CZ309932B6 - A strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites useable in the production of bakery products - Google Patents
A strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites useable in the production of bakery products Download PDFInfo
- Publication number
- CZ309932B6 CZ309932B6 CZ2023-69A CZ202369A CZ309932B6 CZ 309932 B6 CZ309932 B6 CZ 309932B6 CZ 202369 A CZ202369 A CZ 202369A CZ 309932 B6 CZ309932 B6 CZ 309932B6
- Authority
- CZ
- Czechia
- Prior art keywords
- strain
- production
- yeast
- ccm
- pseudohumilis
- Prior art date
Links
- 241001456455 Kazachstania pseudohumilis Species 0.000 title claims abstract description 12
- 239000002207 metabolite Substances 0.000 title claims abstract description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract 4
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 235000015173 baked goods and baking mixes Nutrition 0.000 title claims description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 244000005700 microbiome Species 0.000 claims abstract description 6
- 230000000843 anti-fungal effect Effects 0.000 claims description 13
- 229940121375 antifungal agent Drugs 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 238000000855 fermentation Methods 0.000 claims description 5
- 230000004151 fermentation Effects 0.000 claims description 5
- 239000003755 preservative agent Substances 0.000 claims description 5
- 108010022769 Glucan 1,3-beta-Glucosidase Proteins 0.000 claims description 3
- 235000008429 bread Nutrition 0.000 claims 1
- 235000013312 flour Nutrition 0.000 abstract description 7
- 244000286779 Hansenula anomala Species 0.000 description 34
- 238000000034 method Methods 0.000 description 19
- 241000228143 Penicillium Species 0.000 description 12
- 241000894007 species Species 0.000 description 11
- 241000228212 Aspergillus Species 0.000 description 10
- 241000235349 Ascomycota Species 0.000 description 7
- 235000010633 broth Nutrition 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000233866 Fungi Species 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000228257 Aspergillus sp. Species 0.000 description 3
- 241000186660 Lactobacillus Species 0.000 description 3
- 241000228168 Penicillium sp. Species 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Substances CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 3
- 241000209140 Triticum Species 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000013365 dairy product Nutrition 0.000 description 3
- 235000021186 dishes Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 108020004565 5.8S Ribosomal RNA Proteins 0.000 description 2
- 241000122816 Aspergillus unguis Species 0.000 description 2
- 102000012286 Chitinases Human genes 0.000 description 2
- 108010022172 Chitinases Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108050001049 Extracellular proteins Proteins 0.000 description 2
- 241001233945 Kazachstania Species 0.000 description 2
- 238000001649 capillary isotachophoresis Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000009343 monoculture Methods 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000004324 sodium propionate Substances 0.000 description 2
- 235000010334 sodium propionate Nutrition 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- XGILAAMKEQUXLS-UHFFFAOYSA-N 3-(indol-3-yl)lactic acid Chemical compound C1=CC=C2C(CC(O)C(O)=O)=CNC2=C1 XGILAAMKEQUXLS-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N 5-oxoproline Chemical compound OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 244000087596 Aglaonema pictum Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000455876 Aspergillus montevidensis Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000134912 Aspergillus penicillioides Species 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 235000007558 Avena sp Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 241001149959 Fusarium sp. Species 0.000 description 1
- 108010033128 Glucan Endo-1,3-beta-D-Glucosidase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000512931 Kazachstania humilis Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000228150 Penicillium chrysogenum Species 0.000 description 1
- 241001507662 Penicillium crustosum Species 0.000 description 1
- 241000465883 Penicillium fimorum Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 244000305961 Phyllogeiton discolor Species 0.000 description 1
- 244000233952 Polygonum bistorta Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000370151 Wickerhamomyces Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000004301 calcium benzoate Substances 0.000 description 1
- 239000004303 calcium sorbate Substances 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- XQFCONVZHYBBOH-UHFFFAOYSA-N hippeastidine Chemical compound C1C2=CC(OC)=C(OC)C(O)=C2C23CCC(OC)CC3N1CC2 XQFCONVZHYBBOH-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 210000001069 large ribosome subunit Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000024241 parasitism Effects 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- TXBNDGDMWKVRQW-UHFFFAOYSA-M sodium;2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]acetate;dodecyl sulfate Chemical compound [Na+].OCC(CO)(CO)NCC(O)=O.CCCCCCCCCCCCOS([O-])(=O)=O TXBNDGDMWKVRQW-UHFFFAOYSA-M 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 231100000033 toxigenic Toxicity 0.000 description 1
- 230000001551 toxigenic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000011844 whole wheat flour Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D8/00—Methods for preparing or baking dough
- A21D8/02—Methods for preparing dough; Treating dough prior to baking
- A21D8/04—Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Botany (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Kmen kvasinky Kazachstania pseudohumilis CCM 9277 produkující antifungálně účinné metabolity použitelné ve výrobě pekárenských výrobkůKazachstania pseudohumilis CCM 9277 yeast strain producing antifungal active metabolites usable in the production of bakery products
Oblast technikyField of technology
Řešení se týká průmyslového kvasinkového kmene Kazachstania pseudohumilis CCM 9277, který je využitelný pro produkci antifungálně účinných metabolitů, a to v průmyslových podmínkách za kontinuálních či diskontinuálních podmínek. Kmen byl vyselektován ze souboru různých kvasinkových kmenů izolovaných z kvásků a fermentovaných výrobků na základě výsledků inhibiční aktivity vůči růstu vláknitých hub.The solution concerns the industrial yeast strain Kazachstania pseudohumilis CCM 9277, which can be used for the production of antifungal active metabolites in industrial conditions under continuous or discontinuous conditions. The strain was selected from a group of different yeast strains isolated from sourdoughs and fermented products based on the results of inhibitory activity against the growth of filamentous fungi.
Dosavadní stav technikyCurrent state of the art
Vláknité askomycety a kvasinky, představují druhově rozmanité skupiny houbových organismů, které spolu s řadou mikroorganismů tvoří v přirozených podmínkách komunity, v nichž dochází k vzájemným interakcím na úrovni kompetice o živiny a prostor, antibiózy, parazitismu či predace. Potraviny, pekařské a mléčné výrobky, představují pro vláknité askomycety i kvasinky uniformní prostředí bohaté na živiny s malou mikrobiologickou konkurencí. Vláknité askomycety, zejména rod Penicillium sp., Aspergillus sp., a Fusarium sp., jsou nejčastějšími kontaminanty těchto produktů. Kontaminující druhy zpravidla tolerují vyšší hladinu soli (halotolerantní druhy) (15 %), nízkou vodní aktivitu (Aw) a mají širší teplotní amplitudu (Garnier a kol., 2017; Udovicki a kol., 2018). Potraviny znehodnocují nutričně i senzoricky a také jsou producenty mykotoxinů a dalších sekundárních metabolitů (Ráduly a kol., 2020). Sanitace výrobních a expedičních prostor a zařízení schválenými prostředky je sice pravidelnou součástí výrob, ale s ohledem na rezistentní a adaptační mechanismy kontaminujících plísní, nemusí být vždy efektivní. Legislativa EU povoluje konzervační prostředky v pekařských výrobcích jako je E280 (kyselina propionová) nebo E281 (propionát sodný) v množství 0,2 až 0,3 % (m/m) (Coda a kol., 2011), které chrání výrobek po deklarovanou dobu. V mléčných výrobcích jsou také v rámci EU povolené konzervanty, jako je kyselina sorbová (E200) a její soli (E202 a E203), benzoáty (E211 až E213) (Garnier a kol., 2017). V současné době jsou celosvětově a odůvodnitelně preferovány potraviny bez chemických konzervantů. Řada studií se proto zaměřuje na vývoj a aplikaci konzervantů přírodního původu (např. rostlinných eterických olejů), využití bakterií mléčného kvašení, kvasinek a jejich metabolických produktů (Freimoser a kol., 2019, Matevosyan a kol., 2020, Souza a kol., 2017, Wang a kol., 2021).Filamentous ascomycetes and yeasts represent species-diverse groups of fungal organisms that, together with a number of microorganisms, form communities in natural conditions in which mutual interactions occur at the level of competition for nutrients and space, antibiosis, parasitism or predation. Food, bakery and dairy products represent a uniform nutrient-rich environment for filamentous ascomycetes and yeasts with little microbiological competition. Filamentous ascomycetes, especially the genus Penicillium sp., Aspergillus sp., and Fusarium sp., are the most common contaminants of these products. Contaminating species generally tolerate a higher level of salt (halotolerant species) (15%), low water activity (Aw) and have a wider temperature amplitude (Garnier et al., 2017; Udovicki et al., 2018). They degrade food both nutritionally and sensorially and are also producers of mycotoxins and other secondary metabolites (Ráduly et al., 2020). Sanitation of production and shipping areas and equipment with approved means is a regular part of production, but with regard to the resistant and adaptive mechanisms of contaminating molds, it may not always be effective. EU legislation allows preservatives in bakery products such as E280 (propionic acid) or E281 (sodium propionate) in amounts of 0.2 to 0.3% (m/m) (Coda et al., 2011), which protect the product after the declared time. Preservatives such as sorbic acid (E200) and its salts (E202 and E203), benzoates (E211 to E213) are also allowed in dairy products within the EU (Garnier et al., 2017). Foods without chemical preservatives are currently preferred worldwide and with good reason. A number of studies therefore focus on the development and application of preservatives of natural origin (e.g. plant essential oils), the use of lactic acid bacteria, yeasts and their metabolic products (Freimoser et al., 2019, Matevosyan et al., 2020, Souza et al., 2017, Wang et al., 2021).
Antifungální aktivita kvasinek vůči toxigenním plísním je přičítána kombinacím několika mechanismů jako např. kompetice o prostor a živiny, sekrece enzymů (glukanázy, chitinázy, proteázy), produkce toxinů a uvolňování těkavých látek (VOCs) (Freimoser a kol., 2019). Produkce těchto látek je podmíněná vnitrodruhovou variabilitou a podmínkami prostředí. Výběr kmene s antifungální aktivitou musí být účelově cílen tak, aby účinek byl efektivní a bez vedlejšího účinku, tedy bez poškození potravinářského produktu kvasinkou. Úkolem vynálezců bylo nalézt možnosti ochrany pekárenských výrobků před kažením způsobeným vláknitými houbami použitím kvasinek produkujících antifungálně působící metabolity.Antifungal activity of yeast against toxigenic fungi is attributed to combinations of several mechanisms such as competition for space and nutrients, secretion of enzymes (glucanases, chitinases, proteases), production of toxins and release of volatile compounds (VOCs) (Freimoser et al., 2019). The production of these substances is conditioned by intraspecific variability and environmental conditions. The selection of a strain with antifungal activity must be purposefully targeted so that the effect is effective and without side effects, i.e. without damage to the food product by yeast. The task of the inventors was to find ways to protect bakery products from spoilage caused by filamentous fungi by using yeasts that produce antifungal metabolites.
Podstata vynálezuThe essence of the invention
Uvedené nedostatky odstraňuje nový průmyslový mikrobiální kmen kvasinky Kazachstania pseudohumilis CCM 9277 produkující 1,3 beta glukanázu a další blíže nespecifikované antifungálně účinné metabolity při kultivaci v různých substrátech a moučných médiích.The mentioned deficiencies are eliminated by the new industrial microbial strain of the yeast Kazachstania pseudohumilis CCM 9277 producing 1,3 beta glucanase and other unspecified antifungal active metabolites during cultivation in various substrates and flour media.
Izolace kmene podle vynálezuStrain isolation according to the invention
- 1 CZ 309932 B6- 1 CZ 309932 B6
Při izolaci kmene se smíchalo 2 g žitného kvásku s 18 ml 2% roztoku citrátu sodného a po vytvoření homogenní emulze se připravila desítková ředění ve fyziologickém roztoku a naočkovala na Sabaroud dextrose agar (SDA). Kultivace probíhala aerobně při teplotě 25 °C po dobu 5 dní.When isolating the strain, 2 g of rye yeast was mixed with 18 ml of a 2% sodium citrate solution, and after the formation of a homogeneous emulsion, ten-fold dilutions were prepared in physiological solution and inoculated on Sabaroud dextrose agar (SDA). Cultivation took place aerobically at a temperature of 25 °C for 5 days.
Charakterizace kmene podle vynálezuCharacterization of the strain according to the invention
Po přečištění získaných kolonií na SDA byl získaný izolát SAL-SDA-6C dále charakterizován pomocí sekvenace 5.8 S rRNA ITS regionu. Na základě tohoto regionu nebylo možné kmen jednoznačně zařadit (K. humilis/pseudohumilis), a proto byla sekvenována Dl až D2 oblast genu pro 26 S rRNA velkou ribozomální podjednotku pro další upřesnění druhového zařazení. K amplifikaci byly použity primery NL1 (5'-GCATATCAATAAGCGGAGGAAAAG-3') a NL4 (5'-GGTCCGTGTTTCAAGACGG-3') (Kutzman a Robnett, 1998). Získané nukleotidové sekvence byly porovnány se sekvencemi uloženými v on-line databázích (http://www.ncbi.nlm.nih.gov). Výsledkem bylo zařazení kmene podle vynálezu do druhu Kazachstaniapseudohumilis a uložení sekvence vNCBI (Acc. No. OP721099).After purification of the obtained colonies on SDA, the obtained isolate SAL-SDA-6C was further characterized by sequencing the 5.8 S rRNA ITS region. Based on this region, the strain could not be unambiguously classified (K. humilis/pseudohumilis), so the D1 to D2 region of the 26 S rRNA large ribosomal subunit gene was sequenced to further refine the species classification. Primers NL1 (5'-GCATATCAATAAGCGGAGGAAAAG-3') and NL4 (5'-GGTCCGTGTTTCAAGACGG-3') were used for amplification (Kutzman and Robnett, 1998). The obtained nucleotide sequences were compared with sequences stored in online databases (http://www.ncbi.nlm.nih.gov). The result was the inclusion of the strain according to the invention in the species Kazachstaniapseudohumilis and the deposit of the sequence in NCBI (Acc. No. OP721099).
Původní kmen podle vynálezu je uložen v lyofilizovaném stavu na mezinárodním ukládacím místě podle Budapešťské smlouvy v České sbírce mikroorganismů Přírodovědecké fakulty Masarykovy univerzity, Kamenice 5, Brno pod sbírkovým číslem CCM 9277.The original strain according to the invention is stored in a lyophilized state at an international storage site according to the Budapest Treaty in the Czech Collection of Microorganisms of the Faculty of Science of the Masaryk University, Kamenice 5, Brno under collection number CCM 9277.
a) Houbové organismya) Fungal organisms
Kvasinky (tabulka 2) a vláknité askomycety (tabulka 1) použité k testování vzájemných interakcí, pocházejí ze sbírek mikroorganismů CCDBC (Milcom a.s., CZ) a CCF (Karlova univerzita, CZ). A. tahacinus a A. unguis jsou izoláty získané z kontaminovaných pekařských a mléčných výrobků. Stejně jako kmeny CCDBC a CCF, i izoláty byly určeny na základě sekvenování jaderných a nejademých úseků DNA (barkódování) podle (Schoch a kol., 2012; Stiellow a kol., 2015) a doplněny o mikroskopické popisy (Samson a kol, 2010). Kmeny a izoláty kvasinek byly určeny na základě sekvenace 5.8 S rRNA ITS spektra a morfologie kolonii a buněk (Kurtzman a kol, 2011).Yeasts (Table 2) and filamentous ascomycetes (Table 1) used for testing mutual interactions come from the microorganism collections CCDBC (Milcom a.s., CZ) and CCF (Karl's University, CZ). A. tahacinus and A. unguis are isolates obtained from contaminated bakery and dairy products. Like the CCDBC and CCF strains, the isolates were determined based on nuclear and non-nuclear DNA sequencing (barcoding) according to (Schoch et al., 2012; Stiellow et al., 2015) and supplemented with microscopic descriptions (Samson et al., 2010) . Yeast strains and isolates were determined based on 5.8 S rRNA ITS spectrum sequencing and colony and cell morphology (Kurtzman et al, 2011).
Tab. 1 Seznam použitých kmenů a izolátů vláknitých askomycet rodů Penicillium sp., Aspergillus sp.Tab. 1 List of used strains and isolates of filamentous ascomycetes of the genera Penicillium sp., Aspergillus sp.
-2CZ 309932 B6-2CZ 309932 B6
Tab. 2 Seznam použitých kmenů kvasinekTab. 2 List of yeast strains used
b) Antifungální testb) Antifungal test
Interakce mezi kvasinkami a vláknitými askomyčetami byly testovány upravenou metodou podle Demirbas a kol. 2017. Za účelem testování byly vláknité askomycety kultivovány metodou přelivu vytemperovaným malt extrakt agarem (MEA, Hi-media, Indie). Takto připravené kultury 10 byly kultivovány při 25 °C, penicilia 5 dní, aspergily 7 dní. Kvasinky byly kultivovány 24 h vYPD bujónu. Vytemperovaný MEA agar byl zaočkován 1% podílem bujónu s kmenem či izolátem kvasinek po 24 h kultivaci a rozlit na Petriho misky. Z Petriho misek s nakultivovanými penicilii a aspergily byly sterilně korkovrtem vyseknuté terčíky (průměr 5 mm). Na každou misku s kmenem kvasinky byly přeneseny dva terčíky od každého druhu penicilia a 15 aspergilu. Misky byly uloženy v 25 °C v termostatu. Radiální růst mycelia byl měřen po 24 h po dobu 5 až 7 dní. Růst mycelia penicilii a aspergilů z terčíků na čistém MEA představoval kontrolní variantu. Výsledky jsou graficky znázorněny na obr. 1 a obr. 2.Interactions between yeast and filamentous ascomycetes were tested using a modified method of Demirbas et al. 2017. For the purpose of testing, filamentous ascomycetes were cultured by the overflow method on tempered malt extract agar (MEA, Hi-media, India). Cultures 10 prepared in this way were cultivated at 25 °C, penicillium for 5 days, aspergillus for 7 days. Yeast was cultured for 24 h in YPD broth. Tempered MEA agar was inoculated with a 1% proportion of broth with a yeast strain or isolate after 24 h of cultivation and poured into Petri dishes. Targets (diameter 5 mm) were sterilely cut out with a corkscrew from Petri dishes with cultured penicillium and aspergillus. Two plates of each species of Penicillium and 15 Aspergillus were transferred to each plate of yeast strain. The dishes were stored at 25 °C in a thermostat. Radial mycelial growth was measured every 24 h for 5 to 7 days. Growth of penicillii and aspergillus mycelia from plates on pure MEA was a control variant. The results are shown graphically in Fig. 1 and Fig. 2.
c) Extracelulámí produkty kvasinekc) Extracellular yeast products
Organické kyselinyOrganic acids
Hodnoty pH byly stanoveny u bujónů (YPD, MEA) a moučných médií zaočkovaných kvasinkami po 24h kultivace pomocí pH metru InoLab pH 720 a elektrody SenTix Sp (WTW, 25 Německo). Profil organických kyselin byl vyhodnocen kapilární isotachoforézou (EA 02, VILLAThe pH values were determined in broths (YPD, MEA) and flour media inoculated with yeast after 24 h of cultivation using a pH meter InoLab pH 720 and a SenTix Sp electrode (WTW, 25 Germany). The profile of organic acids was evaluated by capillary isotachophoresis (EA 02, VILLA
Labeco, Slovakia) a kapilární elektroforézou Agilent CE G7100 (Agilent Technologies, USA) s UV detekcí.Labeco, Slovakia) and capillary electrophoresis Agilent CE G7100 (Agilent Technologies, USA) with UV detection.
Proteiny a peptidyProteins and peptides
Extracelulámí proteiny a peptidy byly izolovány pomocí ultrafiltračních kolonek AMICON 30 MWO (Sigma Aldrich, USA) (Kavková a kol, 2022). Profil extracelulámích peptidů a proteinů byl detekován podle Haider a kol., 2011 metodou Tricine-SDS-PAGE na 15 % a 12 % polyakrylamidovém gelu a zároveň byly stanoveny přímo v bujónu metodou LC-MS ((TimsTOF 35 Pro (Bruker Daltonik, Bremen, Germany) s Ultra-High-Performance Liquid ChromatographyExtracellular proteins and peptides were isolated using AMICON 30 MWO ultrafiltration columns (Sigma Aldrich, USA) (Kavková et al., 2022). The profile of extracellular peptides and proteins was detected according to Haider et al., 2011 by the Tricine-SDS-PAGE method on 15% and 12% polyacrylamide gel, and at the same time they were determined directly in the broth by the LC-MS method ((TimsTOF 35 Pro (Bruker Daltonik, Bremen, Germany) with Ultra-High-Performance Liquid Chromatography
UltiMate 3000 nano UHPLC). Profily stanovené metodou Tricine-SDS-PAGE jsou graficky znázorněny na obr. 3.UltiMate 3000 nano UHPLC). The profiles determined by the Tricine-SDS-PAGE method are shown graphically in Fig. 3.
Zpracování datData processing
Antifungální testy byly opakovány třikrát pro všechny kombinace kvasinek, aspergilů a penicilii.Antifungal tests were repeated three times for all combinations of yeast, aspergillus and penicillium.
Výsledky byly zpracovány v programu Statistica Soft, verze 12.1. metodou analýzy variance s faktoriálním designem při p<0,05<a.The results were processed in the Statistica Soft program, version 12.1. by the method of analysis of variance with factorial design at p<0.05<a.
-3 CZ 309932 B6-3 CZ 309932 B6
Objasnění výkresůClarification of drawings
Vlastnosti kmene podle patentového nároku jsou objasněny v následujících obrázcích. Obr. 1 znázorňuje Inhibiční účinek šesti kmenů z rodu Kazachstania na radiální růst mycelia pěti druhů penicilií. Obr. 2 znázorňuje inhibiční účinek šesti kmenů z rodu Kazachstania na radiální růst mycelia osmi druhů aspergilů. Inhibiční účinek kvasinek je interpretován napříč druhovým spektrem použitých aspergilů a penicilií, zahrnuje tedy interakce s různě citlivými druhy penicilií a aspergilů. Testování antifungálního účinku kvasinek vůči aspergilům a peniciliím ukázalo, že míra inhibice růstu mycelia na MEA s kvasinkou je závislá na druhu a kmenu kvasinky, ale také na druhu penicilia nebo aspergila, které vykazují vůči kvasinkám různou citlivost. Míra inhibice růstu pěti testovaných druhů penicilií prokázala, že kmen CCM 9277 významně zpomaloval vývoj největšího druhového spektra penicilií s průměrnou mírou inhibice radiálního růstu 47 %. V případě inhibice radiálního růstu mycelia osmi druhů aspergilů byla míra inhibice 50 %.The features of the claimed strain are illustrated in the following figures. Giant. 1 shows the inhibitory effect of six strains from the genus Kazachstania on radial mycelial growth of five species of penicillium. Giant. 2 shows the inhibitory effect of six strains from the genus Kazachstania on radial mycelial growth of eight Aspergillus species. The inhibitory effect of yeast is interpreted across the species spectrum of aspergilli and penicillium used, thus including interactions with various sensitive species of penicillium and aspergillus. Testing of the antifungal effect of yeast against Aspergillus and Penicillium showed that the degree of inhibition of mycelial growth on MEA with yeast is dependent on the species and strain of yeast, but also on the species of Penicillium or Aspergillus, which show different sensitivity to yeast. The rate of growth inhibition of the five tested Penicillium species showed that strain CCM 9277 significantly retarded the development of the largest species spectrum of Penicillium with an average rate of radial growth inhibition of 47%. In the case of inhibition of radial mycelial growth of eight Aspergillus species, the inhibition rate was 50%.
Na obr. 3 jsou zobrazeny výsledky screeningu extracelulárních peptidů a proteinů u různých kmenů kvasinek po 24 h kultivaci v YPD bujonu pomocí 15 % Tricine-SDS PAGE. Profil extracelulárních proteinů ukazuje, že kmen K. pseudohumilis CCM 9277, který inhiboval aspergily a penicilia produkuje nejen peptidy, ale i proteiny ve spektru 25 až 50 kDa, které mohou odpovídat například chitinázám (Thery a kol., 2019). Metoda LC-MS prokázala přítomnost různých proteinů (mol. hmotnost 34118,36985, 50727 a 51310 Da) se sekvencí podobnou exo a endo 1,3-beta-glukanázám. Tyto enzymy mají potenciál inhibice růstu vláknitých hub v důsledku štěpení buněčné stěny (Jijakli a kol., 1998).Fig. 3 shows the results of the screening of extracellular peptides and proteins in different yeast strains after 24 h of cultivation in YPD broth using 15% Tricine-SDS PAGE. The profile of extracellular proteins shows that the strain K. pseudohumilis CCM 9277, which inhibited aspergilli and penicillium, produces not only peptides, but also proteins in the spectrum of 25 to 50 kDa, which may correspond, for example, to chitinases (Thery et al., 2019). The LC-MS method demonstrated the presence of different proteins (mol. mass 34118, 36985, 50727 and 51310 Da) with sequences similar to exo and endo 1,3-beta-glucanases. These enzymes have the potential to inhibit the growth of filamentous fungi due to cell wall cleavage (Jijakli et al., 1998).
Na obr. 4 jsou znázorněny výsledky stanovení obsahu organických kyselin v extraktu pšeničné celozrnné mouky(T1700) po fermentaci kmenem Kazachstania pseudohumilis CCM 9277, přičemž A je standard kyselin o koncentraci 5 ppm, B je extrakt pšeničné mouky fermentovaný kmenem CCM 9277, C je nefermentovaný extrakt pšeničné mouky. Testována byla přítomnost těchto organických kyselin: ILA kys. DL-indol-3-mléčná, PLA L-3-fenyl mléčná, OH-PLA DLp-hydroxyfenylmléčná, 2-P5CA 2-pyrrolidon-5-karboxylová, HIPP hippurová, CAP kapronová, SOR sorbová, PAA fenyloctová, SAL salicylová, BENZ benzoová. Kromě tvorby malého množství kyseliny jantarové a octové zjištěné metodou kapilární isotachoforézy (výsledky neuvedeny) nebyla doložena významná tvorba antifungálně účinných organických kyselin kmenem CCM 9277Fig. 4 shows the results of determining the content of organic acids in whole wheat flour extract (T1700) after fermentation by Kazachstania pseudohumilis strain CCM 9277, where A is the acid standard with a concentration of 5 ppm, B is wheat flour extract fermented by strain CCM 9277, C is unfermented wheat flour extract. The presence of the following organic acids was tested: ILA DL-indole-3-lactic acid, PLA L-3-phenyl lactic, OH-PLA DLp-hydroxyphenyl lactic, 2-P5CA 2-pyrrolidone-5-carboxylic acid, HIPP hippuric, CAP caproic, SOR sorbic, PAA phenylacetic, SAL salicylic, BENZ benzoic. Apart from the formation of a small amount of succinic and acetic acid detected by the capillary isotachophoresis method (results not shown), no significant formation of antifungal active organic acids by strain CCM 9277 was documented
Příklady uskutečnění vynálezuExamples of implementation of the invention
Následující příklady provedení kmen podle vynálezu pouze dokládají, ale neomezují.The following examples of embodiments of the strain according to the invention only demonstrate, but do not limit.
Příklad 1Example 1
V jednom provedení vynálezu je kmen ve formě biologicky čisté kultury (monokultura kmene Kazachstania pseudohumilis CCM 9277.In one embodiment of the invention, the strain is in the form of a biologically pure culture (a monoculture of the strain Kazachstania pseudohumilis CCM 9277.
Příklad 2Example 2
V jiném provedení vynálezu je kmen ve formě inaktivovaných buněk biologicky čisté kultury (monokultura kmene Kazachstania pseudohumilis CCM 9277).In another embodiment of the invention, the strain is in the form of inactivated cells of a biologically pure culture (a monoculture of the strain Kazachstania pseudohumilis CCM 9277).
Příklad 3Example 3
V jiném provedení vynálezu je kmen CCM 9277 uchovávaný v lyofilizovaném nebo hluboko mraženém stavu obnoven v některém z bujónů vhodných pro kultivaci kvasinek (přednostně sladový nebo WYD) a kultivovaný při teplotě 25 °C po dobu 18 až 24 hodin. Získaná kultura jeIn another embodiment of the invention, strain CCM 9277 stored in a lyophilized or deep-frozen state is reconstituted in one of the broths suitable for the cultivation of yeast (preferably malt or WYD) and cultured at 25°C for 18 to 24 hours. Acquired culture is
- 4 CZ 309932 B6 v dávce 105 KTJ/g použita k inokulaci směsi mouky a vody. Použít lze mouku pšeničnou, žitnou, špaldovou, pohankovou, ovesnou, ječnou nebo rýžovou či jejich směsi v různém poměru (DY 150 až 250). Takto získaný produkt je v aktivní nebo inaktivované formě použit jako antifungálně účinný preparát do různých typů pekárenských výrobků.- 4 CZ 309932 B6 in a dose of 10 5 KTJ/g used to inoculate a mixture of flour and water. Wheat, rye, spelled, buckwheat, oat, barley or rice flour or their mixtures in different proportions can be used (DY 150 to 250). The product obtained in this way is used in active or inactivated form as an antifungal preparation in various types of bakery products.
Příklad 4Example 4
V jiném provedení vynálezu je kmen CCM 9277 připraven stejným postupem jako v příkladu 3 a zaočkovaná směs je zároveň inokulována bakteriálním kmenem Lactiplantibacillus plantarum CCDM 3018 nebo CCDM 3036 nebo CCDM 3046 v dávce 107 KTJ/g. Zaočkovaná směs je dále zpracována dle pracovního postupu pro jednostupňové vedení kvasu.In another embodiment of the invention, the strain CCM 9277 is prepared by the same procedure as in example 3 and the inoculated mixture is simultaneously inoculated with the bacterial strain Lactiplantibacillus plantarum CCDM 3018 or CCDM 3036 or CCDM 3046 at a dose of 10 7 KTJ/g. The inoculated mixture is further processed according to the work procedure for one-stage fermentation.
Příklad 5Example 5
V jiném provedení vynálezu je kvas připraven stejným postupem jako v příkladu 4, s tím rozdílem, že zaočkovaná směs je dále zpracována dle pracovního postupu pro dvoustupňové vedení kvasu.In another embodiment of the invention, kvass is prepared by the same procedure as in example 4, with the difference that the inoculated mixture is further processed according to the work procedure for two-stage fermentation.
Příklad 6Example 6
V jiném provedení vynálezu je kvas připraven stejným postupem jako v příkladu 4, s tím rozdílem, že zaočkovaná směs je dále zpracována dle pracovního postupu pro třístupňové vedení kvasu.In another embodiment of the invention, the kvass is prepared by the same procedure as in example 4, with the difference that the inoculated mixture is further processed according to the work procedure for three-stage kvass management.
Příklad 7Example 7
V jiném provedení vynálezu je kvas připraven stejným postupem jako v příkladu 4, s tím rozdílem, že pro zlepšení organoleptických vlastností jsou dále přidávány různé kombinace kmenů laktobacilů a laktokoků (CCDM 3032, 3033, 3035, 3037) v dávce 107 KTJ/g a kvasinek (CCDM 3300, 3301 a 3303) v dávce 105 KTJ/g.In another embodiment of the invention, the yeast is prepared by the same procedure as in example 4, with the difference that to improve the organoleptic properties, various combinations of lactobacilli and lactococci strains (CCDM 3032, 3033, 3035, 3037) are added in a dose of 10 7 KTJ/ha of yeast (CCDM 3300, 3301 and 3303) in a dose of 10 5 KTJ/g.
Příklad 8Example 8
V jiném provedení vynálezu je kvas připraven stejným postupem jako v příkladu 5, s tím rozdílem, že pro zlepšení organoleptických vlastností jsou dále přidávány různé kombinace kmenů laktobacilů a laktokoků (CCDM 3032, 3033, 3035, 3037) v dávce 107 KTJ/g a kvasinek (CCDM 3300, 3301 a 3303) v dávce 105 KTJ/g.In another embodiment of the invention, the yeast is prepared by the same procedure as in example 5, with the difference that to improve the organoleptic properties, various combinations of strains of lactobacilli and lactococci (CCDM 3032, 3033, 3035, 3037) are added in a dose of 10 7 KTJ/ha of yeast (CCDM 3300, 3301 and 3303) in a dose of 10 5 KTJ/g.
Příklad 9Example 9
V jiném provedení vynálezu je kvas připraven stejným postupem jako v příkladu 6, s tím rozdílem, že pro zlepšení organoleptických vlastností jsou dále přidávány různé kombinace kmenů laktobacilů a laktokoků (CCDM 3032, 3033, 3035, 3037) v dávce 107 KTJ/g a kvasinek (CCDM 3300, 3301 a 3303) v dávce 105 KTJ/g.In another embodiment of the invention, the yeast is prepared by the same procedure as in example 6, with the difference that to improve the organoleptic properties, various combinations of lactobacilli and lactococci strains (CCDM 3032, 3033, 3035, 3037) are added in a dose of 10 7 KTJ/ha of yeast (CCDM 3300, 3301 and 3303) in a dose of 10 5 KTJ/g.
Příklad 10Example 10
V jiném provedení vynálezu je kvas připravený stejným postupem jako v příkladu 3 až 9, s tím rozdílem, že získaný preparát je použit pro výrobu drobenky nebo zápary.In another embodiment of the invention, kvass is prepared by the same procedure as in examples 3 to 9, with the difference that the preparation obtained is used for the production of crumb or brew.
Příklad 11Example 11
V jiném provedení vynálezu je kvas připravený stejným postupem jako v příkladu 3 až 9, s tím rozdílem, že získaný preparát je použit pro výrobu stabilizovaného kvasu.In another embodiment of the invention, kvass is prepared by the same procedure as in examples 3 to 9, with the difference that the preparation obtained is used for the production of stabilized kvass.
- 5 CZ 309932 B6- 5 CZ 309932 B6
Příklad 12Example 12
V jiném provedení vynálezu je kvas připravený stejným postupem jako v příkladu 3 až 9, s tím rozdílem že, koncentrace antifungálně účinných látek je zvýšena zahuštěním na vakuové odparce nebo sušením.In another embodiment of the invention, kvass is prepared by the same procedure as in examples 3 to 9, with the difference that the concentration of antifungal active substances is increased by concentration on a vacuum evaporator or drying.
ReferenceReference
Coda, R., Cassone, A., Rizzello, C.G., Nionelli, L., Cardinali, G., Gobbetti, M. (2011): Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: Identification of novel compounds and their effect on long-term storage of wheat bread. Food Microbiol. 33, 243-251.Coda, R., Cassone, A., Rizzello, C.G., Nionelli, L., Cardinali, G., Gobbetti, M. (2011): Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: Identification of novel compounds and their effect on long-term storage of wheat bread. Food Microbiol. 33, 243-251.
De Souza, ML., Passamaniz, F.R.F., Da Silva Ávila, C.L., Batistaz, L.R., Schvan, R.R., Terreira Silva, C. (2017): Use of wild yeasts as a biocontrol agent against toxigenic fungi and OTA production. Acta scientarium, 39, 349-358.De Souza, ML., Passamaniz, F.R.F., Da Silva Ávila, C.L., Batistaz, L.R., Schvan, R.R., Terreira Silva, C. (2017): Use of wild yeasts as a biocontrol agent against toxigenic fungi and OTA production. Acta scientarium, 39, 349-358.
Freimoser, F.M., Rueda-Meija, M.P., Tilocca, B., Migheli, Q. (2019): Biocontrol yeast: mechanism and applications. World Journal of Microbiology and Biotechnology 35, 1-19.Freimoser, F.M., Rueda-Meija, M.P., Tilocca, B., Migheli, Q. (2019): Biocontrol yeast: mechanism and applications. World Journal of Microbiology and Biotechnology 35, 1-19.
Garnier, L., Valence F., Mounier, J. (2017): Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms, 5, 42, 1-33.Garnier, L., Valence F., Mounier, J. (2017): Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms, 5, 42, 1-33.
Jijakli MH, Lepoivre P. (1998): Characterization of an Exo-beta-1, 3- Glucanase Produced by Pichia anomala Strain K, Antagonist of Botrytis cinerea on Apples. Phytopathology, 88, 335-343.Jijakli MH, Lepoivre P. (1998): Characterization of an Exo-beta-1, 3- Glucanase Produced by Pichia anomala Strain K, Antagonist of Botrytis cinerea on Apples. Phytopathology, 88, 335-343.
Kavková, M.; Cihlář, J.; Dráb, V.; Bazalová, O.; Dlouhá, Z (2022): The Interactions among Isolates of Lactiplantibacillus plantarum and Dairy Yeast Contaminants: Towards Biocontrol Applications. Fermentation, 8, 14.Kavková, M.; Cilář, J.; Dráb, V.; Bazalova, O.; Dlouhá, Z (2022): The Interactions among Isolates of Lactiplantibacillus plantarum and Dairy Yeast Contaminants: Towards Biocontrol Applications. Fermentation, 8, 14.
Kurtzman, C. P., and C. J. Robnett. (1998): Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331 až 371.Kurtzman, C.P., and C.J. Robnett. (1998): Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331 to 371.
Matevosyan, L., Bazukyan, I., Trchounian, A. (2020): Antifungal and antibacterial effects of newly created lactic acid bacteria associations depending on cultivation media and duration of cultivation. BMC microbiology, 102 (19): 1-8.Matevosyan, L., Bazukyan, I., Trchounian, A. (2020): Antifungal and antibacterial effects of newly created lactic acid bacteria associations depending on cultivation media and duration of cultivation. BMC microbiology, 102 (19): 1-8.
Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. (2020): Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol., 10: 2908.Ráduly Z, Szabó L, Madar A, Pócsi I, Csernoch L. (2020): Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol., 10: 2908.
Udovicki, B., Audenaert, K., De Saeger, S., Rajkovic, A. (2018): Overview on the Mycotoxins incidence in Serbia in the period 2004-2016. Toxins, 10, 279.Udovicki, B., Audenaert, K., De Saeger, S., Rajkovic, A. (2018): Overview on the Mycotoxins incidence in Serbia in the period 2004-2016. Toxins, 10, 279.
Wang, Y., Wu J, L.V. M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., Geng, W. (2021): Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications. Food Industry. Frontiers in Bioengineering Biotechnology, 9, 1-19.Wang, Y., Wu J, L.V. M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., Geng, W. (2021): Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications. Food Industry. Frontiers in Bioengineering Biotechnology, 9, 1-19.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2023-69A CZ202369A3 (en) | 2023-02-21 | 2023-02-21 | Strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites usable in production of bakery products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2023-69A CZ202369A3 (en) | 2023-02-21 | 2023-02-21 | Strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites usable in production of bakery products |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ309932B6 true CZ309932B6 (en) | 2024-02-07 |
CZ202369A3 CZ202369A3 (en) | 2024-02-07 |
Family
ID=89766921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2023-69A CZ202369A3 (en) | 2023-02-21 | 2023-02-21 | Strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites usable in production of bakery products |
Country Status (1)
Country | Link |
---|---|
CZ (1) | CZ202369A3 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017060230A1 (en) * | 2015-10-06 | 2017-04-13 | Puratos Nv | Leavening agents |
-
2023
- 2023-02-21 CZ CZ2023-69A patent/CZ202369A3/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017060230A1 (en) * | 2015-10-06 | 2017-04-13 | Puratos Nv | Leavening agents |
Non-Patent Citations (4)
Title |
---|
JACQUES, NOÉMIE, ET AL.: "Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. ...", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 66, pages 5192 - 5200, ISSN: 1466-5026 * |
KORCARI, DEA, ET AL.: "Physiological performance of Kazachstania unispora in sourdough environments", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, vol. 37, no. 5, pages 88 - 96, XP037456585, ISSN: 0959-3993, DOI: 10.1007/s11274-021-03027-0 * |
WITTWER, ANNA E., ET AL.: "Kazachstania humilis", TRENDS IN MICROBIOLOGY, vol. 30, no. 10, pages 1012 - 1013, XP087178538, ISSN: 0966-842X, DOI: 10.1016/j.tim.2022.05.007 * |
ZHOU, NERVE, ET AL.: "Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker´s yeasts in the modern bakery", INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, vol. 250, pages 45 - 58, XP085007941, ISSN: 0168-1605, DOI: 10.1016/j.ijfoodmicro.2017.03.013 * |
Also Published As
Publication number | Publication date |
---|---|
CZ202369A3 (en) | 2024-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walker | Pichia anomala: cell physiology and biotechnology relative to other yeasts | |
Rouse et al. | Lactic acid bacteria with potential to eliminate fungal spoilage in foods | |
Coda et al. | Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread | |
Morin-Sardin et al. | Effect of temperature, pH, and water activity on Mucor spp. growth on synthetic medium, cheese analog and cheese | |
Amoa‐Awua et al. | The contribution of moulds and yeasts to the fermentation of ‘agbelima’cassava dough | |
Sadeghian et al. | Post harvest biological control of apple bitter rot by soil-borne actinomycetes and molecular identification of the active antagonist | |
Onilude et al. | Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels | |
CN104320980B (en) | Protective foods containing pediococcus acidilactici J9 and its preparation method | |
Nora et al. | Antifungal activity of newly isolates of lactic acid bacteria | |
Laitila et al. | Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors | |
CN107788517B (en) | Method for enhancing enzyme efficacy by using lactobacillus bulgaricus | |
Massawe et al. | Yeasts and lactic acid bacteria coffee fermentation starter cultures | |
Ramos-Pereira et al. | Antifungal activity of lactic acid bacteria isolated from milk against Penicillium commune, P. nordicum, and P. verrucosum | |
Kıvanc et al. | Screening of lactic acid bacteria for antifungal activity against fungi. | |
Moure et al. | Characterization of kefir yeasts with antifungal capacity against Aspergillus species | |
CN114854622A (en) | Lactobacillus plantarum with broad-spectrum activity of inhibiting mold and pathogenic bacteria and capable of producing multiple antibacterial metabolites and application of lactobacillus plantarum | |
Angeli et al. | Production of Ampelomyces quisqualis conidia in submerged fermentation and improvements in the formulation for increased shelf-life | |
Ström | Fungal inhibitory lactic acid bacteria: characterization and application of Lactobacillus plantarum MiLAB 393 | |
CZ309932B6 (en) | A strain of the Kazachstania pseudohumilis CCM 9277 yeast producing antifungally effective metabolites useable in the production of bakery products | |
Khusro et al. | Enhancement of anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array and Box-Behnken design | |
SE513894C2 (en) | Procedure for airtight storage of moist grain in the presence of a biocontrol agent | |
Stanzer et al. | Diversity of lactic acid bacteria on organic flours and application of isolates in sourdough fermentation | |
US20210300835A1 (en) | A Bacterial Composition Capable of Degrading Complex Carbohydrates | |
Sicuia et al. | Antifungal action of lactic acid bacteria isolated from plant materials against mycotoxigenic fungi. | |
Ström | Fungal inhibitory lactic acid bacteria |