CS277255B6 - Process for producing polypropylene fibers with increased strength - Google Patents

Process for producing polypropylene fibers with increased strength Download PDF

Info

Publication number
CS277255B6
CS277255B6 CS904755A CS475590A CS277255B6 CS 277255 B6 CS277255 B6 CS 277255B6 CS 904755 A CS904755 A CS 904755A CS 475590 A CS475590 A CS 475590A CS 277255 B6 CS277255 B6 CS 277255B6
Authority
CS
Czechoslovakia
Prior art keywords
fiber
diameter
dtex
fibers
strength
Prior art date
Application number
CS904755A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS475590A3 (en
Inventor
Ondrej Ing Brejka
Jozef Ing Hudak
Igor Javorek
Original Assignee
Vyzk Ustav Chem Vlaken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vyzk Ustav Chem Vlaken filed Critical Vyzk Ustav Chem Vlaken
Priority to CS904755A priority Critical patent/CS277255B6/en
Publication of CS475590A3 publication Critical patent/CS475590A3/en
Publication of CS277255B6 publication Critical patent/CS277255B6/en

Links

Abstract

Riešenie sa týká spósobu výroby polypropylénových vláken s pevnostami 6,0 až 7,5 cN/dtex pre primerané technické aplikácie. Vlákno pri celkovom deformačnom pomere 7,0 až 7,5 prechádza druhou deformačnou zónou agregovanou s relaxačnou ·zónou do jedného stupňa tak, že sa vedie na část galety so skokovou změnou priemeru s vyšším priemerom a odvádza sa častou galety s nižším priemerom, pričom obidve časti galety majú rovnakú teplotu.The solution relates to a method for producing polypropylene fibers with strengths of 6.0 to 7.5 cN / dtex for appropriate technical applications. Fiber at a total deformation ratio of 7.0 up to 7.5 passes through the second deformation zone aggregate with a relaxation zone into one degree so that it leads to a portion of the galeta so a step change in diameter with a higher diameter and diverting by a lower diameter, whereas both parts of the galet have the same temperature.

Description

Vynález sa týká spósobu výroby polypropylénových vláken so zvýšenou pevnosťou pre technické aplikácie.The invention relates to a process for the production of polypropylene fibers with increased strength for technical applications.

Jednou z etáp výroby, v ktorej možno dosiahnuť želatelný účinok, prejavujúci sa zvýšenou pevnosťou vlákna, je etapa dlženia-relaxácie. Mnohé postupy ako takto získať vlákno, sú známe. GB 1 075 022 chráni postup výroby polyoleflnových vláken, připravených zvlákňovaním polyolefínu pri teplote nad 260 °C a kontrolovaným chladením v niekolkých stupňoch v inertnej atmosféře. Vlákna sa potom dlžia v stave, keď ich teplota je ešte stále vyššia ako bod topenia polyméru a po ochladení na teplotu miestnosti sa opátovne zahrejú na 140 až 160 °C a dlžia. PE vlákno s pevnosťou aspoň 13 cN/dtex sa podlá US 4 228 118 připraví taveninovým zvlákňovaním PE s polymerizačným stupňom aspoň 20 000 a molekulovou hmotnosťou pod 125 000 cez jedno alebo mnohootvorovú hubicu pri teplote 220 až 335 °C s núteným chladením, dlžením v pomere 20:1, v kontakte s vyhrievaným prostředím na 115 až 132 °C. Podia DE 3 323 202 pri výrobě vláken o pevnosti nad 5 cN/dtex sa používá spomalovaná kryštalizácia vláken v procese odťahovania vláken z otvorov hubice. Podlá příkladu sa izotaktický polypropylén zvlákňuje a chladí vzduchom rýchlosťou 1000 m/min. Vlákna sa navíjajú rýchlosťou 1000 m/min, dlžia, relaxujú a oblúčkujú. Dosiahnu pevnost: 5,8 cN/dtex. Viacstupňové dlženie chráni napr. JP/A/ 194 109/85 a to v najmenej dvoch stupňoch u vysokomolekulového polyetylénu, pričom boli zistené empirické vzťahy medzi dávkovacou rýchlosťou a dlžiacim pomerom. Podia EP 215 507 /póv. NL/ sa ožiarené vlákna z PE s lamelárnou štruktúrou dlžia v niekolkých stupňoch pri stále stúpajúcej teplote, ale vždy pod Tm. Útvary majú minimálně pevnosti 22 cN/dtex a moduly 833 cN/dtex. Proces je ekonomicky výhodnější ako extrúzia v pevnej fáze. Dlžené, extrudované, vysokomolekulové polyetylénové vlákna s vnútornou viskozitou aspoň 3,5 dl/g, pevnosťou aspoň 10,9 cN/dtex sa dlžia podia EP 190 878 /póv. JP/ na poměr aspoň 3. Vlákna od hubice sa odťahujú, postupné chladia a výhodné dlžia. Dvojstupňovo sa dlžia PE vysokopevné vlákno podlá JP/A/ 104 911/87. Ak sa vychádza z POE s vnútornou viskozitou 15 dl/g, získá sa vlákno s pevnosťou 15,3 cN/dtex. Zvýšenie pevnosti vláken sa dosiahne i dlžením s postupným zvyšováním teploty, k čomu je prispósobená komora dlžky 3 m, rozdělená na váčší počet sekcií s postupné stúpajúcou teplotou. Známy je postup výroby polyetylénu s vysokou hustotou, zvlákňovaného z taveniny a dlženého v dvoch stupňoch, ktorým sa získá vlákno s jemnosťou 2-50 dtex a pevnosťou 7 cN/dtex. Jedná sa však dlženie vo vodnom kúpeli v zvlákňovaco-dlžiacom procese a chráněný je DE 3540181.One of the stages of production in which the desired effect, manifested by increased fiber strength, can be achieved is the elongation-relaxation stage. Many methods for obtaining a fiber in this way are known. GB 1 075 022 protects a process for the production of polyolefin fibers prepared by spinning a polyolefin at a temperature above 260 ° C and controlled cooling in several stages in an inert atmosphere. The fibers are then drawn in a state where their temperature is still higher than the melting point of the polymer, and after cooling to room temperature, they are reheated to 140-160 ° C and drawn. According to U.S. Pat. No. 4,228,118, a PE fiber with a strength of at least 13 cN / dtex is prepared by melt spinning PE with a degree of polymerization of at least 20,000 and a molecular weight below 125,000 through a single or multi-hole nozzle at a temperature of 220 to 335 ° C with forced cooling, drawing ratio 20: 1, in contact with a heated medium at 115 to 132 ° C. According to DE 3 323 202, in the production of fibers with a strength above 5 cN / dtex, retarded crystallization of the fibers is used in the process of withdrawing the fibers from the orifices of the nozzle. According to the example, the isotactic polypropylene is spun and air-cooled at a speed of 1000 m / min. The fibers are wound at a speed of 1000 m / min, stretched, relaxed and twisted. They achieve a strength of 5.8 cN / dtex. Multilevel debt protects e.g. JP / A / 194 109/85 in at least two stages for high molecular weight polyethylene, and empirical relationships between dosing rate and draw ratio have been found. According to EP 215 507 / ref. NL / s, the irradiated PE fibers with a lamellar structure elongate in several degrees at a constantly rising temperature, but always below Tm. The structures have a minimum strength of 22 cN / dtex and modules of 833 cN / dtex. The process is more economically advantageous than solid phase extrusion. Elongated, extruded, high molecular weight polyethylene fibers with an intrinsic viscosity of at least 3.5 dl / g, a strength of at least 10.9 cN / dtex are drawn according to EP 190 878 / cf. JP / to a ratio of at least 3. The fibers are drawn from the nozzle, gradually cooled and preferably drawn. PE high-strength fiber is drawn in two stages according to JP / A / 104 911/87. Starting from a POE with an intrinsic viscosity of 15 dl / g, a fiber with a strength of 15.3 cN / dtex is obtained. An increase in the strength of the fibers is also achieved by stretching with a gradual increase in temperature, to which a chamber length of 3 m is adapted, divided into a larger number of sections with a gradually rising temperature. A process for the production of high-density polyethylene, melt-spun and drawn in two stages, is obtained to obtain a fiber with a fineness of 2-50 dtex and a strength of 7 cN / dtex. However, this is drawing in a water bath in a spinning-drawing process and DE 3540181 is protected.

Zvýšenie pevnosti možno dosiahnui: popři viacstupňovom dlžení, využívájúcom v dlžiacej zóně násobný počet galetových dvojíc a v relaxačněj zóně galetové duo, aj na galetách so změnou priemeru, ktoré agregujú proces dlženia a relaxácie. Postup je známy u PAD a PES vláken pri mokrom zvlákňovaní /napr. DTO 2 139 794, kde sa využívá stupňovitá galeta s postupné sa meniacim priemerom/, alebo pri zvlákňovaní z taveniny /napr. JP 143 728/78 válčeky s plynule sa meniacim-zvyšujúcim priemerom od vstupu vlákna po výstup).An increase in strength can be achieved: in addition to multi-stage drawing, using a multiple number of galette pairs in the drawing zone and a galette duo in the relaxation zone, also on diameter-changing pallets, which aggregate the stretching and relaxation process. The procedure is known for PAD and PES fibers in wet spinning /e.g. DTO 2 139 794, where a stepped galette with a gradually changing diameter is used /, or in melt spinning / e.g. JP 143 728/78 rollers with a continuously changing-increasing diameter from the fiber inlet to the outlet).

Pre určité technické aplikácie polypropylénových vláken vyhovujú vlákna s pevnostou 6,0 až 7,5 cN/dtex. Z uvedených postupov pre vysokú energetická náročnost a zaradovanie dalších prvkov do výroby váčšina pre túto oblast pevností nevyhovuje. Je však zřejmé, že příprava polypropylénového vlákna s pevnostou 6,0 až 7,5 cN/dtex vyžaduje postupné zvyšovanie orientácie systému, čiže využitie deformačněj sily vo viacerých stupňoch. V prvom stupni deformácie sa získá málo stabilný orientovaný systém s čiastočne fibrilárnou štruktúrou, ktorá umožňuje dosiahnut v druhom stupni dostatočnu deformovatelnost a získanie vysokoorrentovaného systému.,For certain technical applications of polypropylene fibers, fibers with a strength of 6.0 to 7.5 cN / dtex are suitable. Of the above procedures for the high energy intensity and the inclusion of other elements in production, most are not suitable for this area of strength. However, it is clear that the preparation of a polypropylene fiber with a strength of 6.0 to 7.5 cN / dtex requires a gradual increase in the orientation of the system, i.e. the use of a deformation force in several stages. In the first stage of deformation, a poorly stable oriented system is obtained with a partially fibrillar structure, which makes it possible to achieve sufficient deformability in the second stage and to obtain a highly reciprocated system.

Dóležitá je ďalej otázka vnútorného pnútia vo vlákně a spósob jeho relaxácie. Vysoká hodnota vnútorného pnútia vo vlákně má negativny vplyv na stavbu návinu, zhoršuje spracovatelnost vlákna. Zaradenie relaxačného stupňa je teda známou nevyhnutnou podmienkou výroby.The issue of internal tension in the fiber and the way it relaxes is also important. The high value of the internal tension in the fiber has a negative effect on the structure of the coil, it impairs the processability of the fiber. The inclusion of a relaxation step is thus a known necessary condition for production.

Podlá známých postupov sa tavenie zvlákňuje cez mnohootvorovú hubicu a nedlžené vlákno sa odtahuje dvojicou odtahových galiet, ďalej sa dlži medzi odtahovými a prvými dlžiacimi galetami /1. stupeň dlženia) a potom medzi prvými a druhými dlžiacimi ga— letami sa vlákno dlži na požadovaný dlžiaci poměr /2. stupeň dlženia/. Tento postup vyžaduje zaradenie dvojice relaxačných galiet, aby sa odstránilo vnútorné pnútie. Teplota odtahových gali— et je 90 °C a teplota deformačných galiet v 1. a 2. stupni je 160 °C, pričom relaxačně gaiety niesú vyhrievané. Postup přípravy vlákna je ukončený jeho navijaním.According to known methods, the melt is spun through a multi-hole die and the undrawn fiber is drawn off by a pair of take-off pallets, further drawn between the take-off and the first draw rolls / l. degree of drawing) and then between the first and second drawing ga-years the fiber is drawn to the desired drawing ratio / 2. degree of indebtedness. This procedure requires the inclusion of a pair of relaxation pallets to remove internal tension. The temperature of the drawing pallets is 90 ° C and the temperature of the deformation pallets in the 1st and 2nd stage is 160 ° C, while the relaxation pallets are not heated. The process of preparing the fiber is completed by winding it.

Takto získané vlákno však dosahuje pevnosti len cca 5,5 cN/dtex.However, the fiber thus obtained has a strength of only about 5.5 cN / dtex.

Uvedené, nedostatky známých postupov výroby vláken so zvýšenou pevnostou rieši tento vynález, ktorého podstatou je, že pri celkovom deformačnom pomere 7,0-7,5 vlákno prechádza druhou deformačnou zónou agregovanou s relaxačnou zónou do jedného stupňa tak, že sa vedie na část gaiety so skokovou změnou priemeru s vyšším priemerom a odvádza častou s nižším priemerom, pričom obidve časti majú rovnakú teplotu.These shortcomings of the known processes for the production of fibers with increased strength are solved by the present invention, the essence of which is that at a total deformation ratio of 7.0-7.5 the fiber passes through the second deformation zone aggregated with the relaxation zone to one stage. with a step change in diameter with a higher diameter and drains by a part with a lower diameter, both parts having the same temperature.

Výhodou tohto postupu je zníženie energetickej náročnosti a celkové zhospodárenie výroby.The advantage of this procedure is the reduction of energy intensity and the overall economy of production.

Podlá už doteraz známých technologických postupov přípravy sa roztavený POP granulát formuje cez zvlákňovaciu hubicu s počtom otvorov 100 až 200 pričom teplota taveniny sa udržiava na 230 až 240 °C. Vzniknuté fibrily sa pomocou termokomory, ktorá je zaradená tesne pod zvlákňovacou hubicou, udržiavajú ešte určitú dobu v plastickom stave pri súčasnom pósobení odtahovej sily, pričom dochádza kuorientácii makromolekulových retazcov. Chladenie vzniknutých, čiastočne orientovaných vláken nastáva v suprúdnej šachtě, pričom dochádza vplyvom pósobiacej odtahovej sily k áalšej orientácii ochladených vláken hlavně v povrchových vrstvách fibril.. Na vlákna sa dale j nanáša preparácia pomocou vhodné usporiadanej dvojice trysiek. Rovnoměrnost nánosu preparácie možno dosiahnut zaradením vhodnej prevírovacej trysky do dráhy vlákna. Takto upravené vlákno sa odtahuje pomocou jednoduchéj neo hrievanej gaiety a vedie sa na prvé galetové duo, ktoré je ohrieváné na teplotu 60 až 90 C. Ďalej sa vlákno vedie na druhé galetové duo vyhrievané na teplotu 140 až 165 °C, kde dochádza ku prvej deformácii vlákna a následné sa vedie na tretie galetové duo, ktoré je vyhrievané na teplotu 150 až 170 °C. Zvláštnostou tohto galetového dua je skoková změna priemeru jeho galiet, takže tu dochádza ku druhej deformácii vlákna a zároveň ku jeho relaxácii. Stupeň relaxácie je tu daný pomerom priemerov galiet na vstupe a výstupe. Takto použité duo plní funkciu deformačno-relaxačného stupňa, pričom deformačně a relaxačně procesy sa uskutočňujú pri rovnakej teplote. Tento postup přípravy vláken je ukončený jeho navinutím pomocou vhodného navijacieho uzla.According to the previously known preparation procedures, the molten POP granulate is formed through a spinning nozzle with a number of holes of 100 to 200, while the temperature of the melt is maintained at 230 to 240 ° C. The resulting fibrils are kept in a plastic state for a certain time with the aid of a thermal chamber, which is located just below the spinning nozzle, while the pulling force is applied, while the macromolecular chains are oriented. The cooling of the formed, partially oriented fibers takes place in a supernatant shaft, whereby due to the effect of the pulling force the further orientation of the cooled fibers occurs mainly in the surface layers of fibrils. The fibers are further prepared by means of a suitably arranged pair of nozzles. The uniformity of the application of the preparation can be achieved by inserting a suitable rewinding nozzle into the fiber path. The fiber thus treated is drawn off by means of a simple neo-heated gait and led to the first galette duo, which is heated to a temperature of 60 to 90 ° C. Next, the fiber is led to a second galette duo heated to a temperature of 140 to 165 ° C, where the first deformation occurs. fibers and then led to a third galette duo, which is heated to a temperature of 150 to 170 ° C. The peculiarity of this galette duo is the jump change in the diameter of its galleys, so that there is a second deformation of the fiber and at the same time its relaxation. The degree of relaxation is given here by the ratio of the diameters of the pallets at the entrance and exit. The duo used in this way fulfills the function of a deformation-relaxation stage, while the deformation and relaxation processes take place at the same temperature. This process of preparing the fibers is completed by winding it with a suitable winding knot.

Dosiahnutie vyššieho účinku navrhovaného postupu dlženia a relaxácie je dokumentované na následujúcich příkladech.Achieving a higher effect of the proposed stretching and relaxation procedure is documented in the following examples.

Příklad č. 1Example no. 1

POP granulát s IT 9 až 12 g/10 min bol zvláknený pri teplote 230 °C. Vlákno sa odtahovalo rýchlostou 250 m/min, deformačný poměr v 1. st. bol 6,14 a celkový deformačný poměr bol 7,05. Teploty deformačných galiet boli 90,170 a 170 °C, vlákno relaxovalo na deformačněj galete so skokovou změnou priemeru 6%. Vlákno o jemnosti 1100 dtex dosiahlo pevnost 6,5 cN/dtex, tažnost 25%.POP granulate with IT 9 to 12 g / 10 min was spun at 230 ° C. The fiber was pulled at a speed of 250 m / min, the deformation ratio in the 1st st. was 6.14 and the total strain ratio was 7.05. The temperatures of the deformation pallets were 90.170 and 170 ° C, the fiber relaxed on the deformation pallet with a step change of the diameter of 6%. The fiber with a fineness of 1100 dtex reached a strength of 6.5 cN / dtex, elongation of 25%.

Příklad č. 2Example no. 2

POP granulát s· IT 9 až 12 g/10 min bol zvláknený pri teplote 230 °C. Vlákno sa odtahovalo rýchlostou 250 m/min, deformačný poměr v 1.st.bol. 5,7 a celkový deformačný poměr bol 7,1. Teploty nagaletách boli 80, 160 a 160 °C. Vlákno relaxovalo na deformačně j galete sa skokovou změnou priemeru 6 %. Vlákno o jemnosti 1200 dtex dosiahlo pevnost 6,6 cN/dtex, tažnost 28 %.POP granulate with · IT 9 to 12 g / 10 min was spun at 230 ° C. The fiber was drawn at a speed of 250 m / min, the deformation ratio in the 1st stage. 5.7 and the total strain ratio was 7.1. The temperatures in the galleys were 80, 160 and 160 ° C. The fiber relaxed on the deformation web with a step change in diameter of 6%. The 1200 dtex fiber reached a strength of 6.6 cN / dtex, an elongation of 28%.

Příklad č. 3Example no. 3

POP granulát s IT 9 až 12 g/10 min bol zvláknený pri teplote 230 °C. Vlákno sa odtahovalo rýchlostou 250 m/min, deformačný poměr v 1. stupni bol 5,4 a celkový deformačný poměr bol 6,9. Teploty galiet boli 80, 160 a 160 °C. V 2. deformačnom stupni bola použitá dvojica galiet rovnakého priemeru a vlákno relaxovalo na dvojici studených relaxačných galet. Vlákno o jemnosti 1200 dtex dosiahlo pevnost 5,3 cN/dtex, tažnost 8 %.POP granulate with IT 9 to 12 g / 10 min was spun at 230 ° C. The fiber was drawn at a speed of 250 m / min, the deformation ratio in the 1st stage was 5.4 and the total deformation ratio was 6.9. The pallet temperatures were 80, 160 and 160 ° C. In the 2nd deformation stage, a pair of galettes of the same diameter was used and the fiber relaxed on a pair of cold relaxation galettes. The 1200 dtex fiber reached a strength of 5.3 cN / dtex, an elongation of 8%.

DÍženie vláken a relaxácia pnútia na jednom galetovom due s róznym priemerom umožní získat polypropylénové vlákno s vyššími pevnostami (okolo 6 až 7 cN/dtex) a zároveň zhospodárňuje výrobu.Fiber drawing and tension relaxation on one galette dough with different diameters will make it possible to obtain polypropylene fiber with higher strengths (around 6 to 7 cN / dtex) and at the same time economize production.

Claims (1)

PATENTOVÉ NÁROKYPATENT CLAIMS Spósob výroby polypropylénových, vláken so zvýšenou pevnostou, sa vyznačuje tým, že pri celkovom deformačnom pomere 7,0 až 7,5 vlákno prechádza druhou deformačnou zónou agregovanou s relaxačnou zónou do' jedného stupňa tak, že sa vedie na část gaiety so skokovou změnou priemeru s vyšším priemerom a odvádza sa častou gaiety s nižším priemerom, pričom obidve časti gaiety majú rovnakú teplotu. ·The process for the production of polypropylene fibers with increased strength is characterized in that at a total deformation ratio of 7.0 to 7.5, the fiber passes through a second deformation zone aggregated with a relaxation zone to one stage so as to lead to a part of the yarn with a step change in diameter with a higher diameter and drained by a frequent gaiet with a lower diameter, both parts of the gaiet having the same temperature. ·
CS904755A 1990-10-01 1990-10-01 Process for producing polypropylene fibers with increased strength CS277255B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS904755A CS277255B6 (en) 1990-10-01 1990-10-01 Process for producing polypropylene fibers with increased strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS904755A CS277255B6 (en) 1990-10-01 1990-10-01 Process for producing polypropylene fibers with increased strength

Publications (2)

Publication Number Publication Date
CS475590A3 CS475590A3 (en) 1992-04-15
CS277255B6 true CS277255B6 (en) 1992-12-16

Family

ID=5391018

Family Applications (1)

Application Number Title Priority Date Filing Date
CS904755A CS277255B6 (en) 1990-10-01 1990-10-01 Process for producing polypropylene fibers with increased strength

Country Status (1)

Country Link
CS (1) CS277255B6 (en)

Also Published As

Publication number Publication date
CS475590A3 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
US2445042A (en) Method of treating oriented acrylonitrile structures
US2957747A (en) Process for producing crimpable polyamide filaments
US7931843B2 (en) Process for producing polyphenylene sulfide filament yarns
US2953428A (en) Production of polychlorotrifluoroethylene textiles
JPS6163710A (en) High-molecular substance
US3447202A (en) Spinning apparatus with a spinneret and an elongated chamber with means to perform retarded cooling
JPH04228605A (en) Spinning apparatus of synthetic molten fiber-forming polymer
CN109750359B (en) Method for producing superfine denier high-strength chinlon-6 FDY product by one-step method
US4421708A (en) Process for the production of high-strength filaments from dry-spun polyacrylonitrile
KR100208055B1 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
CS277255B6 (en) Process for producing polypropylene fibers with increased strength
KR101990229B1 (en) A method for manufacturing and manufacturing a low-shrinking aliphatic polyamide yarn and a low shrinkage yarn
US4913869A (en) Wet-spinning processes for producing acrylic filaments
US4346052A (en) Process for homogeneous curly synthetic polymer fibers
US5372760A (en) Process for producing polyarylene sulfide fiber and thereby obtainable polyarylene sulfide multifilament yarn
US3410940A (en) Mist spinning process
EP3455395B1 (en) Apparatus and method for monofilament yarn production
KR950000717B1 (en) Process for preparing a polyester fiber process for preparing a polyester fiber
WO2017200121A1 (en) High-strength polyethylene multifilament fiber, and manufacturing method
US5264173A (en) Polyvinyl alcohol monofilament yarns and process for producing the same
US3359356A (en) Process for crimping filaments at the spinneret face
JPH02446B2 (en)
JPS60162810A (en) Production of polyester fiber
JPS61231212A (en) Production of high-strength polyethylene fiber
KR100476658B1 (en) Manufacturing method of polyester shrink shrink blended yarn