CS356590A3 - Ceramo-metallic sandwich material - Google Patents

Ceramo-metallic sandwich material Download PDF

Info

Publication number
CS356590A3
CS356590A3 CS903565A CS356590A CS356590A3 CS 356590 A3 CS356590 A3 CS 356590A3 CS 903565 A CS903565 A CS 903565A CS 356590 A CS356590 A CS 356590A CS 356590 A3 CS356590 A3 CS 356590A3
Authority
CS
Czechoslovakia
Prior art keywords
ceramic
metal
sandwich material
material according
metal sandwich
Prior art date
Application number
CS903565A
Other languages
Czech (cs)
Inventor
Stefan Dr Schindler
Werner Dr Schultze
Friedrich-Ulf Deisenroth
Original Assignee
Vaw Ver Aluminium Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaw Ver Aluminium Werke Ag filed Critical Vaw Ver Aluminium Werke Ag
Publication of CS356590A3 publication Critical patent/CS356590A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

To date, highly porous ceramic materials have been infiltrated with a metal melt so that the product produced therefrom has a predominantly metallic structure. This ceramic-metal composite (CMC) is substantially metal-like in its properties, so that the requirements with regard to hardness, heat stability and wear are well below the values of the purely ceramic materials. The properties of the ceramic materials with regard to flexural strength, toughness, modulus of elasticity, hardness and resistance to wear are to be improved while retaining or increasing the properties such as hardness, temperature behaviour and resistance to wear, which are superior compared with metallic materials. The metal-ceramic composite is characterised in that the ceramic is composed of several layers, the layer thickness being between 10 and 150 mu m and the mean pore radius between 100 and 1000 nm with a final open porosity of 5-14% and a total porosity of 5-30%, and the metal fills the pore volume except for a residual pore volume of 0.1 to 10%, based on the initial porosity. The ceramic-metal composite is preferably used for binding to metal structures, such as welded or soldered ceramic/metal constructions.

Description

-1--1-

Vynález se týká keramickokovového sendvičovéhomateriálu /CMC = Ceramic Metal Compoud/, sestavajícíhoz porézní keramiky infiltrované kovem* Z EB 0 155 331 / lanxide/ je znám keramicko kovo-vý materiál shora uvedeného druhu. Podle hodu 11 lanxi-dova patentu musí malé úhly hranice zrn ležet uvnitřurčité oblasti,aby se umožnila dobrá infiltrace kerami-ckého tělesa . Dále je z GB patentu 21 48 270 / British CeramicResearch Assoc./ ze 30, května 1985 známo, že se cer-mety vyrobí tak, že se porézní SiC-keramika s poro -žitou 39 infiltruje roztaveným hliníkem při 70C 0 Ca za tlaku 6,72 kpsi.BACKGROUND OF THE INVENTION The present invention relates to a ceramic-metal sandwich material (CMC = Ceramic Metal Compoud) consisting of a porous ceramic infiltrated with metal. According to the Thickness of Lanxi's patent, the small grain boundary angles must lie within a particular region to allow good infiltration of the ceramic body. Furthermore, GB Patent 21 48 270 (British Ceramic Research Assoc.) Of May 30, 1985 discloses that ceres are prepared by infiltrating molten aluminum at 70 ° C under a pressure of 6 with a porous SiC-ceramic having a pH of 39. , 72 kpsi.

Další cermety jsou popsány v CS patentu 20 61 32z 01. října 1983·Zde se vyrábí evakuací porézníhokeramického materiálu z 93 až 90 / A^O^,zbytek jeS1O2 a infiltrací hliníkem nebo sloučeninami hliníkupři teplotách 700 až 900 °C pod inertním plynem a za -2- tlaku více než 1 MTa. Keramické tvarové tělískc/mápřed infiltrací porozitu 41 lodle stavu techniky se tedy infiltruje vysoce-porézní keramický materiál roztaveným kovem, takžez tohoto vyrobený produkt vykazuje převážně kovovoustrukturu.Tato keramickékovový sendvičový materiál/CMC/ φέ vlastnosti odpovídající co nejvíce kovovépovaze,takže požadavky na tvrdost, odolnost vůči te-plotám a opotřebení se pohybují hluboko pod hodnotamičistě keramických materiálů» Ůlo hou předloženého vynálezu je zlepšit vlast -nosti keramických materiálů s ohledem na pevnost vohybu,houževnatost,modul E, tvrdost odolnost vůči opo-třebení při zachování popřípadě zlepšení převažujícíchvlastností jako je tvrdost,teplotní chování a odol -rošt vůči opotřebení ve srovnání s kovovými materiá-ly. Úloha je vyřešena znaky uvedenými v definici předmětu vynálezu.Ukázalo se,že při vícevrstvé výstavběkeramiky a celkové porozitě 5 až 30 0 umožní infiltra-ce taveninou kovu dosáhnout požadovanou kombinacivlastností.Celková porozita odpovídá při tom výchozí i porozitě keramiky před infiltrací taveninou kovu.koz- -3- hodující při tom je střední poloměr pórů 100 až 1000 nm,který se zjišťuje pomocí Carlo-Erbova rtuťového měřičepórovitosti.Other cermets are described in CS Patent 20 61 32, issued October 1, 1983, which is produced by evacuating porous ceramic material from 93 to 90% Al2 O3, the remainder being SiO2 and infiltrating aluminum or compounds at temperatures of 700 DEG to 900 DEG C. under inert gas -2- pressure more than 1 MTa. Thus, the ceramic molding prior to the infiltration of the prior art porosity 41 infiltrates the high-porous ceramic material with the molten metal, so that the product produced is predominantly of a metal structure. BACKGROUND OF THE INVENTION It is an object of the present invention to improve the properties of ceramic materials with respect to tensile strength, toughness, modulus E, hardness resistance to wear, while maintaining or improving the prevailing properties such as hardness. , thermal behavior and wear resistance compared to metal materials. The problem is solved by the features disclosed in the definition of the subject matter of the invention. It has been shown that in multilayer construction of a ceramic and a total porosity of 5 to 30, the infiltration by the metal melt can achieve the desired combination of properties. Preferred is a mean pore radius of 100 to 1000 nm, which is determined by Carlo-Erb mercury porosity.

Pomocí vícevrstvé výstavby se dosáhne sítovitéstruktury pórů keramického materiálu,který se dá ob -vzléstě příznivě infiltrovat taveninou kovu. Síiovitástruktura pórů je podle vynálezu ovladatelná pomocípoužitá velikosTi^ částic keramického materiálu jakoži rychlostí nanášení v plasmatickém paprsku stabilizo-vaném kapalinou.By multilayer construction, the porosity of the pores of the ceramic material is achieved, which can be advantageously infiltrated by the metal melt. According to the invention, the porous pore structure can be controlled by using the particle size of the ceramic material as well as the liquid-deposition rate in the plasma beam.

Na základě pokusů se ukázalo,že malé úhly hranicezrnuváděné v lanxidově patentu nejsou nezbytné,kdyžkeramika vykazuje sítcvitou strukturu pórů,které jevystavěna spolu spojenými póry a kanály pórů.Tatozvéštní strukrura existuje tehdy,když je keramika vy-stavěna z většího počtu tenkých vrstev,které opět jsouvytvořeny tak,že jejich porosita je nastavitelná.It has been shown by experiments that small angles bounded by the lanxide patent are not necessary, when the ceramic exhibits a mesh-like pore structure which is coupled with the interconnected pores and pores of the pores. they are designed so that their porosity is adjustable.

Pro určité případě použití, například spojovánís kovovými strukturami, jako například svařované ne-bo spájené keramicko/kovové konstrukce se ukázalo ja-ko prospěšné,když keramický materiál vykazuje směremzvnitřku ven se zvyšující porozitu a tím zvyšující sepodíl kovu.Takto vystavěná sítovina pórů se označujejako " gradientová struktura". Vlastnosti kovu převážu· -4- jí na zevní oblasti sendvičového materiálu, zatím couvnitř převládají vlastnosti keramiky.For certain applications, for example bonding with metal structures, such as welded or brazed ceramic / metal structures, it has been shown to be beneficial if the ceramic material exhibits porosity-enhancing porosity and thus increasing metal particle size. gradient structure ". The properties of the metal prevail on the outside of the sandwich material, while the ceramic properties prevail.

Tato gradientova struktura se docílí pomocí varia-ce velikosti částic při nastříkévání na základní tělesov plasmovém paprsku stabilizovaném kapalinou. Začíná senapříklad s velmi jemným práškem s 20 fum a velikostčástic se zvyšuje v zevních vrstvách keramického mate -riálu na hodnotu d^Q > 100/um. Je ale možné postupo-vat i obráceně,vždy podle toho .kde leží strana přivrá-cená kovové ploše.Podstatné je,aby plocha keramickéhosendvičového tělesa ležící nejblíže ke kovové konstruk-ci vykazovala strukturu,která byla vyrobena z práškus velkým průměrem částic. 3?ro zvyšování tvrdosti a odolnosti vůči opotřebe-ní se může s výhodou používat vícesložkový materiál nabázi oxidu v částečně zreagovaném stavu, lod pojmemvícesložkové materiály se rozumí směsi dvou nebo víceoxidokeramických materiálů,které se rozemelou na prá-šek a při slinovacích teplotách nechají částečně zrea-govat.Teprve potom následuje vnášení do reakční oblastiplasmatického hořáku. Dále je vynález blíže vysvětlen pomocí více pří-kladů provedení,přičemž keramicko- kovové sendvičovémateriály podle vynálezu byly vyrobeny stříkáním v plas-mě a potom se zpracují infiltrací kovem na CMC. Napro-ti tomu se staví obvyklé CMC- materiály popsané v lan- -5- xidově patentu.Iři tom se ukazuje,že vlastnosti mate-riálu CMC podle vynálezu doznávají ještě zřetelnějšízlepšení,když vykazují gradientovou strukturu popsanouv bodech 3 až 5 definice předmětu vynálezu.This gradient structure is achieved by a particle size variation when spraying onto the bodies with a liquid-stabilized plasma beam. For example, a very fine powder with 20 µm starts and the particle size increases in the outer layers of the ceramic material to a value of d ≥ Q / 100 µm. However, it is also possible to do the reverse, in each case where the metal-facing side is located. It is essential that the surface of the ceramic body which is closest to the metal structure exhibits a structure which has been made of powder with a large particle diameter. In order to increase the hardness and wear resistance, the multi-component material can be advantageously used in the partially reacted oxide, the vessel component materials being understood to be mixtures of two or more oxy-ceramic materials which are ground to a powder and partially leave off at sintering temperatures. Then, a plasma torch is introduced into the reaction zone. In the following, the invention is explained in more detail with the aid of several embodiments, whereby the ceramic-metal sandwich materials of the present invention were made by plasma spraying and then treated with metal infiltration on CMC. In addition, the conventional CMC materials described in the patent specification of the patent appear to be even more pronounced when they exhibit a gradient structure as described in points 3 to 5 of the invention.

Hodnoty hustoty a pórovitosti byly určeny podleDIN 51056, hod. oty tvrdosti podle Vickera podle DIN50133.Dejdříve se stříkáním v plasmě vyrobí z mate -riálu AlgO^ a AlgliO^ desky,přičemž velikost částic dj-θse pohybovala mezi 60 až 70 yum a rychlost nanášení přinastříjávání v plasmovém paprsku činila 300 m/s.Tloušť-ka jednotlivých nanášených vrstev činila 100 jum, do-sažená celková pórovitost se u oxidu hlinitého pohy-bovala okolo 18 °/s a u aluminiumtitanétu okolo 15 0.·Tvarový součinitel nastříkaných částic činil 1 : 5 až1 : 20 u oxidu hlinitého a 1 : 15 až 1 : 25 u alumini-umtitanátu. Z těchto desek se nastříhaly zkušební díly prozjištění charakteristických hodnot materiálu ,v roz -měrech 100 x 100 x 30 mm,předehřály se na teplotu1000 °C a infiltrovaly se při 750 °C tlakem p = 35 barůpo dobu 15 s kovovou taveninou ze slitiny AISilOMg.Rychlost ochlazování po infiltraci činila 200. 0 C zahodinu v programově řízené peci,takže se díly ochla-dily během 5 hodin na teplotu místnosti. lotom se zjišťoval objem zbytkových pórů a u alu- -6- miniumoxidové keramiky byla zjištěna hodnota 5 cí° ,vztaženo na výchozí pórovitost a u keramiky z alumi-niumtitanátu 7 ¢.Density and porosity values were determined according to DIN 51056, Vicker's hardness grade according to DIN50133. Initially, the plasma was produced from a AlgO2 and AlgliO2 matrix, with a particle size dj-θ of between 60 and 70 µm and a deposition rate the plasma spraying was 300 m / s. The thickness of the individual coatings was 100 µm, the total porosity achieved for alumina was about 18 ° / s and aluminum titanium was about 15%. 5 to 1: 20 for alumina and 1: 15 to 1: 25 for aluminum umitanate. The test pieces were cut from these plates to determine material characteristics, 100 x 100 x 30 mm, preheated to 1000 ° C and infiltrated at 750 ° C with a pressure of p = 35 bar for 15 seconds with a metal melt of AISilOMg alloy. The cooling rate after infiltration was 200 ° C per hour in a program controlled furnace so that the parts were cooled to room temperature over 5 hours. The volume of the residual pores was determined by the lot and the value of 5%, based on the initial porosity and the alumina titanate 7 ¢, was determined in the case of alumina-minium oxide ceramics.

Další zkušební tělísko se vyrobí s gradientovoustrukturou podle vynálezu.Výrobní podmínky jsou stej-né jako pádmíhky uvedené shora,přičemž se ale nanáše-ly dvě rozdílné velikosti částic s d^Q hodnotou 40popřípadě 100 yum pomocí dvou kanálů.Dři tom se proud-částic á hodnotou = 40 jum kontinuálně zvyšovalz 0 na 25 kg/h,zatím co proud částic s hodnotou = 100 um se v téže míře snižoval ze 25 fcg/h na 0.Přepnutí z jednoho kanálu na druhý kanál se provádě-lo v průběhu jedné hodiny.Při tom získané jednotli-vé tlouštky vrstev se pohybují mezi 80 až 100 jum,celková pórovitost okolo 12 $é. Po infiltraci slitinouAlSilCMg vykazovalo zkušební tělísko objem zbytko-vých pórů 0,6 5», vztaženo na výhozí pórovitost.The other test specimens are made with the gradient structure of the present invention. The production conditions are the same as those mentioned above, but two different particle sizes are applied with a value of 40 or 100 µm using two channels. = 40 µm continuously increasing 0 to 25 kg / h, while the particle stream with a value = 100 µm decreased to the same extent from 25 µg / h to 0. Switching from one channel to another channel was carried out within one hour. In this case, the individual layer thicknesses are between 80 and 100 [mu] m, the total porosity is about 12 [mu] m. After infiltration with AlSilCMg alloy, the test specimen had a residual pore volume of 0.65%, based on the ejection porosity.

Hodnoty naměřené na zkušebních tělesech jsoushrnuty v tabulce 1. Hodnoty pro pevnost v ohybu /4bodové ohýbací zařízení/ ,E-modúl a KIC se zjišto -vály standardními ohybovými zkoušekami na tyčíchs rozměry 3,5 x 4,5 x 45 mm. Pro srovnání jsou uve-dena data materiálu běžně vyráběného celokeramickéhotělesa,uváděného jako A^O^ / hodnoty z literatury/.Ukazuje se ,že sendvičový materiál keramicko-kovový,podle vynálezu vykazuje velmi dobré hodnoty pro pev- -7- nost v ohybu. ,odolnost proti vzniku trhlin /KIC/ a tvr-dost a tím představuje s ohledem na kombinaci cha-rakteristických hodnot materiálu jakož i s ohledem najednotlivé charakteristické hodnoty výrazné zlepšeníoproti běžným materiálům. ·—*>·.->'’ .»^..αϊ.ύ.·..ΛΑ.ί-. -·*-' .·..·. •-«.‘-i-.·—........... ' ’ ' ' 1 .· 1 - -8- T a bulka t materiály X A12O3 ai2o3 Al2TiO5 ai2o3 charakteristické sintrová- stříká- stř íká- stříká- ‘.odro ty no /99,8 c// no no no infil- trováno = CMC hustota g/cm3 >3,9 3,3 3,4 3,6 pevnost v MPa ohybu /4-bodové/ 300 25 45 510 + 50 modul E GPa 310 22 13 250 + 80 KIC 6 ·· - 10 - 12 tvrdost Vicker c. /EV200/20^ 2000 920 + 250 1120±200 1600 + 300 -9- pokr. tabulky 1 charakteristi-cké hodnoty materiály ai2tío5 stříkáno infiltrová- no = CMC Al20^ sgradiento-vou struk-turou stříkáno a infiltro-váno = CMC XX lanxide A hustota 3 g/cnr' 3,7 3,6 - 3,7 3,0 - 3,6 pevnost v oljbu MPa /4-bodové/ 490 + 80 550 + 40 50 - 350 modul E GPa 300 + 100 350 + 50 88 - 310 KIC MPaX" m 13 - 15 15 - 18 3 - 9,5 tvrdost Vicker /HV200/2q/ 1800 + 300 1750 + 300 500 - 1800 x Datenblatt Ceramíques Techniaues DesmarquestxxJ.Met.Sci. 24 / 1989/,658-670The values measured on the test specimens are summarized in Table 1. The values for flexural strength / 4-point bending device /, E-modul and KIC were determined by standard rod bending tests with dimensions of 3.5 x 4.5 x 45 mm. For comparison, the material data of a commercially available all-ceramic body, referred to as " AO " (literature values) is shown. The ceramic-metal sandwich material according to the invention has been shown to have very good flexural strength values. , crack resistance (KIC) and hardness, and thus, with respect to the combination of characteristic material values as well as with respect to the unique characteristic value, represent a significant improvement over conventional materials. · - *> · .-> ''. »^ .. αϊ.ύ. · ..ΛΑ.ί-. - · * - '. · .. ·. • - «.'- i-. · —........... '' '1. · 1 - -8- T a bullet t materials X A12O3 ai2o3 Al2TiO5 ai2o3 characteristic sinter-sprayer ká- ty / 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 300 25 45 510 + 50 module E GPa 310 22 13 250 + 80 KIC 6 ·· - 10 - 12 hardness Vicker c. / EV200 / 20 ^ 2000 920 + 250 1120 ± 200 1600 + 300 -9- cont. infiltration = CMC Al 2 O 3 sgraded structure sprayed and infiltrated = CMC XX lanxide A density 3 g / cnr 3.7 3.6 - 3.7 3.0 - 3 , 6 lead strength MPa / 4-point / 490 + 80 550 + 40 50 - 350 module E GPa 300 + 100 350 + 50 88 - 310 KIC MPaX "m 13 - 15 15 - 18 3 - 9,5 hardness Vicker / HV200 / 2q / 1800 + 300 1750 + 300 500 - 1800 x Datenblatt Ceramíques Techniaues DesmarquestxxJ.Met.Sci. 24/1989 /, 658-670

Claims (16)

1. Keramicko-kovový sendvičový materiál, sestávají-cí z porézní keramiky infiltrované kovem, vyznačující se tím,že karamika je vytvořena z více vrstev,přičmžtlouštka vrstev se pohybuje mezi 10 až 50 /ηπ a $třednípoloměr póru mezi 100 až 1000 na při otevřené konečnépórovitesti 5 až 14 $ a celkové pórovitosti 5 až 30 $a kov vyplňuje objem pórů až na objem zbytkových pórů0,1 až 10 , vztaženo na výchozí pórovitost.CLAIMS 1. A ceramic-metal sandwich material consisting of a porous metal infiltrated ceramic, characterized in that the ceramic is formed from a plurality of layers, the thickness of the layers being between 10 and 50 microns and the central pore radius between 100 and 1000 microns at open finalpórovitesti 5 to 14 $ and total porosity 5 to 30 $ and the metal fills the pore volume up to a residual pore volume of 0.1 to 10, based on the initial porosity. 2. Keramicko-kovový sendvičový materiál podle bo - du 1, vyznačující se tím, že vrstvy jsuu vystavěny z keramických částic,které vykazují tvarový faktor ? 5.sendvičový2. A ceramic-metal sandwich material according to claim 1, wherein the layers are made of ceramic particles that exhibit a shape factor? 5.sendvičový 3. Keramicko-kovový/materiál podle jednoho z před-cházejících bodů,vyznačující se tím,že keramické části-ce vykazují v jednotlivých vrstvách sendvičového mate-riálu rozdílné tvarové faktory·3. Ceramic-metal / material according to one of the preceding claims, characterized in that the ceramic particles have different shape factors in the individual layers of the sandwich material. 4. Keramicko-kovový sendvičový materiál podle jed-noho z předchozích bodů,vyznačující se tím,že keramické -11- Částice vykazují ve směru z vnitřku ven vzrůstající tva-rový faktor.4. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that the ceramic particles exhibit an increasing form factor from the inside. 5. Keramicko-kovový sendvičový materiál podle jed-noho z předcházejících bodů,vyznačující se tím, že ke-ramické částice vykazují ve směru zevnitř ven zmenšují-cí se tvarový faktor.5. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that the ram particles exhibit a decreasing shape factor in the direction of the inside. 6. Keramicko-kovový sendvičový materiál podle jed-noho z předcházejících bodů,vyznačující se tím, že sejako kov používá hliník nebo hliníková slitina.6. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that aluminum or aluminum alloy is used as the metal. 7. Keramicko-kovový sendvičový materiál podle jed-noho z předcházejících bodů, vyznačující se tím,že sejako kov používá slitina hliníku s křemíkem.7. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that an aluminum-silicon alloy is used as the metal. 8. Keramicko-kovový sendvičový materiál podle jed-noho z předcházejících bodů, vyznačující se tím,že sejako kov používá hořčík, olovo, zinek, měď.8. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that magnesium, lead, zinc, copper are used as metal. 9. Keramicko-kovový sendvičový materiál podle jed-noho z předcházejících bodů,vyznačující se tmm, že sejako kov použije ocel nebo šedá litina.Ceramic-metal sandwich material according to one of the preceding claims, characterized in that steel or gray cast iron is used as the metal. 10. Keramicko-kovový sendvičový materiál podlejednoho z předcházejících bodů,vyznačující se tím, žese jako kov používá titan nebo slitiny titanu.10. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that titanium or titanium alloys are used as the metal. 11. Keramicko-kovový sendvičový materiál podle jed- -' . .- ........ ..--...... . .......... -12- noho z předcházejících bodů , vyznačující se tím, že sejako keramika používá oxidokeramický materiál v čistéformě.11. Ceramic-metal sandwich material according to the present invention. .- ........ .. - ....... 5. A method according to claim 1, wherein the ceramic is an oxidoceramic material in a clean form. 12. Keramicko-kovový sendvičový materiál podlejednoho z předcházejících bodů, vyznačující se tím, žese jako keramika použije vícesložkový materiál na bá -zi oxidu v částečně zreagovaném stavu,.12. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that a multicomponent oxide material in partially reacted state is used as the ceramic. 13. Keramicko-kovový sendvičový materiál podlejednoho z předcházejících bodů, vyznačující se tím, žese jafeo keramika použije oxidokeramický materiál, kte-rý vznikl ze dvou nebo více čistých kovových oxidů re-akcí in šitu v plasmovém paprsku.13. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that the coffee ceramic uses an oxidoceramic material formed from two or more pure metal oxides by re-in situ in the plasma beam. 14. Keramicko-kovový sendvičový materiál podlejednoho z předcházejících bodů, vyznačující se tím, žese jako keramika použije oxid hlinitý nebo aluminium -titanát.14. Ceramic-metal sandwich material according to one of the preceding claims, characterized in that aluminum oxide or aluminum titanate is used as the ceramic. 15. Použití keramicko-kovového sendvičového mate-riálu pro spojení s kovovými strukturami , vyznačují-cí se tím, že strana sendvičového materiálu pivrácenáke kovové struktuře vykazuje ve srovnání s odvrácenoustranou povrchovou strukturu obohacenou kovem.15. The use of a ceramic-metal sandwich material for bonding with metal structures, characterized in that the side of the sandwich material exhibits a metal enriched surface structure as compared to the facing side. 16. Použití keramicko-kovového sendvičového mate-riálu podle jednoho z předcházejících bodů, vyznaču - £y-9o -13- jící se tím, že keramika na straně přivrácené ke kovovéstruktuře sestává z keramických částic s tvarovým fak- * torem zvětšujícím se ve srovnání s odvrácenou stranou* ZUse of a ceramic-metal sandwich material according to one of the preceding claims, characterized in that the ceramic on the side facing the metal structure consists of ceramic particles with a form factor increasing in comparison with with the reverse side * Z
CS903565A 1989-07-22 1990-07-18 Ceramo-metallic sandwich material CS356590A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3924268A DE3924268A1 (en) 1989-07-22 1989-07-22 CERAMIC METAL COMPOSITE

Publications (1)

Publication Number Publication Date
CS356590A3 true CS356590A3 (en) 1992-01-15

Family

ID=6385594

Family Applications (1)

Application Number Title Priority Date Filing Date
CS903565A CS356590A3 (en) 1989-07-22 1990-07-18 Ceramo-metallic sandwich material

Country Status (11)

Country Link
EP (1) EP0410284B1 (en)
JP (1) JPH03141182A (en)
KR (1) KR910002737A (en)
CN (1) CN1049647A (en)
AT (1) ATE112249T1 (en)
CA (1) CA2021645A1 (en)
CS (1) CS356590A3 (en)
DE (2) DE3924268A1 (en)
FI (1) FI903677A0 (en)
HU (1) HU904567D0 (en)
NO (1) NO903034L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ299845B6 (en) * 1999-04-09 2008-12-10 W. C. Heraeus Gmbh & Co. Kg Precious metal glaze

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287038A (en) * 1993-09-30 1995-09-06 Automotive Products Plc Metal matrix composites
GB9320150D0 (en) * 1993-09-30 1993-11-17 Automotive Products Plc Metal matrix composite components
GB2365875B (en) * 1998-12-30 2003-03-26 Intellikraft Ltd Solid state material
DE10113590A1 (en) * 2001-03-20 2002-10-02 Drm Druckgus Gmbh Production of a casting mold comprises forming a porous precursor produced from a metal oxide ceramic material by sintering with the aid of local heating, and infiltrating with a metal melt made from aluminum and/or magnesium
CN103072363A (en) * 2012-12-12 2013-05-01 西北工业大学 Preparation method of structure-designable high energy and secondary impact resistance metal/ceramic laminar composite material
DE102016203030A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
CN105734325A (en) * 2016-03-17 2016-07-06 合肥晨煦信息科技有限公司 Ceramic metal matrix composite and preparing method thereof
CN108129169B (en) * 2016-12-01 2021-01-19 比亚迪股份有限公司 Metal ceramic product and preparation method thereof
CN108745491B (en) * 2018-06-21 2021-02-19 湖北秦鸿新材料股份有限公司 High-wear-resistance roller sleeve of coal mill and preparation method thereof
DE102021004325A1 (en) 2021-08-24 2023-03-02 HiPer Medical AG Multiphase ceramic-ceramic composite and method of making same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ211405A (en) * 1984-03-16 1988-03-30 Lanxide Corp Producing ceramic structures by oxidising liquid phase parent metal with vapour phase oxidising environment; certain structures
DE3543342A1 (en) * 1985-12-07 1987-06-11 Bojak Kurt Composite material having high wear resistance and dimensional stability, and process for its manufacture
JPS62156938A (en) * 1985-12-28 1987-07-11 航空宇宙技術研究所 Manufacture of leaning-function material
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
DE3724995A1 (en) * 1987-02-26 1988-09-08 Radex Heraklith Process for manufacturing a composite body and the composite body itself
DE3914010C2 (en) * 1989-04-26 1995-09-14 Osaka Fuji Corp Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ299845B6 (en) * 1999-04-09 2008-12-10 W. C. Heraeus Gmbh & Co. Kg Precious metal glaze

Also Published As

Publication number Publication date
HU904567D0 (en) 1990-12-28
EP0410284B1 (en) 1994-09-28
NO903034D0 (en) 1990-07-06
ATE112249T1 (en) 1994-10-15
EP0410284A2 (en) 1991-01-30
FI903677A0 (en) 1990-07-20
DE3924268A1 (en) 1991-01-31
EP0410284A3 (en) 1991-03-20
JPH03141182A (en) 1991-06-17
DE59007316D1 (en) 1994-11-03
NO903034L (en) 1991-01-23
KR910002737A (en) 1991-02-26
CA2021645A1 (en) 1991-01-23
CN1049647A (en) 1991-03-06

Similar Documents

Publication Publication Date Title
US5952102A (en) Diamond coated WC and WC-based composites with high apparent toughness
KR970001261B1 (en) Process for preparing self-supporting bodies and products produced thereby
US5735332A (en) Method for making a ceramic metal composite
US5043182A (en) Method for the producing of ceramic-metal composite materials by plasma spraying several layers of ceramic particles onto a base body and infiltrating molten metal into the pores of the ceramic material
EP0775098B1 (en) Boron carbide cermet structural materials with high flexure strength at elevated temperatures
EP0426608A2 (en) Use of metal matrix composite as armor material
CS356590A3 (en) Ceramo-metallic sandwich material
JPH0662334B2 (en) Ceramic composite material sintered body
Muscat et al. Al/TiC composites produced by melt infiltration
US5053074A (en) Ceramic-metal articles
US5565156A (en) Method of making a ceramic body
EP0476346A1 (en) Ceramic-metal articles and methods of manufacture
CA2145161A1 (en) Method for making a ceramic metal composite
Plucknett et al. Processing and microstructure development of titanium carbide–nickel aluminide composites prepared by melt infiltration/sintering (MIS)
US4792353A (en) Aluminum oxide-metal compositions
EP0174463B1 (en) Process for the production of heat and wear-resistant ceramic materials, product of the process and starting material composition for use in the process
PL164448B1 (en) Method for the production of composite bodies with metallic matrix by automatic infiltration and a composite body, obtained by this method
AU2004242139B2 (en) Advanced erosion-corrosion resistant boride cermets
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
KR20010040578A (en) Iron aluminide composite and method of manufacture thereof
Hur et al. Graded coatings by gradient temperature densification
JP2825098B2 (en) Manufacturing method of composite sintered material
Prielipp et al. Gas-Pressure Metal Infiltration of Porous Ceramic Preforms
Pérez Oxidation behavior of Al-alloyed ZrSi2
Saruhan et al. Preliminary results on a novel fabrication route for α-Al2O3 single crystal monofilament-reinforced reaction-bonded mullite (RBM)