |
| Jin et al. | Investigation on the oxidation and corrosion behaviors of FeCrZr alloy as a protective material for Zr cladding | |
| US20240212870A1 (en) | Effective coating morphology to protect zr alloy cladding from oxidation and hydriding | |
| CZ38363U1 (cs) | Jaderné palivo s palivovým pokrytím ze Zr-slitiny | |
| Chen et al. | Microstructure evolution and failure mechanism of Cr-coated Zry-4 in air and steam at 1200° C | |
| Karpyuk et al. | Accident tolerant fuel with chromium-coated fuel-rod cladding | |
| CZ38768U1 (cs) | Jaderné palivo s palivovým pokrytím ze Zr-slitiny | |
| Kim et al. | Development of Cr-Al Coating on Zircaloy-4 for Enhanced Accident Tolerant Fuel | |
| Khlifa et al. | Protective coatings for accident tolerant fuel claddings-a review | |
| Hu et al. | Zirconium Alloy Coatings: Advances in Research and Applications | |
| CZ308454B6 (cs) | Povlak vhodný pro ochranu vnějšího povrchu pokrytí jaderného paliva, použití povlaku, způsob výroby povlaku a jaderné palivo | |
| Zabirov et al. | Analysis of Thermophysical Justification of the Applicability of Accident Tolerant Fuel for Nuclear Power Plants: Current Concepts, Technologies, and Chemical Stability of Accident Tolerant Fuel | |
| Yu | High-Temperature Steam and Pressurised Water Corrosion Behaviours of Nitride Ceramic Coatings for Accident Tolerant Fuel Claddings | |
| Zuyok et al. | CORROSION RESISTANCE OF TRADITIONAL AND ADVANCED FUEL ROD CLADDING MATERIALS FOR WATER-COOLED REACTORS. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FG1K | Utility model registered |
Effective date: 20231102 |