CY1958A - Transesterified corn oil products - Google Patents

Transesterified corn oil products Download PDF

Info

Publication number
CY1958A
CY1958A CY195892A CY195892A CY1958A CY 1958 A CY1958 A CY 1958A CY 195892 A CY195892 A CY 195892A CY 195892 A CY195892 A CY 195892A CY 1958 A CY1958 A CY 1958A
Authority
CY
Cyprus
Prior art keywords
product
mono
glycerides
tri
glycerol
Prior art date
Application number
CY195892A
Inventor
Birgit Hauer
Armin Meinzer
Ulrich Posanski
Original Assignee
Sandoz Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB919113872A external-priority patent/GB9113872D0/en
Application filed by Sandoz Ltd filed Critical Sandoz Ltd
Publication of CY1958A publication Critical patent/CY1958A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/06Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with glycerol

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Preparation (AREA)

Description

2284615
PHARMACEUTICAL COMPOSITION
The present invention relates to novel galenic formulations, in particular novel galenic formulations in which the active ingredient comprises one or more members selected from cyclic poly-N-methylated undecapeptides of the cyclosporin class - see e.g. GB patent publications nos. 2 222 770 A and 2 228 198 A and equivalents world-vide.
As discussed in the said GB patent publications, the cyclosporins present highly specific difficulties in relation to administration generally and galenic formulation in particular, including in particular problems of drug bioavailability and variability in patient dose response.
In order to meet these and related difficulties, in GE patent publication no. 2 222 770 A, galenic formulations are disclosed comprising a cyclosporin as active ingredient and which take the form of, inter alia, a microemulsion or microemulsion pre-concentrate. Such compositions typically comprise 1) a hydrophilic phase, 2) a lipophilic phase and 3) a surfactant. Specifically recited hydrophilic phase components are the products known and commercially available under the trade names Transcutol and Glycofurol as well as 1,2-propylene glycol. Preferred lipophilic phase components are medium chain fatty acid triglycerides such as known and commercially available under the trade names Miglyol, Captex, Myritol, Capmul, Captex, Neobee and Hazol, Miglyol 812 being the most preferred.
Suitable surfactant components include, in particular, reaction products of natural or hydrogenated vegetable oils and ethylene glycol such as those known and commercially available under the trade names Cremophor and NikJtol, the products Cremophor KB40 and Nikkol HC0-40 being indicated as especially preferred.
GB patent publication no. 2 228 198 A proposes an alternative means for meeting difficulties in relation to cyclosporin administration. Specifically it discloses oil based formulations in vhich the oily component comprises a combination of tri-glyceride and (i) glycerol partial esters or (ii) 1,2-propylene glycol complete or partial esters or (iii) sorbitol complete or partial esters. The products known and commercially available under the tradename Maisine are proposed as suitable tri- and partial glyceride components. The disclosed compositions additionally comprise a surfactant component, for example Cremophor RH40, but are preferably free of any hydrophilic components such as ethanol. Described and exemplified compositions are free of such components.
In accordance with the present invention it has now surprisingly been found that particularly stable cyclosporin galenic formulations having particularly interesting bioavailability characteristics and reduced variability in inter- and intra-subject bioavailability parameters, are obtainable. Such compositions being new, the present invention provides in its broadest aspect:
A pharmaceutical composition comprising a cyclosporin as active ingredient in a carrier medium comprising:
1) 1,2-propylene glycol;
2) a mixed mono-, di-, tri-glyceride; and
3) a hydrophilic surfactant.
The term "pharmaceutical composition11 as used herein and in the
accompanying claims is to be understood as defining compositions of which the individual components or ingredients are themselves pharmaceutical^ acceptable, e.g. where oral administration is foreseen, suitable or acceptable for oral application.
Cyclosporins to which the present invention applies are any of those having pharmaceutical utility, e.g. as immunosuppressive agents, anti-parasitic agents and agents for the reversal of multi-drug resistance, as known and described in the art, in particular Cyclosporin A (also known as and referred to hereinafter as Ciclosporin), Cyclosporin G, [0-(2-hydroxyethyl)-(D)Ser]#-Ciclosporin, and [3'-deshydroxy-3'-keto-MeBmt]1-IVal]3-Ciclosporin.
Components (2) in the compositions of the invention preferably comprise mixtures of Ci2_2o fatty acid mono-, di- and tri-glycerides, especially C16_1S fatty acid mono-, di- and triglycerides. The fatty acid component of said mixed mono-, di- and tri-glycerides may comprise both saturated and unsaturated fatty acid residues.
Preferably however they will predominantly be comprised of unsaturated fatty acid residues in particular, Cie unsaturated fatty acid residues for example linolenic, linoleic and oleic acid residues. Suitably component (2) will comprise at least 602, preferably at least 752,
more preferably 852 or more by weight C18 unsaturated fatty acid, e.g. linolenic, linoleic and oleic acid mono-, di- and tri-glycerides. Suitably they will comprise less than 202, e.g. ca. 152 or 102 by weight or less, saturated fatty acid, e.g. palmitic and stearic acid mono-, di- and tri-glycerides.
Components (2) in the compositions of the invention will preferably be predominantly comprised of mono- and di-glycerides, e.g. comprise at least 502, more preferably at least 702, e.g. 752, 802, 852 by weight or more, mono- and di-glycerides, based on the total weight of component (2).
- 4 -
Components (2) in the compositions of the invention vill suitably comprise from about 25 to about 502, preferably from about 30 to about 40%, e.g. 35 to 402, monoglycerides, based on the total weight of component (2).
Components (2) in the composition of the invention will suitably comprise from about 30 to about 602, preferably from about 40 to about 552, e.g. about 48 to 502, di-glycerides, based on the total weight of component (2).
Components (2) in the compositions of the invention will suitably comprise at least 52, e.g. from about 7.5 to about 152, e.g. 9 to 122, by weight of triglycerides.
Components (2) in the compositions of the invention may be prepared by admixture of individual mono-, di- or tri-glycerides in appropriate relative proportion. Conveniently however they will comprise transesterification products of vegetable oils, for example almond oil, ground nut oil, olive oil, peach oil, palm oil or, preferably, corn oil, sunflower oil or safflower oil and most preferably corn oil, with glycerol.
Such transesterification products are generally obtained by heating of the selected vegetable oil with glycerol, at high temperature in the presence of an appropriate catalyst under an inert atmosphere with continuous agitation, e.g. in a stainless steel reactor, to effect trans-esterification or glycerolysis. In addition to their mono-, di-and tri-glyceride components, such transestrification products will also generally comprise minor amounts of free glycerol. The amount of free glycerol present in components (2) for use in the compositions of the invention will preferably be less than 102, more preferably less than 52, most preferably ca. 1 or 22 by weight based on the total weight of free glycerol plus mono-, di- and tri-glycerides.
BNSDOCID: <GB 2284615A_L>
Preferably some of the glycerol is first removed e.g. by distillation (to give a "substantially glycerol free batch"), vhen soft gelatine capsules are to be made.
Especially suitable components (2) for use in the compositions of the invention will thus comprise the following components in the indicated amounts by weight based on the total weight of component (2):
Mono-glycerides: 25 or 30 to 502, especially 30 to 402.
Di-glycerides: 30 or 40 to 602, especially 40 to 552, e.g. 45 to 552. Mono- plus di-glycerides: >752, especially >802, e.g. ca. 852. Tri-glycerides: at least 52.
Free glycerol: <52, preferably <22 or <12.
Particularly suitable components (2) for use in the compositions of the invention are trans-esterification products of corn oil and glycerol, for example as commercially available under the trade name Maisine. Such products are comprised predominantly of linoleic and oleic acid mono-, di- and tri-glycerides together with minor amounts of palmitic and stearic acid mono-, di- and tri-glycerides (corn oil itself being comprised of ca. 562 by weight linoleic acid, 302 oleic acid, ca. 102 palmitic and ca. 32 stearic acid constituents).
Physical characteristics for Maisine [available from the company Etablissements Gattefosse, of 36, Chemin de Genas, P.O.Box 603, 69804 Saint-Priest, Cedex (France)] are: approximate composition free glycerol
- 102 max. (typically 3.9-4.92 or, in
"substantially glycerol free" batches, ca. 0.22)
mono-glycerides
- ca. 352 (typically 30-402 or, in
"substantially glycerol free" batches, e.g. 32-362, e.g. ca. 362)
di-glycerides - ca. 502 (or, in
"substantially glycerol free"
batches ca. 46-482)
tri-glycerides - ca. 102 (or, in
"substantially glycerol free"
batches, ca. 12-152)
free oleic acid content - ca. 12
Further physical characteristics for Maisine are: acid value = max. ca. 2, iodine no. = ca. 85-105, saponification no. * ca. 150-175 (Fiedler "Lexikon der Hilfsstoffe", 3rd revised and expanded edition (1989) Vol. 2, p.768). The fatty acid content for Maisine is typically: palmitic acid - ca. 112; stearic acid - ca. 2.52; oleic acid - ca. 292; linoleic acid - ca. 562; others - ca. 1.52.
It is especially preferred that the component (2) e.g. a glycerol transesterified corn oil is clear, e.g. after keeping a sample in a refrigerator, e.g. betveen 2 and 8°C, for 24 hours, the sample is clear at room temperature 1 hour after taking the sample out of the refrigerator.
Preferably components (2) have a lov saturated fatty acid content. Components (2) meeting these requirements may, for example be obtained from commercially available products, e.g. obtained therefrom by methods such as separative techniques as known in the art, e.g. freezing procedures coupled with separative techniques, e.g. centrifugation, to remove the saturated fatty acid components/enhance the unsaturated fatty acid component content. Typically the total saturated fatty acid component content will be <152, e.g. <102, or <52 by weight based on the total weight of component (2). A reduction of the content of saturated fatty acid component in the mono-glyceride fraction of components (2) may be observed after the separative technique.
Components (2) thus preferably contain lesser quantities of saturated fatty acids (e.g. palmitic and stearic acids) and relatively greater quantities of unsaturated fatty acids (e.g. oleic and linoleic acids) than for the starting material.
Typical preferred components (2) may according to the preferred embodiment of this invention contain:
32-362 mono-glycerides,
45-552 di-glycerides and
12-202 tri-glycerides by weight based on the total weight of component (2).
Further preferred characteristics include the following:
Fatty acid content as determined as the methyl ester by chromatography
Methyl linoleate Methyl oleate
53-632 24-342 0- 32
0- 32 6-122
1- 32
Methyl linolenate Methyl arachate Methyl palmitate Methyl stearate
Relative Density Hydroxyl Value Iodine Value Peroxide Value Free Glycerol Acid value max. Saponification no. ca.
0.94-0.96 140-210
150-185
110-120
<4.0 <1.0 ca. 2
- 8 -
Components (2) complying vith the above outlined features are referred to hereafter as "refined glycerol-transesterified corn oils". Freshly prepared components (2) according to the preferred embodiments are of clear appearance and stay clear at storage temperature of 20°C - 25°C for more than 20 days.
The "refined glycerol-transesterified corn oils" have especially been proposed for the preparation of the compositions of this invention. They may also have uses for the solubilization of other active agents and have the advantage of remaining stable, e.g. clear, for a long time. They constitute another aspect of present invention. The invention accordingly provides in another aspect a trans-esterification product of corn oil and glycerol comprising predominately of linoleic acid and oleic acid mono-, di- and tri-glycerides treated to enhance the unsaturated fatty acid component content of mono-, di- and tri-glycerides so that the linoleic acid and oleic acid mono-, di- and tri-glyceride content is in total 85% or more of the whole composition.
Components (3) in the compositions of the invention preferably have an HLB of at least 10.
Examples of suitable components (3) in the compositions of the invention are:
3.1 Reaction products of a natural or hydrogenated castor oil and ethylene oxide. Such products may be obtained in known manner, e.g. by reaction of a natural or hydrogenated castor oil vith ethylene oxide, e.g. in a molar ratio of from about 1:35 to about 1:60, vith optional removal of the polyethyleneglycol component from the product, e.g. in accordance with the methods disclosed in German Auslegeschriften 1,182,388 and 1,518,819. Especially suitable are the various tensides available under the trade name Cremophor. Particularly suitable are the products Cremophor RH 40 having a saponification number of ca. 50-60, an acid number <1, an
BNSDOCID: <GB 2284615A_I_>
iodine number <1, a water content (Fischer) <2%, an nj>60 of ca. 1,453 - 1,457 and an HLB of ca. 14 - 16; Cremophor RH 60 having a saponification number of ca. 40 - 50, an acid number <1, an iodine number <1, a water content (Fischer) 4.5-5.5%, and an nB25 of ca. 1.453-1.457 and an HLB of ca. 15-17; and Cremophor EL having a molecular weight (by steam osmometry) of ca. 1630, a saponification number of ca. 65-70, an acid number of ca. 2, an iodine number of ca. 28-32 and an nc25 of ca. 1.471. (c.f. Fiedler, "Lexikon der Hilfstoffe", 3rd revised and expanded edition (1989), Vol.1,p.326). Also suitable for use in this category are the various tensides available under the trade name Nikkol (e.g.
Nikkol HCO-40 and HC0-6O), Emulgin (e.g. Emulgin R040), Hapeg (e.g. Mapeg C0-40h) and Incrocas (e.g. Incrocas 40) (c.f.
Fiedler). The said product Nikkol HCO-60 is a reaction product of hydrogenated castor oil and ethylene oxide exhibiting the following characteristics: acid value ca. 0.3; saponification number of ca. 47.4; hydroxy value of ca. 42.5; pH (5%) of ca. 4.6; color APHA = ca. 40; m.p. = ca. 36.0°C; freezing point = ca. 32.4°C; H20 content (X, KF) = 0.03.
3.2 Polyoxyethylene-sorbitan-fatty acid esters, e.g. mono- and tri-lauryl, palmityl, stearyl and oleyl esters, e.g. of the type known and commercially available under the trade name Tween (c.f. Fiedler, loc.cit. p.1300-1304) including the products Tween
20 [polyoxyethylene(20)sorbitanmonolaurate],
21 [polyoxyethylene(4)sorbitanmonolaurate],
40 [polyoxyethylene(20)sorbi tanmonopalmi tate j,
60 [polyoxyethylene(20)sorbitanmonostearate],
65 [polyoxyethylene(20)sorbitantristearate],
60 [polyoxyethylene(20)sorbi tanmonooleate],
81 [polyoxyethylene(5)sorbitanmonooleate],
85 {polyoxyethylene(20)sorbitantrioleatej.
Especially preferred products of this class for use in the
- 10 -
compositions of the invention are the above products Tveen AO and Tween 80.
3.3 Polyoxyethylene fatty acid esters, for example polyoxyethyiene stearic acid esters of the type known and commercially available under the trade name Myrj (c.f. Fiedler, loc. cit., 2, p.834-835); an especially preferred product of this class for use in the compositions of the invention is the product Myrj 52 having a D25= ca. 1.1., m.p. = ca. 40-44°C, an HLB value = ca. 16.9., an acid value = ca. 0-1 and a saponification no. = ca. 25-35.
3.4 Polyoxyethylene-polyoxypropylene co-polymers and block co-polymers, e.g. of the type known and commercially available under the trade names Pluronic, Emkalyx and Poloxamer (c.f. Fiedler, loc. cit., 2, p. 959). An especially preferred product of this class for use in the compositions of the invention is the product Pluronic F68, having an m.p. = ca. 52°C and a molecular weight of ca. 6800-8975. A further preferred product of this class for use in the compositions of the invention is the product Poloxamer 188.
3.5 Dioctylsulfosuccinate or di-[2-ethylhexyl]-succinate (c.f.
Fiedler, loc. cit., 1, p. 107-108).
3.6 Phospholipids, in particular lecithins (c.f. Fiedler, loc. cit., 2, p. 943-944). Lecithins suitable for use in the compositions of the invention include, in particular, soya bean lecithins.
3.7 Propylene glycol mono- and di-fatty acid esters such as propylene glycol dicaprylate (also known and commercially available under the trade name Miglyol 840), propylene glycol dilaurate, propylene glycol hydroxystearate, propylene glycol isostearate, propylene glycol laurate, propylene glycol ricinoleate, propylene glycol stearate and so forth (c.f. Fiedler, loc. cit., 2, p. 808-809).
BNSDOC1D: <GB 2284615A_I_>
- 11 -
3.8 Sodium lauryl sulfate.
For use in relation to the present invention, components as set out under (3.1) above are most preferred.
Components (1), (2) and (3) are preferably present in the compositions of the invention in relative proportions such that the composition is a "micro-emulsion preconcentrate", i.e. having the characteristics of a micro-emulsion preconcentrate system as described in GB patent publication no. 2 222 770 A at pages 11 to 12, the contents of which are, for the purposes of defining such systems, incorporated herein by reference. Compositions of the invention are thus preferably "microemulsion preconcentrates", in particular of the type providing o/w (oil-in-water) microemulsions. The present invention is also to be understood as including compositions comprising components (1), (2) and (3) together vith (4) water and which are microemulsions.
As also indicated in GB patent publication no. 2 222 770 A the hydrophilic phase of microemulsion preconcentrate systems, i.e. component (1) in compositions of the present invention may include one or more additional ingredients as hydrophilic phase component, for example lower (e.g. Ci_s) alkanols, in particular ethanol. Such components will generally be present in partial replacement of component (1). While the use of ethanol in compositions of the present invention is not essential, it has been found to be of particular advantage when the compositions are to be manufactured in soft gelatine encapsulated form, e.g. as a means of improving storage characteristics, in particular to reduce risk of cyclosporin precipitation following encapsulation procedures. Thus the shelf life stability may be extended by employing a lower alkanol as an additional ingredient of the hydrophilic phase.
Suitably the hydrophilic phase component, i.e. component (1),
- 12 -
1,2-propylene glycol, or component (1) plus any hydrophilic phase co-component(s), e.g. ethanol, will be present in the compositions of the invention in an amount of from 1.0 or 2.5 to 502, preferably from 5 to 40%, more preferably from 10 to 35%, e.g. above 15%, e.g. from about 20 to about 30% by weight based on the total weight of hydrophilic phase component(s) plus components (2) and (3).
When a hydrophilic phase co-component is employed, the co-component, e.g. ethanol, is suitably present in an amount of up to about 20%, preferably up to about 10 or 15%, e.g. from about 5 to 10 or 15% by weight based in the total weight of the composition. Such co-component is thus suitably present in an amount of from about 25 to 75% by weight based on the total weight of hydrophilic phase components (e.g. 1,2-propylene glycol plus ethanol) more preferably it is present in an amount of less than 50%, e.g. from 25 to 50%, for example about 30, 40 or 50%.
Suitably component (2) will be present in the compositions of the invention in an amount of from 5 to 65%, preferably from 15 to 45%, more preferably from 20 to 40%, e.g. from about 25 to about 35%, based on the total weight of hydrophilic phase component(s) plus components (2) and (3).
Suitably component (3) will be present in the compositions of the invention in an amount of from 25 to 75%, preferably from 30 to 60%, e.g. from about 55 or 60% based on the total weight of hydrophilic phase component(s) plus components (2) and (3).
Suitably the compositions of the invention will comprise from about 1 or 2 to 30%, preferably from 5 to 20 or 25%, more preferably from 7.5 to 15%, e.g. about 10% by weight of cyclosporin based on the total weight of the composition.
Accompanying Figure I represents a three-way plot for relative
BNSDOCID: <GB 2284615A_I_>
- 13 -
concentrations of hydrophilic phase component, i.e. 1,2-propylene glycol, component (2), e.g. "refined glycerol-transesterified corn oil", and component (3), e.g. Cremophor BBAO, in compositions in accordance vith the invention and comprising 10% cyclosporin (e.g. Ciclosporin) by weight. Relative concentrations of the carrier components increase in the directions indicated by the arrows from 0 to 100%.
For compositions in accordance vith the present invention the relative proportion of hydrophilic phase component(s), component (2) and component (3) vill suitably lie vithin the shaded area X. Compositions thus defined are microemulsion preconcentrates of high stability, capable on addition to vater, of providing microemulsions having an average particle size of <1,500A and stable over periods in excess of 24 hrs. In contrast compositions in the region A, B and C give aqueous systems subject to (A) discoloration, (B) phase separation and (C) turbidity respectively. Compositions in accordance vith the invention comprising hydrophilic phase component(s) and components (2) and (3) in relative proportion as defined by the line X of Fig. I are accordingly especially preferred.
In the event that the 1,2-propylene glycol component is partially replaced by ethanol as hereinbefore described, the area X of Fig. I is shifted slightly upwards within the plot, i.e. in the direction of higher component (3) concentration. This shift however represents an upwards displacement of a few percent only and does not substantially alter the obtained plot.
The compositions of the invention show good stability characteristics, e.g. as indicated by standard stability trials, e.g. having a shelf life stability of up to three years, and even longer.
Compositions in accordance with the present invention may also include further additives or ingredients, for example [e.g. antioxidants
- 14 -
ascorbyl palmitate, butyl hydroxy anisole (BHA), butyl hydroxy toluene (BHT) and tocopherols, e.g. a-tocopherol (vitamin E)] and/or preserving agents, e.g. in an amount of from about 0.05 to IX by weight based on the total weight of the composition, or sweetening or flavoring agents, e.g. in an amount of up to about 2.5 or 5X by weight based on the total weight of. the composition.
Compositions in accordance vith the present invention have been found to exhibit especially advantageous properties when administered orally, e.g. in terms of both the consistency and high level of bioavailability achieved as indicated in standard bioavailability trials e.g. in healthy patients using a specific monoclonal kit to determine cyclosporin levels, e.g. as described in the Examples hereinafter. In particular the compositions in accordance with the present invention provide an improved oral administration form for cyclosporins (e.g. Ciclosporin) as it exhibits absence of significant food interaction, which we have observed with the commercially available oral form of Ciclosporin especially with fat rich food. Moreover, inter-subject and intra-subject variability of pharmacokinetic parameters may be significantly lover with the compositions according to the present invention than with the commercial oral form of Ciclosporin. Specifically the difference between the pharmacokinetic parameters with food intake and without food intake, or even between day time absorption and night time absorption, may be eliminated by administering the composition in accordance with the present invention. Thus with the novel composition according to present invention the pharmacokinetic parameters, e.g. absorption and blood levels, become surprisingly more predictable and this new galenic form may eliminate problems in administration with erratic absorption of Ciclosporin. Additionally the composition according to present invention, may exhibit an improved bioavailability in patients having malabsorption, e.g. liver transplantation patients or pediatric patients. In particular it has been found that such compositions are compatible vith tenside
BNSDOCID: <GB 2284615A_I_>
materials, e.g bile salts, present in the gastro-intestinal tract.
That is, they are fully dispersible in aqueous systems comprising such natural tensides and are thus capable of providing microemulsion systems in situ which are stable and do not exhibit precipitation of the cyclosporin or other disruption of fine particulate structure. Function of such systems on oral administration remains independent of and/or unimpaired by the relative presence or absence of bile salts at any particular time or for any given individual.
The compositions of the invention are well tolerated, e.g. as indicated by clinical trials over 4 weeks.
Compositions in accordance with the present invention will preferably be compounded in unit dosage form, e.g. by filling into orally administerable capsule shells, e.g. soft or hard gelatine capsule shells but if desired may be in drink solution form. Where compositions are in unit dosage form, each unit dosage will suitably contain between 10 and 200 mg cyclosporin, more suitably between 10 and 150 mg, e.g. 15, 20, 25, 50 or 100 mg cyclosporin. Such unit dosage forms are suitable for administration lx, 2x or 3x up to 5x daily (e.g. depending on the particular purpose of therapy, the phase of therapy etc.).
Alternatively compositions in accordance with the present invention suitable for oral administration may include (4) water or any other aqueous system, to provide microemulsion systems suitable for drinking.
In addition to the foregoing the present invention also provides a process for the production of a pharmaceutical composition as hereinbefore defined, which process comprises bringing a component (1), a component (2) and a component (3) as hereinbefore defined into intimate admixture and, when required compounding the obtained composition in unit dosage form, for example filing said composition
- 16 -
into gelatine, e.g. soft or hard gelatine, capsules.
In a more particular embodiment the present invention provides a process for the production of a pharmaceutical composition as hereinbefore defined in the form of a "microemulsion preconcentrate" or microemulsion, which method comprises bringing a component (1), a component (2) and a component (3), optionally together with further components or additives, in particular with a hydrophilic phase co-component, for example ethanol, into intimate admixture in relative proportions of components (1), (2) and (3), such that a microemulsion preconcentrate is obtained and, when required, compounding the obtained composition in unit dosage form or combining said obtained composition with sufficient water or sufficient of an aqueous solvent medium such that a microemulsion is obtained.
The following examples are illustrative of compositions in accordance with the invention, in unit dosage form, suitable for use, e.g. in the prevention of transplant rejection or for the treatment of autoimmune disease, on administration of from 1 to 5 unit dosages/day. The examples are described with particular reference to Ciclosporin. However equivalent compositions may be obtained employing any other cyclosporin, in particular [0-(2-hydroxyethyl)-(D)-Ser]8-Ciclosporin (hereinafter referred to as Compound Z).
EXAMPLE 1;
Preparation of "refined glycerol-transesterified corn oil".
Substantially-glycerol free glycerol-transesterified corn oil (if necessary after heating to give a clear mixture) is slowly cooled to a temperature of +20°C and kept at this temperature for one night. In a first-step centrifugation, at an acceleration of 12 000 G and a flow rate of 103 kg/h in a continuous flow centrifuge, a liquid phase (62 kg/h) and a sediment-containing phase (41 kg/h) are obtained. The
BNSDOCID: <GB 2284615A_I_>
- 17 -
liquid phase is slovly cooled to +8®C and kept at this temperature for one night. In a second-step centrifugation at an acceleration of 12 000 G and a flow rate of 112 kg/h a liquid phase (76.2 kg/h) and a sediment-containing phase (35.8 kg/h) are obtained. The liquid phase is "refined glycerol-transesterified corn oil". Alternatively an improved product may be obtained by effecting the centrifugation in three steps, e.g. at +20°C, +10°C and +5eC.
The process is characterised by a slight percentage reduction in the mono-glyceride component in the refined glycerol transesterified corn oil as compared to the starting material (e.g. 35.6% compared to 38.3%).
A typical analytical comparison between the sediment and clear solution is as follows:
Compound Sedinent (Z) Clear Solution (%)
1. Mono palmitate 19.1 3.4
2. Mono linoleate + 23.4 27.0 Mono oleate
3. Mono stearate 5.7 <2
4. Dilinoleate + 35.4 44.7 Dioleate
5. Other di-glycerides 7.7 10.4
6. Tri-glycerides 8.7 12.5
Typical contents of components in the refined product obtained from these preparations are listed in the following Table:
- 18 -
COMPOSITION OP COMPONENTS (Z v/v)
Components refined glycerol-trans-esterified corn oil
Glycerides: mono di tri
Fatty acids:
palmitic acid (C16) stearic acid (C18) oleic acid (C18:l) linoleic acid (C18:2)
Glycerol content
33.3 52.1 14.6
7.8 1.7
31.6
57.7
<1%
EXAMPLE 2:
Preparation of oral unit dosage forms
COMPONENT
Cyclosporin, e.g. Ciclosporin
1) 1,2-propylene glycol
2) refined oil
3) Cremophor RH40
QUANTITY (mg/capsule) 100 200 320 380
Total 1,000
The cyclosporin is dissolved in (1) with stirring at room temperature
_2284615A I
- 19 -
and (2) and (3) are added to the obtained solution again vith stirring. The obtained mixture is filled into size 1 hard gelatine capsules and sealed e.g. using the Quali-Seal technique.
Compositions comprising 50 and 100 mg Ciclosporin, are prepared analogously employing the following indicated ingredients in the indicated amounts.
In this Example, refined oil = "refined glycerol-transesterified corn oil" as described in Example 1 or Maisine, e.g. substantially glycerol free Maisine.
COMPOSITIONS COMPRISING 100 mg cyclosporin, e.g. Ciclosporin
COMPOSITION
2
■ ■
3
*
5
r~ 1 — 6
COMPONENT
QUANTITY
(mg/capsule)
1) 1,2-Propylene glycol
200
270
180
180
90
2) refined oil
350
180
180
360
360
3) Cremophor RH40
I
350
450
540
360
450
j COMPOSITION
7
8
9
10
|COMPONENT
I
QUANTITY (mg/capsule)
1
|1) 1,2-Propylene glycol
1
150
100
200
200
1
la) ethanol
100
100
100
100
\2) refined oil
345
320
320
290
3) Cremophor RH40
405
380
380
360
- 20 -
COMPOSITIONS COMPRISING 50 mg Ciclosporin
....
COMPOSITION
A
B
c
D
E
F
COMPONENT
QUANTITY
(mg/capsule)
1) 1,2-Propylene glycol
100
135
45
90
100
50
la) ethanol
1 50
i
2) refined oil
160
90
180
180
67
160
3) Cremophor RH40
190
225
225
180
167
190
As indicated above equivalent compositions may be made containing Compound Z instead of Ciclosporin. Thus composition D may be made containing 50 mg Compound Z instead of Ciclosporin.
EXAMPLE 3: Bioavailability in dogs
The biopharmaceutical properties of compositions in accordance vith the present invention ve compared vith the marketed soft-gelatine capsule of Ciclosporin. The forms were compared after oral administration to 12 male beagle dogs in a cross-over design. The pharmacokinetic profile of Ciclosporin vas determined in vhole blood over 24 hours, the areas under the curve of the blood concentration versus time curves (AUC), CmMX and T„x vere determined.
Forms: Dose 100 mg Ciclosporin/dog
- 21 -
Composition X (commercial form, soft gelatin capsule)
Ciclosporin 100 mg
Labrafil 300 mg ethanol 100 mg
Maize oil 416 mg
Total 926 mg/dosage Composition I according to present invention (a soft gelatin capsule):
Ciclosporin 100 mg
1) 1, 2-propylene glycol 75 mg la) ethanol 150 mg
2) refined glycerol-transesterified corn oil 345 mg
3) Cremophor RH40 405 mg
Total 1075 mg/dosage
Drug administration:
10 male beagle dogs weighing around 12 kg completed the trial successfully. Twenty hours before the drug administration the food was withdrawn but the animals were allowed free access to water until the beginning of the experiment. The dosage forms were administered by gavage to the animals, early in the morning (approx. 8.00 am), and followed by 20 ml NaCl 0.9X solution. Three hours after the administration, the animals were again allowed free access to water and food. A 1 week wash-out period was necessary between 2 administrations to the same animal.
- 22 -
Blood sampling:
Blood samples of 2 ml (or 5 ml for the blank sample) vere taken from the vena cephalica (forearm) vith a sterile needle (diameter ca. 1.2 mm) and collected into 5 ml plastic tubes containing EDTA at -15 min, 30 min, 1, 1.5, 2, 3, 4, 6, 8, 12 and 24 hours after the oral administration of the drug. The blood samples vere stored at ca. -18"C until drug assay. The blood samples vere analysed by Ciclosporin-specific radioimmunoassay (RIA). The median blood concentrations of Ciclosporin in dogs are plotted in the accompanying Figure II. The areas under the blood drug concentration versus time curves (AUC) vere calculated using the trapezoidal rule. An analysis (CV) of variance vas performed and the mean AUCs, Cmax and Tmax vere compared statistically by the Tukey test. The results obtained are shovn in the folloving table.
Composition AUC 0-24 h C««x Ta«*
Mean CV Mean CV Mean CV
[ng.h/ml] [X] [ng/ml] 1*] [h] [X]
X 6695 27 1053 25 1.3 20
I 10064 24 1539 18 1.6 29
The behaviour and body veight of the animals vere controlled during the study. No body veight loss could be detected.
Conclusion: The composition according to the present invention (composition I) has a significantly higher bioavailability (factor 1.5) than the commercial soft-gelatin capsule of Ciclosporin.
Figure II shovs the average vhole blood Ciclosporin concentrations as determined by a specific monoclonal RIA folloving single oral administration of Composition X and Composition I each in 100 mg dosage. Blood concentration (in ng/ml) is recorded vertically and time
BNSDOCID: <GB 2284615A_I_>
- 23 -
horizontally.
EXAMPLE 4; Bioavailability in humans
The bioavailability of Ciclosporin is compared as it is determinable after administration of the commercial Ciclosporin soft gelatine capsule and of a composition according to present invention.
Administered form: 100 mg Ciclosporin per capsule
Composition X (commercial form, soft gelatine capsule)
Ciclosporin 100 mg
Labrafil 300 mg
Ethanol 100 mg
Maize oil 426 mg
Total 926 mg/Capsule
Composition No. 8 (according to Example 2 containing "refined glycerol-transesterified corn oil") in a soft gelatine capsule.
Method:
Forty eight healthy male subjects completed the study. Each of the participants received four of the eight administrations (tvo doses of composition 8 and the same two doses of composition X).
The participants were randomly allocated to two subgroups consisting of twenty four subjects each according to a parallel design. Subjects in Group I received doses of 200 mg and 600 mg Ciclosporin and subjects in Group II received 400 mg and 800 mg.
- 24 -
Within each of the tvo groups the trial vas conducted on the basis of a balanced 4-vay cross-over design with a wash-out period of two weeks between each treatment.
Blood samples for determination of Ciclosporin in whole blood were taken 1 minute before drug intake and then 15 min, 30 min. 45 min, 1 h, 1.5h, 2 h, 2.5 h, 3 h, 3.5 h, 4 h, 4.5 h, 5 h, 6 h, 8 h, 20 h, 12 h, 16 h, 20 h, 24 h, 28 h, 32 h, 36 h, 40 h, and 48 h after drug intake.
The individual concentrations of Ciclosporin in whole blood were determined for each blood sample by a specific RIA-method.
The limit of quantification was 12.5 ng/ml.
Blood concentrations and corresponding AUC(0_4B h)-values of Ciclosporin were significantly higher after administration of Composition 8 than after administration of Composition X at all dosage strengths. Peak concentrations (CB,X) of the 200 mg, 400 mg, and 600 mg dose levels appeared somewhat earlier after administration of Composition 8 (see following table).
BNSDOCID: <GB 2284615A_I_>
- 25 -
Table: Bioavailability of Ciclosporin in Humans Mean (+SD) values of AUC<o-4a m? c*«x and T««x after single oral administration of different dosages of Composition X and Composition 8
Form AUC(q-4$ h) C««x Taax
[ng.h/ml] {ng/ml] [h]
200 mg Comp X
2028
+
608
558
+
228
2.1
+
0.7
200 mg Comp 8
3468
+
1000
1025
±
218
1.5
+
0.4
400 mg Comp X
3326
4-
1115
785
±
252
2.1
+
0.9
400 mg Comp 8
6944
±
1468
1557
+
286
1.4
+
0.4
600 mg Comp X
4501
1217
917
+
236
2.3
+
1.0
600 mg Comp 8
9689
±
2282
1812
+
400
1.7
+
0.6
800 mg Comp X
5209
+
1554
1045
+
264
2.4
+
1.0
800 mg Comp 8
12162
±
3059
2143
+
576
2.1
±
0.8
Based on the mean ratios of AUC (o-<s hj-values the relative bioavailability of Composition 8 vs Composition X was estimated between 170% and 233%, depending on the dose administered <see following table).
Table: Relative bioavailability of Composition 8 vs. Composition X
Dose of Mean ratio of AUC(0-4g hi Conversion Factor:
[mg] Comp 8 vs. Comp X Comp X vs. Comp 8
200 1770 0759
400 2.09 0.48
600 2.15 0.47
800 2.33 0.43
- 26 -
Conclusion; The composition according to the present invention (Composition 8) has a significantly higher bioavailability in humans be at least factor 1.7 when compared to the commercial form (Composition X).
The accompanying Figure III provides a graphical plot of the mean AUC(o—4s h> ~ values of composition X (open triangles) versus those of Composition 8 (solid Circles). AUC-values (in ng.h/ml) of Ciclosporin vertically and dose horizontally as obtained from Example A.
The extent of absorption of Composition 8 (in terms of AUC{o*48 h)-values) seemed to be independent of dose, vhereas the extent of absorption of Composition X declined vith increasing doses (see Figure III).
BNSDOCJD: <GB 2284615A_I_>
-27-

Claims (9)

1. A trans-esterification product of corn oil and glycerol comprising predominately of linoleic acid and oleic acid mono-, di- and tri-glycerides treated to enhance the unsaturated fatty acid component content of mono-, di- and tri-glycerides so that the linoleic acid and oleic acid mono-, di- and tri-glyceride content is in total 85% or more of the whole composition.
2. A product as claimed in claim 1, wherein the free glycerol content is less than 5%.
3. A product product as claimed in claim 2, wherein the free glycerol content is about
1%.
4. A product product as claimed in any one of claims 1 to 3, wherein the treatment is by removal of the saturated fatty acid component content of mono-, di- and tri-glycerides by freezing techniques.
5. A product product as claimed in any one of claims 1 to 4, wherein the total saturated fatty acid component content of mono-, di- and tri-glycerides is less than 15%.
6. A product product as claimed in any one of claims 1 to 5, wherein the total palmitic acid and stearic acid component content of mono-, di- and tri-gylcerides is less than 15%.
7. A product product as claimed in any one of claims 1 to 6, comprising from about 30% to about 40% of mono-glycerides, from about 45% to about 55% of di-glycerides, and at least 5% of tri-glycerides by weight based on the total weight of the composition.
8. A process for obtaining a refined glycerol-transesterified corn oil according to any one of claims 1 to 7, comprising heating of com oil with glycerol at high temperature in the presence of a suitable catalyst to effect glycerol-transesterification, and refining said product by freezing procedures coupled with separative techniques.
BNSDOCID: <GB 2284615A_J_>
-28 -
9. A product according to claim 1 substantially as hereinbefore described with reference to Example 1.
2284615A_J_>
CY195892A 1991-06-27 1992-06-24 Transesterified corn oil products CY1958A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB919113872A GB9113872D0 (en) 1991-06-27 1991-06-27 Improvements in or relating to organic compounds
GB9213393A GB2257359B (en) 1991-06-27 1992-06-24 Cyclosporin compositions for oral administration

Publications (1)

Publication Number Publication Date
CY1958A true CY1958A (en) 1992-06-24

Family

ID=26299138

Family Applications (1)

Application Number Title Priority Date Filing Date
CY195892A CY1958A (en) 1991-06-27 1992-06-24 Transesterified corn oil products

Country Status (2)

Country Link
CY (1) CY1958A (en)
GB (1) GB2284615B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ199915A (en) * 1981-03-11 1985-07-12 Unilever Plc Treating edible oils to raise melting point thereof
AU6785490A (en) * 1989-12-18 1991-06-20 Kraft General Foods, Inc. Low-saturate edible oils and transesterification methods for production thereof

Also Published As

Publication number Publication date
GB9500393D0 (en) 1995-03-01
GB2284615A (en) 1995-06-14
GB2284615B (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP0539319B1 (en) Pharmaceutical cyclosporin composition
US6262022B1 (en) Pharmaceutical compositions containing cyclosporin as the active agent
EP0589843B1 (en) Pharmaceutical compositions containing cyclosporins
CA2132740C (en) Pharmaceutical composition containing cyclosporin derivative
CA2371247A1 (en) Substantially oil-free cyclosporin compositions
CY1958A (en) Transesterified corn oil products
GB2315216A (en) Microemulsion preconcentrates comprising FK 506