CZ310090B6 - A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide - Google Patents

A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide Download PDF

Info

Publication number
CZ310090B6
CZ310090B6 CZ2022-340A CZ2022340A CZ310090B6 CZ 310090 B6 CZ310090 B6 CZ 310090B6 CZ 2022340 A CZ2022340 A CZ 2022340A CZ 310090 B6 CZ310090 B6 CZ 310090B6
Authority
CZ
Czechia
Prior art keywords
weight
solution
fibers
fiberization
preparation
Prior art date
Application number
CZ2022-340A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CZ2022340A3 (en
Inventor
Jan Macák
Jan Dr. Ing. Macák
Veronika Čičmancová
Veronika Ing. Čičmancová
Luděk Hromádko
Luděk Ing. Hromádko
Stanislav Ĺ lang
Šlang Stanislav Ing., Ph.D.
Roman Bulánek
Bulánek Roman prof. Ing., Ph.D.
Original Assignee
Univerzita Pardubice
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univerzita Pardubice filed Critical Univerzita Pardubice
Priority to CZ2022-340A priority Critical patent/CZ310090B6/en
Publication of CZ2022340A3 publication Critical patent/CZ2022340A3/en
Publication of CZ310090B6 publication Critical patent/CZ310090B6/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Fibers (AREA)

Abstract

The method of preparation of sub-micron and/or micron fibres consisting of crystalline TiO2 is described, when the spinning of the solution for the spinning and formation of precursory fibres, which contains 5 to 15 wt. % of bis(oxalato)oxotitanate, 30 to 40 wt. % of hydrogen peroxide, 30 to 40 wt. % of water, 10 to 25 wt. % of polyvinylpyrrolidone with molar mass of 360,000 to 1,300,000 g/mol or 8 to 15 wt. % of polyethylene glycol with molar mass of 200,000 to 700,000 g/mol or 10 to 20 wt. % of the mixture of polyvinylpyrrolidone and polyethylene glycol in the mass ratio of 2:1 to 5:1 is used in the preparation of precursory fibres with 400 to 5800 nm in diameter. These precursory fibres are calcined at 450 to 650 °C for 45 to 75 minutes, whereas carrier polymer(s) and organic constituents are burned out from their structure and ammonium bis(oxalato)peroxotitanate is decomposed and the formed titanium is oxidised to crystalline TiO2, which preserves the fibrous structure of the precursory fibres. That way the sub-micron and/or micron fibres consisting of crystalline TiO2 with 250 to 1850 nm in diameter are formed.

Description

Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlaken tvorenych krystalickym oxidem titanicitymMethod of preparation of submicron and/or micron fibers formed by crystalline titanic oxide

Oblast technikyField of technology

Vynâlez se tÿkâ zpùsobu pripravy submikronovÿch a/nebo mikronovÿch vlâken tvorenÿch krystalickÿm oxidem titanicitÿm (TiO?).The invention relates to a method of preparing submicron and/or micron fibers formed by crystalline titanium oxide (TiO?).

Dosavadni stav technikyCurrent state of the art

Oxid titanicitÿ (TiO?) se diky svÿm fotokatalytickÿm [1 az 3], senzorickÿm [4] a optickÿm [5] vlastnostem a vysoké biokompatibilite [6] tesi velkému zâjmu v rùznÿch aplikacich. V soucasné dobe se v laboratornich podminkâch TiO? bezne pripravuje v nekolika rùznÿch submikronovÿch formâch, jako jsou nanocastice (nanoparticles), nanotrubice (nanotubes) a nanovlakna (nanofibers).Due to its photocatalytic [1 and 3], sensory [4] and optical [5] properties and high biocompatibility [6], titanium dioxide (TiO?) is of great interest in various applications. Currently, under laboratory conditions, TiO? it is commonly prepared in several different submicron forms, such as nanoparticles, nanotubes and nanofibers.

Obvyklÿ zpùsob pripravy nanovlaken TiO? spociva v elektrostatickém zvlaknovani [7 az 12] nebo odstredivém zvlaknovani [13] vhodného prekurzorniho roztoku a dalsim zpracovani takto pripravenÿch prekurzornich vlaken pomoci vysokoteplotniho vÿpalu na pozadovanÿ krystalickÿ TiO? ve forme nanovlaken. Prekurzorni roztok obsahuje organokovovÿ prekurzor titanu, jako napr. butoxid titanu, nebo isopropoxid titanu a vhodnÿ nosnÿ polymer, obvykle polyvinylpyrrolidon (PVP), polyvinylalkohol (PVA), apod. Jako rozpoustedla se pritom pouzivaji organicka rozpoustedla, jako napr. etanol, metanol, dimethylacetamid apod. V nekterÿch publikacich se objevuji také rùznâ aditiva, napr. anorganické kyseliny a soli. Tento zpùsob pripravy nanovlaken TiO? je velmi detailne popsan v prehledovém clanku [1?].Usual method of preparation of TiO nanofibers? or in electrostatic fiberization [7 to 12] or centrifugal fiberization [13] of a suitable precursor solution and further processing of precursor fibers prepared in this way with the help of high-temperature firing to the desired crystalline TiO? in the form of nanofibers. The precursor solution contains an organometallic titanium precursor, such as titanium butoxide, or titanium isopropoxide and a suitable carrier polymer, usually polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), etc. Organic solvents are used as solvents, such as ethanol, methanol, dimethylacetamide, etc. Various additives also appear in some publications, e.g. inorganic acids and salts. This method of preparing TiO nanofibers? is described in great detail in the review article [1?].

Dalsi zpùsob pripravy nanovlaken TiO? predstavuje hydrotermalni zpùsob [14], nebo templatovani (templating).Another way to prepare TiO nanofibers? represents the hydrothermal method [14], or templating.

Celkove lze konstatovat, ze zadnÿ z techto postupù neni vzhledem k pouzitÿm technologiim pouzitelnÿ v prùmyslovém meritku, protoze je obtizné je provést na prùmyslové ùrovni pri zachovani kvality vlaken a ekonomiky vÿroby; soucasne neni zadnÿ z nich vzhledem k pouzivanÿm surovinam ekologickÿ.Overall, it can be concluded that none of these procedures is applicable on an industrial scale due to the technologies used, because it is difficult to carry them out on an industrial scale while maintaining fiber quality and production economy; at the same time, none of them is ecological due to the raw materials used.

Cilem vynâlezu je tak navrhnout zpùsoby pripravy submikronovÿch a/nebo mikronovÿch vlâken tvorenÿch krystalickÿm TiO?, kterÿ by odstranil nevÿhody stavu techniky.The aim of the invention is to propose methods of preparing submicron and/or micron fibers formed by crystalline TiO?, which would eliminate the disadvantages of the state of the art.

Seznam nepatentové literaturyList of non-patent literature

[1] A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO? surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.[1] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO? surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.

[?] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, The preparation and characterization of highly efficient titanium oxide-based photofunctional materials, Annu. Rev. Mater. Res. 35 (?005) 1-?7.[?] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, The preparation and characterization of highly efficient titanium oxide-based photofunctional materials, Annu. Rev. Mater. Res. 35 (?005) 1-?7.

[3] J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO? nanotube layers as highly efficient photocatalysts, Small 3 (?007) 300-304.[3] J.M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Self-organized TiO? nanotube layers as highly efficient photocatalysts, Small 3 (?007) 300-304.

[4] P. M. Perillo, D. F. Rodriguez, The gas sensing properties at room temperature of TiO? nanotubes by anodization, Sensor. Actuat. B-Chem, 171 (?01?) 639-643.[4] P. M. Perillo, D. F. Rodriguez, The gas sensing properties at room temperature of TiO? nanotubes by anodization, Sensor. Actuator. B-Chem, 171(?01?) 639-643.

- 1 CZ 310090 B6- 1 CZ 310090 B6

[5] E.Manea et al., Antireflective Coatings with Nanostructured TiCL Thin Films for Silicon Solar Cells, Journal of Nano Research 21 (2012) 89-94.[5] E.Manea et al., Antireflective Coatings with Nanostructured TiCL Thin Films for Silicon Solar Cells, Journal of Nano Research 21 (2012) 89-94.

[6] Z. Fei Yin, L. Wu, H. Gui Yang, Y. Hua Su, Recent progress in biomedical applications of titanium dioxide, Phys. Chem. Chem. Phys. 15 (2013) 4844.[6] Z. Fei Yin, L. Wu, H. Gui Yang, Y. Hua Su, Recent progress in biomedical applications of titanium dioxide, Phys. Chem. Chem. Phys. 15 (2013) 4844.

[7] X. Zhang, S. Xu, G. Han, Fabrication and photocatalytic activity of TiCF nanofiber membrane, Materials Letters 63 (2009) 1761-1763.[7] X. Zhang, S. Xu, G. Han, Fabrication and photocatalytic activity of TiCF nanofiber membrane, Materials Letters 63 (2009) 1761-1763.

[8] J. Li et al., Electrospinning Synthesis and Photocatalytic Activity ofMesoporous TiO? Nanofibers, ScientificWorid Journal, Volume 2012, Article ID 154939.[8] J. Li et al., Electrospinning Synthesis and Photocatalytic Activity of Mesoporous TiO? Nanofibers, ScientificWorid Journal, Volume 2012, Article ID 154939.

[9] M. Zukalova et al., Facile Conversion of Electrospun TiCF into Titanium Nitride/Oxynitride Fibers, Chem. Mater. 22 (2010) 4045-4055.[9] M. Zukalova et al., Facile Conversion of Electrospun TiCF into Titanium Nitride/Oxynitride Fibers, Chem. Mater. 22 (2010) 4045-4055.

[10] H. Hou et al., Efficient Photocatalytic Activities of T1O2 Hollow Fibers with Mixed Phases and Mesoporous Walls, Scientific Reports 5 (2015) 15228.[10] H. Hou et al., Efficient Photocatalytic Activities of T1O2 Hollow Fibers with Mixed Phases and Mesoporous Walls, Scientific Reports 5 (2015) 15228.

[11] A. S. Yasin et al., Influence of TixZr(l_x)O2 nanofibers composition on the photocatalytic activity towards organic pollutants degradation and water splitting, Ceramics International 41(2015)11876-11885.[11] A. S. Yasin et al., Influence of TixZr(l_x)O2 nanofibers composition on the photocatalytic activity towards organic pollutants degradation and water splitting, Ceramics International 41(2015)11876-11885.

[12] A.A. Altaf et al., Titania nano-fibers: A review on synthesis and utilities Inorganica Chimica Acta 501 (2020) 119268.[12] A.A. Altaf et al., Titania nano-fibers: A review on synthesis and utilities Inorganica Chimica Acta 501 (2020) 119268.

[13] H. Vasquez, H. Gutierrez, K. Lozano, G. Leal, Titanium Dioxide Nanofibers through Forcespinning, Journal of Engineered Fibers and Fabrics 10 (2015) 129-136.[13] H. Vasquez, H. Gutierrez, K. Lozano, G. Leal, Titanium Dioxide Nanofibers through Forcespinning, Journal of Engineered Fibers and Fabrics 10 (2015) 129-136.

[14] Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing, J. Mater. Res., 20 (2005) 1063-1070.[14] Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing, J. Mater. Res., 20 (2005) 1063-1070.

Podstata vynalezuThe essence of the invention

Cile vynalezu se dosâhne zpùsobem pfipravy submikronovÿch a/nebo mikronovÿch vlâken 0 prùmeru 250 az 1850 nm tvofenych krystalickym oxidem titanicitym (T1O2), pfi kterém se jako prekurzor T1O2 pouzije amonium bisoxalâto-oxotitanât (C4HnNOnTi), jako nosnÿ polymer polyvinylpyrrolidon (PVP) s molarni hmotnosti 360 000 az 1 300 000 g/mol, polyetylen glykol (PEG) s molarni hmotnosti 200 000 az 700 000 g/mol nebo smës PVP a PEG v porneru 2:1 az 5:1. Pntom plati, ze s rostouci molarni hmotnosti nosného polymeru/polymerù klesâ prùmër pnpravenÿch vlâken.The aim of the invention is achieved by the preparation of submicron and/or micron fibers 0 with a diameter of 250 to 1850 nm made of crystalline titanic oxide (T1O2), in which ammonium bisoxalato-oxotitanate (C4HnNOnTi) is used as a T1O2 precursor, and polyvinylpyrrolidone (PVP) with molar with a weight of 360,000 to 1,300,000 g/mol, polyethylene glycol (PEG) with a molar weight of 200,000 to 700,000 g/mol or a mixture of PVP and PEG in a 2:1 to 5:1 porner. Therefore, it is true that with the growing molar mass of the carrier polymer/polymers, the diameter of the prepared fibers decreases.

Pfi zpùsobu pfipravy submikronovÿch a/nebo mikronovÿch vlâken tvofenÿch krystalickÿm T1O2 podle vynâlezu se bud’ smichânim vsech slozek primo pfipravi roztok pro zvlâknovâni a tvorbu prekurzomich vlâken, nebo se samostatnë pfipravi zâsobni roztok titanu bez nosného polymeru/polymerù a ten se az nâslednë smichâ s dalsim slozkami roztoku pro zvlâknovâni a tvorbu prekurzomich vlâken. Jako rozpoustëdlo pro pfipravu roztoku pro zvlâknovâni a pfipadnë i zâsobniho roztoku titanu se pouzije voda, pfipadnë v kombinaci s kyselinou octovou nebo citronovou, a peroxid vodiku. Nize je v pfikladech 1 az 4 popsân postup s pfimou pfipravou roztoku pro zvlâknovâni a tvorbu prekurzomich vlâken, v pfikladech 5 az 7 pak postup s vyuzitim zâsobniho roztoku titanu.In the method of preparing submicron and/or micron fibers formed by crystalline T1O2 according to the invention, a solution for fiberization and the formation of precursor fibers is either prepared directly by mixing all the components, or a stock solution of titanium without carrier polymer/polymers is prepared separately and then mixed with another components of the solution for fiberization and the formation of precursor fibers. Water, possibly in combination with acetic or citric acid, and hydrogen peroxide are used as a solvent for the preparation of the solution for fiberization and possibly also the titanium stock solution. Below, examples 1 to 4 describe the procedure with the direct preparation of a solution for fiberization and the formation of precursor fibers, and examples 5 to 7 describe the procedure using a titanium stock solution.

-2CZ 310090 B6-2CZ 310090 B6

Postup bez pouziti zâsobniho roztoku titanuProcedure without using titanium stock solution

Roztok pro zvlaknovani a tvorbu prekurzornich vlâken se pripravi rozpustenim bisoxylâtooxotitanâtu (5 az 15 % hmotn. vÿsledného roztoku) v technickém peroxidu (s vÿhodou 30%) (30 az 40 % hmotn. vÿsledného roztoku) a vode (30 az 40 % hmotn. vÿsledného roztoku), s vÿhodou s pridavkem kyseliny citronové nebo octové (az 12 % hmotn. vÿsledného roztoku). Takto vytvorena smes se michâ magnetickÿm michadlem za zvÿsené teploty (40 ±5 °C) az do ùplného rozpusteni bisoxalâto-oxotitanâtu a vzniku cirého roztoku peroxokomplexu. Poté se necha volne chladnout na teplotu mistnosti. Po vychladnuti se k nemu pridâ PVP s molârni hmotnosti 360 000 az 1 300 000 g/mol v mnozstvi 10 az 25 % hmotn. vÿsledného roztoku nebo PEG s molarni hmotnosti 200 000 az 700 000 g/mol v mnozstvi 8 az 15 % hmotn. vÿsledného roztoku nebo smes PVP a PEG v pomeru 2:1 az 5:1 v mnozstvi 10 az 20 % hmotn. vÿsledného roztoku, a zbytek do 100 % hmotn. se doplni vodou. Na poradi pridavani PVP a PEG pritom nezâlezi. Takto vytvorena smes se nasledne promicha az do vytvoreni homogenniho roztoku.The solution for fiberization and the formation of precursor fibers is prepared by dissolving bisoxylâtooxotitanate (5 to 15% by weight of the resulting solution) in technical peroxide (with an advantage of 30%) (30 to 40% by weight of the resulting solution) and water (30 to 40% by weight of the resulting solution solution), preferably with the addition of citric or acetic acid (from 12% by weight of the resulting solution). The mixture created in this way is stirred with a magnetic stirrer at elevated temperatures (40 ± 5 °C) until the bisoxalate-oxotitanate is completely dissolved and a clear solution of the peroxocomplex is formed. Then let it cool freely to room temperature. After cooling, PVP with a molar mass of 360,000 to 1,300,000 g/mol is added to it in an amount of 10 to 25% by weight. of the resulting solution or PEG with a molar mass of 200,000 to 700,000 g/mol in an amount of 8 to 15% by weight. of the resulting solution or a mixture of PVP and PEG in a ratio of 2:1 to 5:1 in the amount of 10 to 20% by weight. of the resulting solution, and the rest up to 100 wt.% top up with water. The order of adding PVP and PEG does not matter. The mixture created in this way is then mixed until a homogeneous solution is formed.

Pro snizeni povrchového napeti a snadnejsi iniciaci zvlaknovani je mozné do této smesi pridat na ùkor vody etanol, a to v mnozstvi az 20 % hmotn.In order to reduce the surface tension and facilitate the initiation of fiberization, it is possible to add ethanol to this mixture in addition to water, in an amount of up to 20% by weight.

Alternativne je mozné pridat kyselinu octovou nebo citronovou a/nebo vodu do smesi amonium bisoxalâto-oxotitanâtu v technickém peroxidu vodiku pred vytvorenim roztoku. Na poradi pridâvam jednotlivÿch slozek nezâlezi.Alternatively, it is possible to add acetic or citric acid and/or water to the mixture of ammonium bisoxalâto-oxotitanâtu in technical hydrogen peroxide before forming the solution. The order of adding the individual components does not matter.

Postup s pouzitim zâsobniho roztoku titanuProcedure using titanium stock solution

Priprava roztoku pro zvlâknovâni a tvorbu prekurzornich vlâken probihâ v tomto pripade ve dvou krocich.In this case, the preparation of the solution for fiberization and the formation of precursor fibers takes place in two steps.

Krok 1: priprava zâsobniho roztoku titanuStep 1: preparation of titanium stock solution

Zâsobni roztok titanu s koncentraci titanu 0,3 az 0,65 M se pripravi rozpustenim prislusného mnozstvi amonium bisoxalâto-oxotitanâtu v technickém peroxidu vodiku. Takto vytvorenâ smes se intenzivne michâ za zvÿsené teploty (40 ± 5 °C) az do ùplného rozpusteni bisoxalâtooxotitanâtu a vzniku cirého roztoku peroxokomplexu. Amonium bisoxalato oxotitanât se pritom oxiduje peroxidem vodiku na bisoxalâto peroxotitanât, pricemz vznikâ oranzovo-cervenÿ cirÿ roztok. Po zchlazeni roztoku na teplotu mistnosti (s vÿhodou volne) se do nej pridâ kyselina octovâ (CHaCOOH) nebo kyselina citronovâ (C6H8O7) v mnozstvi az 12 % hmotn., kterâ stabilizuje zâsobni roztok titanu a soucasne mâ pozitivni vliv na usporâdâni krystalù a tim i na velikost specifického povrchu vytvârenÿch vlâken, a pripadne i voda v mnozstvi do pozadovaného objemu, pricemz celkovÿ obsah vody v zâsobnim roztoku je az 40 % hmotn. Pri vytvâreni zâsobniho roztoku titanu pro okamzitou spotrebu neni pridavek kyseliny octové nutnÿ. Alternativne je mozné pridat kyselinu octovou nebo citronovou a/nebo vodu do smesi amonium bisoxalâto-oxotitanâtu v technickém peroxidu vodiku, pred vytvorenim roztoku. Na poradi pridâvam jednotlivÿch slozek nezâlezi.A titanium stock solution with a titanium concentration of 0.3 to 0.65 M is prepared by dissolving the appropriate amount of ammonium bisoxalâto-oxotitanât in technical hydrogen peroxide. The mixture created in this way is intensively stirred at elevated temperatures (40 ± 5 °C) until the bisoxal-tooxotitanate is completely dissolved and a clear solution of the peroxocomplex is formed. Ammonium bisoxalato oxotitanât is oxidized by hydrogen peroxide to bisoxalâto peroxotitanât, resulting in the formation of an orange-red clear solution. After cooling the solution to room temperature (with the benefit of free air), acetic acid (CHaCOOH) or citric acid (C6H8O7) is added to it in an amount of up to 12% by weight, which stabilizes the titanium stock solution and at the same time has a positive effect on the arrangement of the crystals and thus on the size of the specific surface of the created fibers, and possibly also water in the amount to the required volume, whereby the total water content in the stock solution is up to 40% by weight. When creating a titanium stock solution for immediate consumption, the addition of acetic acid is not necessary. Alternatively, it is possible to add acetic or citric acid and/or water to the mixture of ammonium bisoxalâto-oxotitanâtu in technical hydrogen peroxide, before forming the solution. The order of adding the individual components does not matter.

Vÿhodou takto pripraveného zâsobniho roztoku titanu je, ze diky absenci etanolu je dlouhodobe (az 2 mesice) stabilni a pouzitelnÿ.The advantage of the titanium stock solution prepared in this way is that, thanks to the absence of ethanol, it is stable and usable for a long time (up to 2 months).

Krok 2: priprava roztoku pro zvlâknovâni a tvorbu prekurzornich vlâkenStep 2: preparation of the solution for fiberization and formation of precursor fibers

K takto pripravenému zâsobnimu roztoku titanu se pridâ PVP s molârni hmotnosti 360 000 az 1 300 000 g/mol v mnozstvi 10 az 25 % hmotn. vÿsledného roztoku nebo PEG s molârni hmotnosti 200 000 az 700 000 g/mol v mnozstvi 8 az 15 % hmotn. vÿsledného roztoku nebo smes PVP a PEG v pomeru 2:1 az 5:1 v mnozstvi 10 az 20 % hmotn. vÿsledného roztoku, a zbytek do 100 % hmotn. se doplni vodou. Na poradi pridâvâni PVP a PEG pritom nezâlezi. TaktoPVP with a molar mass of 360,000 to 1,300,000 g/mol in the amount of 10 to 25% by weight is added to the titanium stock solution prepared in this way. of the resulting solution or PEG with a molar mass of 200,000 to 700,000 g/mol in an amount of 8 to 15% by weight. of the resulting solution or a mixture of PVP and PEG in a ratio of 2:1 to 5:1 in the amount of 10 to 20% by weight. of the resulting solution, and the rest up to 100 wt.% top up with water. The order of adding PVP and PEG does not matter. Like this

- 3 CZ 310090 B6 vytvorena smes se nasledne promicha az do vytvoreni homogenniho roztoku. Koncentrace polymeru/polymerù v tomto roztoku je pritom 5 az 25 % hmotn. V pripade potreby se tento roztok doplni vodou do pozadovaného objemu. Podil vody je az 40 % hmotn.- 3 CZ 310090 B6 the resulting mixture is then mixed until a homogeneous solution is formed. The concentration of the polymer/polymers in this solution is 5 to 25% by weight. If necessary, this solution is supplemented with water to the required volume. The share of water is up to 40% by weight.

Pro snizeni povrchového napeti a snadnejsi iniciaci zvlaknovani je mozné do této smesi pridat na ùkor vody etanol, a to v mnozstvi az 20 % hmotn.In order to reduce the surface tension and facilitate the initiation of fiberization, it is possible to add ethanol to this mixture in addition to water, in an amount of up to 20% by weight.

Roztok pro zvlaknovani a tvorbu prekurzornich vlaken pripravenÿ nekterÿm z vÿse popsanÿch zpùsobù se nasledne zvlakni vhodnou technologii zvlaknovani. Jako nejvhodnejsi se pritom jevi odstredivé zvlaknovani, které nevyzaduje vysoké elektrické napeti, a pri kterém vznikaji velké a snadno manipulovatelné chomace prekurzornich vlaken bez elektrického naboje, které se ukladaji na kolektory, takze odpada nutnost vlakna pracne sloupavat z podkladového materialu (napr. netkané textilie), jako je tomu napr. pri vyuziti elektrostatického zvlaknovani. Dalsi vÿhodou odstredivého zvlaknovani je, ze ma vetsi vÿtezek vlaken v case nez ostatni metody, jako napr. elektrostatické zvlaknovani, hydrotermalni procesy, templating, tazeni apod. a umoznuje pripravit prùmyslova mnozstvi materialu v kratkém case. Krome této technologie vsak lze pro vÿrobu submikronovÿch nebo mikronovÿch vlaken pouzit jakoukoliv dalsi znamou technologii pro pripravu submikronovÿch nebo mikronovÿch vlaken, zejména elektrostatické zvlaknovani.The solution for fiberization and formation of precursor fibers prepared by one of the methods described above is then fiberized using a suitable fiberization technology. Centrifugal fiberization, which does not require high electrical voltage, and in which large and easy-to-manipulate clumps of precursor fibers without electrical charge are deposited on the collectors, thus eliminating the need to laboriously peel the fiber from the base material (e.g. non-woven fabric) appears to be the most suitable. , such as e.g. when using electrostatic fiberization. Another advantage of centrifugal fiberization is that it has a greater yield of fibers in time than other methods, such as electrostatic fiberization, hydrothermal processes, templating, drawing, etc. and makes it possible to prepare industrial quantities of material in a short time. In addition to this technology, however, any other known technology for the preparation of submicron or micron fibers can be used for the production of submicron or micron fibers, especially electrostatic fiberization.

Pri vhodném nastaveni podminek odstredivého zvlaknovani proudi do zvlaknovaci komory vzduch s teplotou 25 az 45 °C a relativni vlhkosti 15 az 40 % a zvlaknovaci hlava se otaci rychlosti 1000 az 10 000/min, s vÿhodou 2000 az 7000/min.When the conditions of centrifugal fiberization are properly set, air with a temperature of 25 to 45 °C and a relative humidity of 15 to 40% flows into the fiberization chamber, and the fiberization head rotates at a speed of 1000 to 10,000/min, with an output of 2,000 to 7,000/min.

Prùmery prekurzornich vlaken pripravenÿch odstredivÿm zvlâknovânim dosahuji cca 400 az 5800 nm.The diameters of precursor fibers prepared by centrifugal fiberization reach approx. 400 to 5800 nm.

Takto pripravena prekurzorni vlakna se nasledne kalcinuji, pricemz se z nich pùsobenim tepla odstrani jejich organické slozky a amonium bisoxalâto-oxotitanât se pretvori na krystalickÿ TiO2, kterÿ si zachovâvâ vlakennou strukturu prekurzornich vlaken a vytvan submikronova a/nebo mikronova vlakna s prùmerem v rozmezi 250 az 1850 nm. Kalcinace pritom mùze obecne probihat v rozsahu teploty 450 az 650 °C, kdy dochazi jak k rozkladu nosného polymeru(ù), tak i premene bisoxalâto-oxotitanâtu. Prekurzorni vlakna setrvaji na kalcinacni teplote po dobu 45 az 75 minut. Vÿhodnÿ narùst teploty behem kalcinace je pritom 0,5 az 5 °C/min.The precursor fibers prepared in this way are then calcined, whereby their organic components are removed by heat and the ammonium bisoxalâto-oxotitanât is transformed into crystalline TiO2, which preserves the fiber structure of the precursor fibers and creates submicron and/or micron fibers with a diameter between 250 and 1850 nm. Calcination can generally take place in the temperature range of 450 to 650 °C, when both the decomposition of the carrier polymer(s) and the conversion of bisoxalâto-oxotitanât occur. The precursor fibers remain at the calcination temperature for 45 to 75 minutes. A suitable temperature increase during calcination is 0.5 to 5 °C/min.

Takto pripravena submikronova a/nebo mikronova vlakna maji vysokou mechanickou integritu a excelentni texturni vlastnosti s jedinecnou porézni 3D strukturou. Diky své strukture maji velkÿ mernÿ povrch (az 100 m2/g), kterÿ je klicovÿ pro jejich aktivitu a reaktivitu v uvazovanÿch aplikacich.Submicron and/or micron fibers prepared in this way have high mechanical integrity and excellent textural properties with a unique porous 3D structure. Due to their structure, they have a large surface area (up to 100 m 2 /g), which is key to their activity and reactivity in binding applications.

Objasneni vÿkresùClarification of the drawing

Na pnlozenÿch vÿkresech je na obr. 1 SEM snimek submikronovÿch vlaken tvorenÿch krystalickÿm TiO2 podle vynalezu pri zvetseni 2000krat a na obr. 2 SEM snimek stejnÿch submikronovÿch vlaken pri zvetseni 15 000krat. Na obr. 3 je SEM snimek mikronovÿch vlaken tvorenÿch krystalickÿm TiO2 podle vynalezu pri zvetseni 2000krat a na obr. 4 SEM snimek stejnÿch mikronovÿch vlaken pri zvetseni 80 000krat. Na obr. 5 je SEM snimek mikronovÿch vlaken tvorenÿch krystalickÿm TiO2 podle vynalezu pri zvetseni 2000krat a na obr. 6 SEM snimek techto mikronovÿch vlaken pri zvetseni 100 000krat. Na obr. 7 je pak rentgenovÿ difraktogram submikronovÿch vlaken tvorenÿch krystalickÿm TiO2, kterÿ doklâdâ, ze vlakna maji krystalickou struktury anatasu a rutilu.In the provided drawings, fig. 1 SEM image of submicron fibers formed by crystalline TiO2 according to the invention at a magnification of 2000 times and in fig. 2 SEM images of the same submicron fibers at a magnification of 15,000 times. In fig. 3 is an SEM image of micron fibers formed by crystalline TiO2 according to the invention at a magnification of 2000 times and in fig. 4 SEM images of the same micron fibers at a magnification of 80,000 times. In fig. 5 is an SEM image of micron fibers formed by crystalline TiO2 according to the invention at a magnification of 2000 times and in fig. 6 SEM image of these micron fibers at a magnification of 100,000 times. In fig. 7 is an X-ray diffractogram of submicron fibers made of crystalline TiO2, which proves that the fibers have a crystalline structure of anatase and rutile.

- 4 CZ 310090 B6- 4 CZ 310090 B6

Pnklady uskutecneni vynâlezuExamples of the implementation of the invention

Nize je pro nâzornost uvedeno 9 konkrétnich pnkladù pripravy submikronovÿch a/nebo mikronovÿch vlâken tvorenÿch krystalickÿm TiO2 zpùsobem podle vynâlezu.For clarity, 9 specific examples of the preparation of submicron and/or micron fibers made of crystalline TiO2 according to the invention are given below.

V prikladech 1 az 5 je popsanâ varianta s pripravou roztoku pro zvlâknovâni a tvorbu prekurzornich vlâken bez zâsobniho roztoku titanu. V prikladech 6 az 9 je pak popsanâ varianta s pripravou zâsobniho roztoku titanu.Examples 1 to 5 describe a variant with the preparation of a solution for fiberization and the formation of precursor fibers without a titanium stock solution. Examples 6 to 9 describe a variant with the preparation of a titanium stock solution.

Vlâkna byla ve vsech prikladech pred i po kalcinaci charakterizovâna pomoci elektronové mikroskopie. Obrazovâ analÿza pro vyhodnoceni prùmeru pritom byla provedena pomoci softwaru na minimâlne 4 snimcich z elektronového mikroskopu pro kazdÿ vzorek s minimâlnim poctem mereni n >60.In all examples, the fibers were characterized by electron microscopy before and after calcination. Image analysis for the evaluation of the average was performed with the help of the software on a minimum of 4 images from an electron microscope for each sample with a minimum number of measurements n >60.

Priklad 1Example 1

Do kâdinky o objemu 50 ml se umistilo 0,6 g (cca 5 % hmotn.) amonium bisoxalâto-oxotitanâtu (C4HiiNOiiTi), 4 g (cca 33,1 % hmotn.) 30% technického peroxidu, 3,4 g vody (cca 28,1 % hmotn.) a 0,6 g (cca 5 % hmotn.) kyseliny citronové (C6HsO?). Takto vytvorenâ smes se zahrâla na teplotu 35 °C a intenzivne se michala magnetickÿch michadlem az do vzniku oranzovocerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok pri neustâlém michâni nechal volne vychladnout na teplotu mistnosti, kdy se do nej pridalo 0,5 g (cca 4,1 % hmotn.) 96% etanolu a 3 g (cca 24,8 % hmotn.) PVP (K90).0.6 g (approx. 5% by weight) of ammonium bisoxalâto-oxotitanât (C4HiiNOiiTi), 4 g (approx. 33.1% by weight) of 30% technical peroxide, 3.4 g of water (approx. 28.1% by weight) and 0.6 g (approx. 5% by weight) of citric acid (C6HsO?). The mixture created in this way was heated to a temperature of 35 °C and intensively stirred with a magnetic stirrer until the formation of an orange-red clear solution of the peroxo complex (approx. 30 minutes). Then, with constant stirring, this solution was allowed to cool freely to room temperature, when 0.5 g (approx. 4.1% by weight) of 96% ethanol and 3 g (approx. 24.8% by weight) of PVP (K90 ).

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 2000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 1,6 g prekurzornich vlâken s prùmerem 1023 ±169 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 2000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 1.6 g of precursor fibers with a diameter of 1023 ±169 nm were prepared by spinning.

0,923 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 75 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,048 g vlâken tvorenÿch krystalickÿm TiO2 s prùmerem 629 ±293 nm - viz obr. 1, na kterém je SEM snimek techto vlâken pri zvetseni 2000krât a obr. 2, na kterém je SEM snimek techto vlâken pri zvetseni 15 000krât. Na obr. 7 je pak rentgenovÿ difraktogram submikronovÿch vlâken tvorenÿch krystalickÿm TiO2, kterÿ doklâdâ, ze vlâkna maji krystalickou struktury anatasu a rutilu.0.923 g of these precursor fibers were then placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 75 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.048 g of fibers made of crystalline TiO2 with a diameter of 629 ±293 nm - see fig. 1, which shows an SEM image of these fibers at a magnification of 2000 times, and fig. 2, which shows a SEM image of these fibers at a magnification of 15,000 times. In fig. 7 is an X-ray diffractogram of submicron fibers made of crystalline TiO2, which proves that the fibers have a crystalline structure of anatase and rutile.

Priklad 2Example 2

Do kâdinky o objemu 50 ml se umistilo 0,6 g (cca 5 % hmotn.) amonium bisoxalâto-oxotitanâtu (C4H11NO11Ti), 4 g (cca 32,8 % hmotn.) 30% technického peroxidu a 4,6 g (cca 37,7 % hmotn.) vody. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku oranzovo-cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok pri neustâlém michâni nechal volne vychladnout na teplotu mistnosti, kdy se do nej pridalo 1,2 g (cca 9,8 % hmotn.) 96% etanolu a 1,8 g (cca 14,8 % hmotn.) PEG.0.6 g (approx. 5% by weight) of ammonium bisoxalâto-oxotitanât (C4H11NO11Ti), 4 g (approx. 32.8% by weight) of 30% technical peroxide and 4.6 g (approx. 37 .7% by weight) of water. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an orange-red clear solution of the peroxocomplex (approx. 30 minutes). Then, with constant stirring, this solution was allowed to cool freely to room temperature, when 1.2 g (approx. 9.8% by weight) of 96% ethanol and 1.8 g (approx. 14.8% by weight) of PEG were added to it. .

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 6000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 0,8 g prekurzornich vlâken s prùmerem 600 ±144 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 6000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 0.8 g of precursor fibers with a diameter of 600 ±144 nm were prepared by spinning.

0,486 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 5 °C/min zahrâla na teplotu 650 °C a setrvala na ni 45 minut. Pritom se z vlâken0.486 g of these precursor fibers were then placed in a ceramic crucible. In it, this fiber was heated to a temperature of 650 °C at a speed of 5 °C/min and remained there for 45 minutes. At the same time, from the fibers

- 5 CZ 310090 B6 odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,032 g vlaken TiO2 s prûmerem 388 ±176 nm.- 5 CZ 310090 B6 removed all organic components and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.032 g of TiO2 fibers with a diameter of 388 ±176 nm.

Priklad 3Example 3

Do kâdinky o objemu 50 ml se umistilo 0,6 g (cca 4,8 % hmotn.) amonium bisoxalâtooxotitanâtu (C4HiiNOiiTi), 4 g (cca 32,0 % hmotn.) 30% technického peroxidu a 5,7 g (cca 45,6 % hmotn.) vody. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku oranzovo-cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok pri neustâlém michâni nechal volne vychladnout na teplotu mistnosti, kdy se do nej pridalo 1,2 g (cca 9,6 % hmotn.) 96% etanolu a 1,0 g (cca 8,0 % hmotn.) PEG.0.6 g (approx. 4.8% by weight) of ammonium bisoxalâtooxotitanât (C4HiiNOiiTi), 4 g (approx. 32.0% by weight) of 30% technical peroxide and 5.7 g (approx. 45 .6% by weight) of water. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an orange-red clear solution of the peroxocomplex (approx. 30 minutes). Then, with constant stirring, this solution was allowed to cool freely to room temperature, when 1.2 g (approx. 9.6% by weight) of 96% ethanol and 1.0 g (approx. 8.0% by weight) of PEG were added to it. .

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 6000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 0,6 g prekurzornich vlâken s prûmerem 488 ±132 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 6000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. By spinning, 0.6 g of precursor fibers with a diameter of 488 ±132 nm were prepared.

0,423 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 5 °C/min zahrâla na teplotu 650 °C a setrvala na ni 45 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,025 g vlâken TiO2 s prûmerem 365 ±155 nm.0.423 g of these precursor fibers were then placed in a ceramic crucible. In it, this fiber was heated to a temperature of 650 °C at a speed of 5 °C/min and remained there for 45 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.025 g of TiO2 fibers with a diameter of 365 ±155 nm.

Priklad 4Example 4

Do kâdinky o objemu 50 ml se umistilo 1,2 g (cca 9,4 % hmotn.) amonium bisoxalâtooxotitanâtu (C4HiiNOiiTi), 4 g (cca 31,3 % hmotn.) 30% technického peroxidu a 4 g (cca 31,3 % hmotn.) vody. Takto vytvorenâ smes se zahrâla na teplotu 45 °C a intenzivne se michala magnetickÿch michadlem az do vzniku oranzovo-cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok pri neustâlém michâni nechal volne vychladnout na teplotu mistnosti, kdy se do nej pridalo 1,2 g (cca 9,4 % hmotn.) 96% etanolu a 2,4 g (cca 18,8 % hmotn.) PVP (K90).1.2 g (approx. 9.4% by weight) of ammonium bisoxalâtooxotitanât (C4HiiNOiiTi), 4 g (approx. 31.3% by weight) of 30% technical peroxide and 4 g (approx. 31.3 % wt.) of water. The mixture created in this way was heated to a temperature of 45 °C and intensively stirred with a magnetic stirrer until the formation of an orange-red clear solution of the peroxocomplex (approx. 30 minutes). Then, with constant stirring, this solution was allowed to cool freely to room temperature, when 1.2 g (approx. 9.4% by weight) of 96% ethanol and 2.4 g (approx. 18.8% by weight) of PVP were added to it. (K90).

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 2500/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 1,5 g prekurzornich vlâken s prûmerem 1785 ±502 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 2500/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 1.5 g of precursor fibers with a diameter of 1785 ±502 nm were prepared by spinning.

1,031 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 0,5 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,087 g vlâken TiO2 o prûmeru 845 ±393 nm.1.031 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 0.5 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.087 g of TiO2 fibers with a diameter of 845 ±393 nm.

Priklad 5Example 5

Do kâdinky o objemu 50 ml se umistilo 4,8 g (cca 11,1 % hmotn.) amonium bisoxalâtooxotitanâtu (C4H11NO11Ti), 16 g (cca 37 % hmotn.) 30% technického peroxidu, 8 g (cca 18,5 % hmotn.) vody a 3 g (cca 6,9 % hmotn.) 100% kyseliny octové. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku oranzovocerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok pri neustâlém michâni nechal volne vychladnout na teplotu mistnosti, kdy se do nej pridalo 7 g (cca 16,2 % hmotn.) 96% etanolu a 4,5 g (cca 10,4 % hmotn.) PVP (K90).4.8 g (approx. 11.1% by weight) of ammonium bisoxalâtooxotitanât (C4H11NO11Ti), 16 g (approx. 37% by weight) of 30% technical peroxide, 8 g (approx. 18.5% by weight) were placed in a beaker with a volume of 50 ml .) of water and 3 g (approx. 6.9% by weight) of 100% acetic acid. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until an orange-red clear solution of the peroxocomplex was formed (approx. 30 minutes). Then, with constant stirring, this solution was allowed to cool freely to room temperature, when 7 g (approx. 16.2% by weight) of 96% ethanol and 4.5 g (approx. 10.4% by weight) of PVP (K90 ).

- 6 CZ 310090 B6- 6 CZ 310090 B6

Takto pripraveny roztok pro zvlaknovani se zvlaknil na laboratornim zarizeni pro odstredivé zvlaknovani Cyclone G1 (vyrobce Pardam). Otacky zvlaknovaci hlavy byly nastaveny na 3000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 3,8 g prekurzornich vlâken s prùmerem 1271 ±387 nm.The fiberization solution prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spins of the fiberizing head were set to 3000/min, the relative humidity in the device chamber was 15%, and the temperature was 40 °C. 3.8 g of precursor fibers with a diameter of 1271 ±387 nm were prepared by spinning.

0,848 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiÜ2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vysledkem bylo 0,062 g vlâken TiÜ2 o prùmeru 691 ±267 nm.0.848 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiÜ2. Free cooling to room temperature followed. The result was 0.062 g of TiÜ2 fibers with a diameter of 691 ±267 nm.

Priklad 6Example 6

Roztok pro zvlâknovâni a pripravu prekurzornich vlâken se pripravil ve dvou krocich. V prvnim kroku se pripravil zâsobni roztok titanu s koncentraci titanu 0,44M stabilizovany kyselinou octovou. Takto pripraveny zâsobni roztok byl stabilni po nekolik tydnù. Ve druhém kroku se odebrala câst zâsobniho roztoku a smichala se s nosnym polymerem - v daném pripade PVP a PEG.The solution for fiberization and preparation of precursor fibers was prepared in two steps. In the first step, a titanium stock solution with a titanium concentration of 0.44M stabilized with acetic acid was prepared. The stock solution prepared in this way was stable for several weeks. In the second step, part of the stock solution was taken and mixed with the carrier polymer - in this case PVP and PEG.

Krok 1Step 1

Priprava zâsobniho roztoku titanu s koncentraci 0,44M.Preparation of titanium stock solution with a concentration of 0.44M.

Do kâdinky o objemu 50 ml se umistilo 6 g (12 % hmotn.) amonium bisoxalâto-oxotitanâtu (C4HiiNOiiTi) a 20 g (40 % hmotn.) 30% technického peroxidu. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickych michadlem az do vzniku intenzivne cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok nechal volne vychladnout na teplotu mistnosti. Takto pripraveny roztok se prevedl do odmerné banky o objemu 50 ml, kde se k nemu pridalo 2,5 g (5 % hmotn.) 100% kyseliny octové (CHaCOOH) a poté se doplnil 21,5 g (43 % hmotn.) vody do celkové hmotnosti roztoku 50 g. Tim se pripravil zâsobni roztok titanu s molârni koncentraci titanu 0,44 mmol/g.6 g (12% by weight) of ammonium bisoxalâto-oxotitanât (C4HiiNOiiTi) and 20 g (40% by weight) of 30% technical peroxide were placed in a beaker with a volume of 50 ml. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an intensely red clear solution of the peroxocomplex (approx. 30 minutes). Then this solution was allowed to cool freely to room temperature. The solution thus prepared was transferred to a volumetric flask with a volume of 50 ml, where 2.5 g (5% by weight) of 100% acetic acid (CHaCOOH) was added to it, and then 21.5 g (43% by weight) of water was added. up to the total weight of the solution 50 g. This prepared a titanium stock solution with a titanium molar concentration of 0.44 mmol/g.

Krok 2Step 2

Do kâdinky o objemu 100 ml se prelilo 15 g (cca 71,8 % hmotn.) zâsobniho roztoku titanu pripraveného v kroku 1 a k nemu se pridalo 1,2 g (cca 5,7 % hmotn.) 96% etanolu, 1,25 g (cca 6 % hmotn.) PEG a 3,45 g (cca 16,5 % hmotn.) PVP (K90). Na poradi pridâvâni PEG a PVP nezâlezi. Tato smes se nâsledne promichâvala 3 hodiny a vytvoreny roztok se jeste tentyz den dâle zpracoval.15 g (approx. 71.8% by weight) of the titanium stock solution prepared in step 1 was poured into a beaker with a volume of 100 ml, and 1.2 g (approx. 5.7% by weight) of 96% ethanol, 1.25 g (approx. 6% by weight) of PEG and 3.45 g (approx. 16.5% by weight) of PVP (K90). The order of adding PEG and PVP does not matter. This mixture was subsequently stirred for 3 hours and the resulting solution was further processed on the same day.

Takto pripraveny roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vyrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 5000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 2,6 g prekurzornich vlâken s prùmerem 3253 ±982 nm.The fiberization solution prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 5000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 2.6 g of precursor fibers with a diameter of 3253 ±982 nm were prepared by spinning.

1,153 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vysledkem bylo 0,069 g vlâken TiO2 o prùmeru 1161 ±289 nm - viz obr. 3, na kterém je SEM snimek techto vlâken pri zvetseni 2000krât a obr. 4, na kterém je SEM snimek techto vlâken pri zvetseni 80 000krât.1.153 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.069 g of TiO2 fibers with a diameter of 1161 ±289 nm - see fig. 3, which shows an SEM image of these fibers at a magnification of 2000 times, and fig. 4, which shows an SEM image of these fibers at a magnification of 80,000 times.

- 7 CZ 310090 B6- 7 CZ 310090 B6

Priklad 7Example 7

Roztok pro zvlaknovani a pripravu prekurzornich vlaken se pripravil ve dvou krocich. V prvnim kroku se pripravil zâsobni roztok titanu s koncentraci titanu 0,6 M stabilizovanÿ kyselinou octovou. Takto pripravenÿ zasobni roztok byl stabilni po nekolik tÿdnû. Ve druhém kroku se odebrala cast zâsobniho roztoku a smichala se s nosnÿm polymerem - v daném pripade PVP a PEG.The solution for fiberization and preparation of precursor fibers was prepared in two steps. In the first step, a titanium stock solution with a titanium concentration of 0.6 M stabilized with acetic acid was prepared. The stock solution prepared in this way was stable for several weeks. In the second step, part of the stock solution was taken and mixed with a carrier polymer - in this case PVP and PEG.

Krok 1Step 1

Priprava zâsobniho roztoku titanu s koncentraci 0,6M.Preparation of titanium stock solution with a concentration of 0.6M.

Do kâdinky o objemu 50 ml kâdinky se umistilo 8,2 g (cca 16,4 % hmotn.) amonium bisoxalâtooxotitanâtu (C4HiiNOiiTi) a 27,3 g (cca 54,6 % hmotn.) 30% technického peroxidu. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku intenzivne cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok nechal volne vychladnout na teplotu mistnosti. Takto pripravenÿ roztok se prevedl do odmerné banky o objemu 50 ml, kde se k nemu pridalo 3 g (6 % hmotn.) 100% kyseliny octové (CHaCOOH) a poté se doplnil 11,5 g (23 % hmotn.) vody do celkové hmotnosti roztoku 50 g. Tim se pripravil zâsobni roztok titanu s molârni koncentraci titanu 0,6 mmol/g.8.2 g (approx. 16.4% by weight) of ammonium bisoxalâtooxotitanât (C4HiiNOiiTi) and 27.3 g (approx. 54.6% by weight) of 30% technical peroxide were placed in a beaker with a volume of 50 ml. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an intensely red clear solution of the peroxocomplex (approx. 30 minutes). Then this solution was allowed to cool freely to room temperature. The solution thus prepared was transferred to a volumetric flask with a volume of 50 ml, where 3 g (6% by weight) of 100% acetic acid (CHaCOOH) was added to it, and then 11.5 g (23% by weight) of water was added to the total weight of the solution 50 g. This prepared a titanium stock solution with a titanium molar concentration of 0.6 mmol/g.

Krok 2Step 2

Do kâdinky o objemu 100 ml se prelilo 15 g (cca 60,7 % hmotn.) zâsobniho roztoku titanu pripraveného v kroku 1 a k nemu se pridalo 5 g (cca 20,2 % hmotn.) 96% etanolu, 3,25 g (cca 13,2 % hmotn.) PEG a 3,45 g (cca 14 % hmotn.) PVP (K90). Na poradi pridâvâni PEG a PVP nezâlezi. Tato smes se nâsledne promichâvala 3 hodiny a vytvorenÿ roztok se jeste tentÿz den dâle zpracoval.15 g (approx. 60.7% by weight) of the titanium stock solution prepared in step 1 was poured into a beaker with a volume of 100 ml, and 5 g (approx. 20.2% by weight) of 96% ethanol, 3.25 g ( approx. 13.2% by weight) of PEG and 3.45 g (approx. 14% by weight) of PVP (K90). The order of adding PEG and PVP does not matter. This mixture was subsequently stirred for 3 hours and the resulting solution was further processed the same day.

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 6000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 2,9 g prekurzornich vlâken s prûmerem 3642 ±1297 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 6000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 2.9 g of precursor fibers with a diameter of 3642 ±1297 nm were prepared by spinning.

2,165 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,097 g vlâken TiO2 o prûmeru 1318 ±299 nm - viz obr. 5, na kterém je SEM snimek techto vlâken pri zvetseni 2000krât a obr. 6, na kterém je SEM snimek techto vlâken pri zvetseni 100 000krât.2.165 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.097 g of TiO2 fibers with a diameter of 1318 ±299 nm - see fig. 5, which shows an SEM image of these fibers at a magnification of 2000 times, and fig. 6, which shows an SEM image of these fibers at a magnification of 100,000 times.

Priklad 8Example 8

Roztok pro zvlâknovâni a pripravu prekurzornich vlâken se pripravil ve dvou krocich. V prvnim kroku se pripravil zâsobni roztok titanu s koncentraci titanu 0,65 M stabilizovanÿ kyselinou octovou. Takto pripravenÿ zâsobni roztok byl stabilni po nekolik tÿdnû. Ve druhém kroku se odebrala câst zâsobniho roztoku a smichala se s nosnÿm polymerem - v daném pripade PVP a PEG.The solution for fiberization and preparation of precursor fibers was prepared in two steps. In the first step, a titanium stock solution with a titanium concentration of 0.65 M stabilized with acetic acid was prepared. The stock solution prepared in this way was stable for several weeks. In the second step, part of the stock solution was taken and mixed with a carrier polymer - in this case PVP and PEG.

Krok 1Step 1

Priprava zâsobniho roztoku titanu s koncentraci 0,65M.Preparation of titanium stock solution with a concentration of 0.65M.

- 8 CZ 310090 B6- 8 CZ 310090 B6

Do kâdinky o objemu 50 ml se umistilo 9 g (18 % hmotn.) amonium bisoxalâto-oxotitanâtu (C4HiiNOiiTi) a 27,3 g (54,6 % hmotn.) 30% technického peroxidu. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku intenzivne cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok nechal volne vychladnout na teplotu mistnosti. Takto pripravenÿ roztok se prevedl do odmerné banky o objemu 50 ml, kde se k nemu pridalo 6 g (12 % hmotn.) 100% kyseliny octové (CHaCOOH) a poté se doplnil 7,7 g (15,4 % hmotn.) vody do celkové hmotnosti roztoku 50 g. Tim se pripravil zâsobni roztok titanu s molârni koncentraci titanu 0,65 mmol/g.9 g (18% by weight) of ammonium bisoxalâto-oxotitanât (C4HiiNOiiTi) and 27.3 g (54.6% by weight) of 30% technical peroxide were placed in a beaker with a volume of 50 ml. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an intensely red clear solution of the peroxocomplex (approx. 30 minutes). Then this solution was allowed to cool down to room temperature. The solution thus prepared was transferred to a volumetric flask with a volume of 50 ml, where 6 g (12% by weight) of 100% acetic acid (CHaCOOH) was added to it, and then 7.7 g (15.4% by weight) of water was added. up to the total weight of the solution 50 g. This prepared a titanium stock solution with a titanium molar concentration of 0.65 mmol/g.

Krok 2Step 2

Do kâdinky o objemu 100 ml se prelilo 15 g (cca 57,3 % hmotn.) roztoku titanu pripraveného v kroku 1 a k nemu se pridalo 6,5 g (cca 24,8 % hmotn.) 96% etanolu, 1,25 g (cca 4,8 % hmotn.) PEG a 3,45 g (cca 13,2 % hmotn.) PVP (K90). Na poradi pridâvâni PEG a PVP nezâlezi. Tato smes se nâsledne promichâvala 3 hodiny a vytvorenÿ roztok se jeste tentÿz den dâle zpracoval.15 g (approx. 57.3% by weight) of the titanium solution prepared in step 1 was poured into a beaker with a volume of 100 ml, and 6.5 g (approx. 24.8% by weight) of 96% ethanol, 1.25 g (approx. 4.8% by weight) of PEG and 3.45 g (approx. 13.2% by weight) of PVP (K90). The order of adding PEG and PVP does not matter. This mixture was subsequently stirred for 3 hours and the resulting solution was further processed the same day.

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 7000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 2,4 g prekurzornich vlâken s prùmerem 4264 ±1466 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory device (manufactured by Pardam). The spinning heads were set to 7000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 2.4 g of precursor fibers with a diameter of 4264 ±1466 nm were prepared by spinning.

0,998 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiO2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,062 g vlâken TiO2 o prùmeru 1345 ±415 nm.0.998 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiO2. Free cooling to room temperature followed. The result was 0.062 g of TiO2 fibers with a diameter of 1345 ±415 nm.

Priklad 9Example 9

Roztok pro zvlâknovâni a pripravu prekurzornich vlâken se pripravil ve dvou krocich. V prvnim kroku se pripravil zâsobni roztok titanu s koncentraci titanu 0,65 M stabilizovanÿ kyselinou octovou. Takto pripravenÿ zâsobni roztok byl stabilni po nekolik tÿdnù. Ve druhém kroku se odebrala câst zâsobniho roztoku a smichala se s nosnÿm polymerem - v daném pripade PVP a PEG.The solution for fiberization and preparation of precursor fibers was prepared in two steps. In the first step, a titanium stock solution with a titanium concentration of 0.65 M stabilized with acetic acid was prepared. The stock solution prepared in this way was stable for several weeks. In the second step, part of the stock solution was taken and mixed with a carrier polymer - in this case PVP and PEG.

Krok 1Step 1

Priprava zâsobniho roztoku titanu s koncentraci 0,65M.Preparation of titanium stock solution with a concentration of 0.65M.

Do kâdinky o objemu 50 ml se umistilo 9 g (18 % hmotn.) amonium bisoxalâto-oxotitanâtu (C4H11NO11Ti) a 27,3 g (54,6 % hmotn.) 30% technického peroxidu. Takto vytvorenâ smes se zahrâla na teplotu 40 °C a intenzivne se michala magnetickÿch michadlem az do vzniku intenzivne cerveného cirého roztoku peroxokomplexu (cca 30 minut). Poté se tento roztok nechal volne vychladnout na teplotu mistnosti. Takto pripravenÿ roztok se prevedl do odmerné banky o objemu 50 ml, kde se k nemu pridalo 6 g (12 % hmotn.) 100% kyseliny octové (CHaCOOH) a poté se doplnil 7,7 g (15,4 % hmotn.) vody do celkové hmotnosti roztoku 50 g. Tim se pripravil zâsobni roztok titanu s molârni koncentraci titanu 0,65 mmol/g.9 g (18% by weight) of ammonium bisoxalâto-oxotitanât (C4H11NO11Ti) and 27.3 g (54.6% by weight) of 30% technical peroxide were placed in a beaker with a volume of 50 ml. The mixture created in this way was heated to a temperature of 40 °C and intensively stirred with a magnetic stirrer until the formation of an intensely red clear solution of the peroxocomplex (approx. 30 minutes). Then this solution was allowed to cool down to room temperature. The solution thus prepared was transferred to a volumetric flask with a volume of 50 ml, where 6 g (12% by weight) of 100% acetic acid (CHaCOOH) was added to it, and then 7.7 g (15.4% by weight) of water was added. up to the total weight of the solution 50 g. This prepared a titanium stock solution with a titanium molar concentration of 0.65 mmol/g.

Krok 2Step 2

Do kâdinky o objemu 100 ml se prelilo 15 g (cca 62,8 % hmotn.) roztoku titanu pripraveného v kroku 1 a k nemu se pridalo 6,5 g (cca 27,2 % hmotn.) 96% etanolu, 0,7 g (cca 2,9 % hmotn.) PEG a 1,7 g (cca 7,1 % hmotn.) PVP (K90). Na poradi pridâvâm PEG a PVP nezâlezi. Tato smes se nâsledne promichâvala 3 hodiny a vytvorenÿ roztok se jeste tentÿz den dâle zpracoval.15 g (approx. 62.8% by weight) of the titanium solution prepared in step 1 was poured into a 100 ml beaker and 6.5 g (approx. 27.2% by weight) of 96% ethanol, 0.7 g (approx. 2.9% by weight) of PEG and 1.7 g (approx. 7.1% by weight) of PVP (K90). The order of adding PEG and PVP does not matter. This mixture was subsequently stirred for 3 hours and the resulting solution was further processed the same day.

- 9 CZ 310090 B6- 9 CZ 310090 B6

Takto pripravenÿ roztok pro zvlâknovâni se zvlâknil na laboratornim zarizeni pro odstredivé zvlâknovâni Cyclone G1 (vÿrobce Pardam). Otâcky zvlâknovaci hlavy byly nastaveny na 4000/min, relativni vlhkost v komore pristroje byla 15 %, teplota 40 °C. Zvlâknovânim se pripravilo 1,3 g prekurzornich vlâken s prûmerem 812 ±236 nm.The solution for fiberization prepared in this way was fiberized on a Cyclone G1 centrifugal fiberization laboratory equipment (manufactured by Pardam). The spinning heads were set to 4000/min, the relative humidity in the device chamber was 15%, and the temperature was 40°C. 1.3 g of precursor fibers with a diameter of 812 ±236 nm were prepared by spinning.

0,611 g techto prekurzornich vlâken se nâsledne vlozilo do keramického kelimku. V nem se tato vlâkna rychlosti 3 °C/min zahrâla na teplotu 450 °C a setrvala na ni 60 minut. Pritom se z vlâken odstranily vsechny organické slozky a amonium bisoxalâto-oxotitanât se pretvoril na TiÜ2. Poté nâsledovalo volné chladnuti na teplotu mistnosti. Vÿsledkem bylo 0,036 g vlâken TiÜ2 o 10 prûmeru 442 ±174 nm.0.611 g of these precursor fibers were subsequently placed in a ceramic crucible. In it, this fiber was heated to a temperature of 450 °C at a speed of 3 °C/min and remained there for 60 minutes. In doing so, all organic components were removed from the fibers and ammonium bisoxalâto-oxotitanât was transformed into TiÜ2. Free cooling to room temperature followed. The result was 0.036 g of TiÜ2 fibers with a diameter of 442 ±174 nm.

Claims (8)

1. Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlaken tvorenÿch krystalickÿm TiO2, vyznacujici se tim, ze se zvlâknovânim roztoku pro zvlaknovani a tvorbu prekurzornich vlaken, kterÿ obsahuje 5 az 15 % hmotn. bisoxalâto-oxotitanâtu, 30 az 40 % hmotn. peroxidu vodiku, 30 az 40 % hmotn vody, 10 az 25 % hmotn. polyvinylpyrolidonu s molâmi hmotnosti 360 000 az 1 300 000 g/mol nebo 8 az 15 % hmotn. polyetylenglykolu s molâmi hmotnosti 200 000 az 700 000 g/mol nebo 10 az 20 % hmotn. smesi polyvinylpyrolidonu a polyetylenglykolu v hmotnostnim pomeru 2:1 az 5:1 pripravi prekurzorni vlâkna s prûmerem 400 az 5800 nm, a tato prekurzorni vlâkna se pri teplote 450 az 650 °C kalcinuji po dobu 45 az 75 minut, za vzniku submikronovÿch a/nebo mikronovÿch vlâken s prûmerem 250 az 1850 nm tvorenÿch krystalickÿm TiO2.1. A method of preparing submicron and/or micron fibers formed by crystalline TiO2, characterized by the fiberization of the solution for fiberization and the formation of precursor fibers, which contains 5 to 15 wt.%. bisoxalâto-oxotitanâtu, 30 to 40 wt.% of hydrogen peroxide, 30 to 40% by weight of water, 10 to 25% by weight of polyvinylpyrrolidone with a molar mass of 360,000 to 1,300,000 g/mol or 8 to 15% by weight. of polyethylene glycol with a molar mass of 200,000 to 700,000 g/mol or 10 to 20 wt.%. mixtures of polyvinylpyrrolidone and polyethylene glycol in a mass ratio of 2:1 to 5:1 prepare precursor fibers with a diameter of 400 to 5800 nm, and these precursor fibers are calcined at a temperature of 450 to 650 °C for a period of 45 to 75 minutes to form submicron and/or micron fibers with a diameter of 250 to 1850 nm formed by crystalline TiO2. 2. Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlâken podle nâroku 1, vyznacujici se tim, ze bisoxalâto-oxotitanât v mnozstvi odpovidajicim koncentraci 0,3 az 0,65 M se smichâ s peroxidem vodiku, pricemz se takto vytvorenâ smes ohreje na teplotu 40 ± 5 °C a promichâvâ se az do ùplného rozpusteni bisoxalâto-oxotitanâtu, za ziskâni zâsobniho roztoku titanu, poté se k takto pripravenému zâsobnimu roztoku titanu pridâ polyvinylpyrolidon s molârni hmotnosti 360 000 az 1 300 000 g/mol v mnozstvi 10 az 25 % hmotn. vÿsledného roztoku nebo polyetylenglykol s molârni hmotnosti 200 000 az 700 000 g/mol v mnozstvi 8 az 15 % hmotn. vÿsledného roztoku nebo smes polyvinylpyrolidonu a polyetylen glykolu v hmotnostnim pomeru 2:1 az 4:1 v celkovém mnozstvi 10 az 20 % hmotn. vÿsledného roztoku, a zbytek do 100 % hmotn. se doplni vodou, takto vytvorenâ smes se nâsledne promichâ az do vytvoreni homogenniho roztoku.2. The method of preparing submicron and/or micron fibers according to claim 1, characterized by the fact that bisoxalate-oxotitanate in an amount corresponding to a concentration of 0.3 to 0.65 M is mixed with hydrogen peroxide, whereby the mixture created in this way is heated to a temperature of 40 ± 5 °C and mixed until the bisoxalate-oxotitanate is completely dissolved, obtaining a titanium stock solution, then polyvinylpyrrolidone with a molar mass of 360,000 to 1,300,000 g/mol is added to the thus prepared titanium stock solution in an amount of 10 to 25% by weight. of the resulting solution or polyethylene glycol with a molar mass of 200,000 to 700,000 g/mol in an amount of 8 to 15% by weight. of the resulting solution or a mixture of polyvinylpyrrolidone and polyethylene glycol in a weight ratio of 2:1 to 4:1 in a total amount of 10 to 20% by weight. of the resulting solution, and the rest up to 100 wt.% is supplemented with water, the mixture created in this way is subsequently mixed until a homogeneous solution is formed. 3. Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlâken podle nâroku 2, vyznacujici se tim, ze do zâsobniho roztoku titanu se po jeho pripraveni nebo behem jeho pripravy pridâ az 20 % hmotn etanolu3. The method of preparing submicron and/or micron fibers according to claim 2, characterized by the fact that up to 20% by weight of ethanol is added to the titanium stock solution after its preparation or during its preparation 4. Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlâken podle nâroku 2 nebo 3, vyznacujici se tim, ze do zâsobniho roztoku titanu se po jeho pripraveni nebo behem jeho pripravy pridâ az 12 % hmotn. kyseliny octové nebo citronové.4. The method of preparing submicron and/or micron fibers according to claim 2 or 3, characterized by the fact that up to 12% by weight is added to the titanium stock solution after its preparation or during its preparation. acetic or citric acid. 5. Zpûsob pripravy submikronovÿch a/nebo mikronovÿch vlâken podle nâroku 1, vyznacujici se tim, ze roztok pro zvlâknovâni a tvorbu prekurzornich vlâken se pripravi smichânim bisoxylâtooxotitanâtu v mnozstvi 5 az 15 % hmotn. vÿsledného roztoku, peroxidu v mnozstvi 30 az 40 % hmotn. vÿsledného roztoku a vody v mnozstvi 30 az 40 % hmotn. vÿsledného roztoku, takto vytvorenâ smes se ohreje na teplotu 40 ± 5 °C pricemz se promichâvâ az do ùplného rozpusteni bisoxalâto-oxotitanâtu, a po jeho ùplném rozpusteni se k takto pripravenému roztoku pridâ polyvinylpyrolidon s molârni hmotnosti 360 000 az 1 300 000 g/mol v mnozstvi 10 az 25 % hmotn. vÿsledného roztoku nebo polyetylenglykol s molârni hmotnosti 200 000 az 700 000 g/mol v mnozstvi 8 az 15 % hmotn. vÿsledného roztoku nebo smes polyvinylpyrolidonu a polyetylenglykolu v hmotnostnim pomeru 2:1 az 5:1 v celkovém mnozstvi 10 az 20 % hmotn. vÿsledného roztoku, a zbytek do 100 % hmotn. se doplni vodou.5. The method of preparing submicron and/or micron fibers according to claim 1, characterized in that the solution for fiberization and the formation of precursor fibers is prepared by mixing bisoxylátooxotitanate in an amount of 5 to 15 wt.%. of the resulting solution, peroxide in the amount of 30 to 40% by weight. of the resulting solution and water in the amount of 30 to 40% by weight. of the resulting solution, the mixture created in this way is heated to a temperature of 40 ± 5 °C and mixed until the bisoxalate-oxotitanate is completely dissolved, and after its complete dissolution, polyvinylpyrrolidone with a molar mass of 360,000 to 1,300,000 g/mol is added to the solution prepared in this way in the amount of 10 to 25% wt. of the resulting solution or polyethylene glycol with a molar mass of 200,000 to 700,000 g/mol in an amount of 8 to 15% by weight. of the resulting solution or a mixture of polyvinylpyrrolidone and polyethylene glycol in a weight ratio of 2:1 to 5:1 in a total amount of 10 to 20% by weight. of the resulting solution, and the rest up to 100 wt.% top up with water. - 11 CZ 310090 B6- 11 CZ 310090 B6 6. Zpûsob podle naroku 5, vyznacujici se tim, ze do roztoku pro zvlaknovani a tvorbu prekurzornich vlaken se po jeho pripraveni nebo behem jeho pripravy prida az 20 % hmotn. etanolu.6. The method according to claim 5, characterized by the fact that up to 20% by weight is added to the solution for fiberization and the formation of precursor fibers after its preparation or during its preparation. ethanol. 7. Zpûsob pnpravy submikronovych a/nebo mikronovych vlaken podle naroku 5 nebo 6, 5 vyznacujici se tim, ze do roztoku pro zvlaknovani a tvorbu prekurzornich vlaken se po jeho pripraveni nebo behem jeho pripravy prida az 12 % hmotn. kyseliny octové nebo citronové.7. The method of preparing submicron and/or micron fibers according to claim 5 or 6, characterized in that up to 12% by weight is added to the solution for fiberization and the formation of precursor fibers after its preparation or during its preparation. acetic or citric acid. 8. Zpûsob podle libovolného z nârokû 1 az 7, vyznacujici se tim, ze roztok pro zvlâknovâni a tvorbu prekurzornich vlâken se zvlâkni odstredivym zvlâknovânim.8. Method according to any one of claims 1 to 7, characterized in that the solution for fiberization and the formation of precursor fibers is fiberized by centrifugal fiberization.
CZ2022-340A 2022-08-16 2022-08-16 A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide CZ310090B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CZ2022-340A CZ310090B6 (en) 2022-08-16 2022-08-16 A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2022-340A CZ310090B6 (en) 2022-08-16 2022-08-16 A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide

Publications (2)

Publication Number Publication Date
CZ2022340A3 CZ2022340A3 (en) 2024-02-28
CZ310090B6 true CZ310090B6 (en) 2024-07-31

Family

ID=89983996

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ2022-340A CZ310090B6 (en) 2022-08-16 2022-08-16 A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide

Country Status (1)

Country Link
CZ (1) CZ310090B6 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2014444A3 (en) * 2014-06-27 2016-01-06 Ústav fyzikální chemie J. Heyrovského AV ČR, v. v. i. Process for preparing inorganic nanofibers, intended especially for use as heterogeneous catalysts and inorganic nanofibers
CN112316567A (en) * 2020-10-19 2021-02-05 江苏大学 Nanofiber filter membrane and preparation method and device thereof
CZ2020592A3 (en) * 2020-11-03 2021-08-11 Univerzita Pardubice Process for the preparation of submicron and / or micron crystalline tungsten oxide tubes, and submicron and / or micron crystalline tungsten oxide tubes prepared in this way

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2014444A3 (en) * 2014-06-27 2016-01-06 Ústav fyzikální chemie J. Heyrovského AV ČR, v. v. i. Process for preparing inorganic nanofibers, intended especially for use as heterogeneous catalysts and inorganic nanofibers
CN112316567A (en) * 2020-10-19 2021-02-05 江苏大学 Nanofiber filter membrane and preparation method and device thereof
CZ2020592A3 (en) * 2020-11-03 2021-08-11 Univerzita Pardubice Process for the preparation of submicron and / or micron crystalline tungsten oxide tubes, and submicron and / or micron crystalline tungsten oxide tubes prepared in this way

Also Published As

Publication number Publication date
CZ2022340A3 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
Li et al. Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes
Yang et al. Fabrication and formation mechanism of Mn 2 O 3 hollow nanofibers by single-spinneret electrospinning
CN101239737B (en) Titanium dioxide thin film material with hierarchical structure and preparation method thereof
CN102557628B (en) Flexible yttrium stable zirconium oxide ceramic fiber and preparation method thereof
Zhang et al. Silicon dioxide nanotubes prepared by anodic alumina as templates
Wang et al. A novel method to fabricate silica nanotubes based on phase separation effect
CN101789288B (en) Preparation method of nickel titanate at titanium dioxide multi-crystal nanometer cable
CN103526337B (en) A kind of method of synthesizing barium strontium titanate nanotube
CN101301592A (en) A kind of preparation method of polyimide/titanium dioxide composite submicron fiber membrane
Castkova et al. Electrospinning and thermal treatment of yttria doped zirconia fibres
EP2014812A1 (en) Titania fiber and method for producing titania fiber
CZ2008278A3 (en) Method for production of inorganic nanofibers and/or nanofibrous structures comprising TiN, inorganic nanofibers and/or nanofibrous structures comprising TiN and use of such nanofibrous structures
Wang et al. Preparation of ultrafine flexible alumina fiber for heat insulation by the electrospinning method
Liu et al. Effect of residual carbon on the phase transformation and microstructure evolution of alumina-mullite fibers prepared by sol-gel method
Qin et al. Customization of ZrO2 loose/tight bilayer ultrafiltration membranes by reverse micelles-mediated aqueous sol-gel process for wastewater treatment
CN102586945B (en) A preparation method of SiO2/SnO2/TiO2 three-component side-by-side nanofiber bundle
EP2103722A1 (en) Ceramic fiber and method for production of ceramic fiber
CZ310090B6 (en) A method of preparation of sub-micron and/or micron fibres consisting of crystalline titanium dioxide
CN101423249B (en) Monodisperse pure rutile type or rutile type and anatase type composite phase titanium dioxide hollow submicron sphere and preparation method thereof
Schneider et al. Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol
Shepa et al. Influence of the polymer precursor blend composition on the morphology of the electrospun oxide ceramic fibers
Albanés-Ojeda et al. Physical and chemical characterization of PLA nanofibres and PLA/ZrO 2 mesoporous composites synthesized by air-jet spinning
KR101227087B1 (en) Morphology control method of nano-structured material
Lusiola et al. Electrospinning of ZrO2 fibers without sol-gel methods: Effect of inorganic Zr-source on electrospinning properties and phase composition
Baji et al. Engineering ceramic fiber nanostructures through polymer-mediated electrospinning