CS271963B1 - Method of cu/ii catalytic activity affection - Google Patents

Method of cu/ii catalytic activity affection Download PDF

Info

Publication number
CS271963B1
CS271963B1 CS884947A CS494788A CS271963B1 CS 271963 B1 CS271963 B1 CS 271963B1 CS 884947 A CS884947 A CS 884947A CS 494788 A CS494788 A CS 494788A CS 271963 B1 CS271963 B1 CS 271963B1
Authority
CS
Czechoslovakia
Prior art keywords
sal
sod
activity
complex
catalytic activity
Prior art date
Application number
CS884947A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS494788A1 (en
Inventor
Juraj Doc D Kratsmar-Smogrovic
Ludovit Prog Ing Drsc Bergendi
Zdena Doc Ing Csc Durackova
Olga Doc Ing Csc Svajlenova
Valeria Rndr Seressova
Original Assignee
Kratsmar Smogrovic Juraj
Ludovit Prog Ing Drsc Bergendi
Zdena Doc Ing Csc Durackova
Olga Doc Ing Csc Svajlenova
Seressova Valeria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kratsmar Smogrovic Juraj, Ludovit Prog Ing Drsc Bergendi, Zdena Doc Ing Csc Durackova, Olga Doc Ing Csc Svajlenova, Seressova Valeria filed Critical Kratsmar Smogrovic Juraj
Priority to CS884947A priority Critical patent/CS271963B1/en
Publication of CS494788A1 publication Critical patent/CS494788A1/en
Publication of CS271963B1 publication Critical patent/CS271963B1/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Vynález sa týká spósobu ovplyvňovania katalytickej účinnosti Cu/II/ iónov na dizmutáciu superoxidových ionradikálov Oj v in vitro sústavách tým, že sa použijú ako koordinačně zlúčeniny, chelatované aniónmi Schiffovej zásady zloženia . _ o — /O-C,H.-CH=N-CH/COO /-CH--CH--COOR 7 0 4 z Z kde R znamená H, K+, alebo Na+, odvodenej od salicylaldehydu a kyseliny L-glutámovej, alebo D, L-glutámovej.The invention relates to a process for influencing the catalytic activity of Cu / II / ions for the dismutation of superoxide ion radicals Oj in in vitro systems by using as coordination compounds chelated by Schiff base anions of the composition. where O is R, H + , or Na + , derived from salicylaldehyde and L-glutamic acid , or D, L-glutamic.

Je známe, že niektoré metaloenzýmy, napr. Cu/Zn - superoxid-dizmutáza, EC 1.15.1.1. /CU/Zn-SOD/ katalyzujú dizmutáciu toxických aniónradikálov OJ, ktoré vznikajú v organizmoch ako jeden z produktov redukcie molekúl 02·It is known that some metalloenzymes, e.g. Cu / Zn - superoxide dismutase, EC 1.15.1.1. / CU / Zn-SOD / catalyze the dismutation of toxic anion radicals OJ, which are formed in organisms as one of the products of reduction of molecules 0 2 ·

Podlá súčasných poznatkov védy sa viaceré patologické stavy a procesy dávajú do súvislosti s deficitem enzýmu Cu/Zn-SOD v organizmech, alebo s poruchami jeho aktivity, čo spósobuje vzrast hladiny samotných superoxidových iónov OJ a v spojení s tým aj dalších toxických aniónradikálov, 0HT (B. Halliwell, Superoxide dismutase and the superoxide theory of oxygen toxicity, in: R. Lontie, Copper Proteins and Copper Enzymes, vol. II, CRC Press, Inc. Boca Raton Florida 1984, str. 63-102).According to current scientific knowledge, several pathological conditions and processes are associated with the deficiency of the enzyme Cu / Zn-SOD in organisms, or with disorders of its activity, which causes an increase in the level of superoxide ions OJ and in connection with other toxic anion radicals, 0H T ( B. Halliwell, Superoxide dismutase and the superoxide theory of oxygen toxicity, in: R. Lontie, Copper Proteins and Copper Enzymes, vol. II, CRC Press, Inc. Boca Raton Florida 1984, pp. 63-102).

Výskumu metaloenzýmov tejto skupiny, hlavně Cu/Zn-SOD, ako aj objasňovaniu významu a funkeie kovových iónov, konkrétné Cu/II/ a ich aktivnom centre, sa venuje v poslednej době zvýšená pozornost. Zistilo sa, že aktivně centrum Cu/Zn-SOD tvoří pentakoordinovaný Cu/II/ ión, ktorý viaže štyri N-atómy z histidinových zvyškov, ako aj jeden 0-atóm z molekuly HJO. (M. Fielden, C. Rotilio, The structure and mechanizm of Cu/Zn-superoxide dismutase, in: R. Lontie, Copper Proteins and Copper Enzymes, vol. II. CRC Press, Inc. Boca Raton Florida 1984, str.27-61.) Výskům v tejto oblasti ako aj využitie jeho výsledkov v praxi sú tiež značné nákladné, so zřetelem na vysoké cenové relácie izolovaného prírodného enzýmu Cu/Zn-SOD na medzinárodnom trhu. Velká pozornost sa preto venuje aj výskumu koordinačných zlúčenin médi s rÓznými ligandami, ako jednoduchým modelom aktívneho centra v Cu/Zn-SOD.Research into the metalloenzymes of this group, mainly Cu / Zn-SOD, as well as the elucidation of the significance and function of metal ions, in particular Cu / II / and their active center, has recently received increased attention. It has been found that the active center of Cu / Zn-SOD forms a pentacoordinated Cu / II / ion which binds four N-atoms from histidine residues as well as one O-atom from the HJO molecule. (M. Fielden, C. Rotilio, The structure and mechanism of Cu / Zn-superoxide dismutase, in: R. Lontie, Copper Proteins and Copper Enzymes, vol. II. CRC Press, Inc. Boca Raton Florida 1984, p.27 -61.) The research in this area as well as the use of its results in practice are also considerably expensive, given the high price relations of the isolated natural enzyme Cu / Zn-SOD on the international market. Therefore, great attention is paid to the research of coordination compounds of media with different ligands, as a simple model of the active center in Cu / Zn-SOD.

Koordinačně zlúčeniny Cu/II/ s róznymi ligandami relativné nízkých mol. hmotností Mr sice postrádajú bielkovinnú zložku, prítomnúvCu/Zn-SOD avšak zložením a štruktúrou koordinačného polyedra, resp. elektronového systému na centrálnom atome mčžu do určitéj miery napodobňovat aktivně centrum prírodného metaloenzýmu Cu/Zn-SOD. Miera dizmutačnej aktivity voči Oj závisí v takýchto koordinačných zlúčeninách od viacerých faktorov, najma od charakteru viazaných ligandov, štruktúry koordinačného polyedra, vrátane jeho distorzií, redox potenciálu Cu^/Cu1 v danom komplexe, ale aj od prostredia, najma pH, v ktorom komplex pčsobí na substrát. Experitmentálne overené poznatky však ukázali, že dizmutačná aktivita Cu/II/ v takýchto (modelových) komplexoch představuje len zlomok jeho aktivity, charakteristickej pre prírodný Cu/Zn-SOD.Coordinating compounds Cu (II) with various ligands of relatively low mol. weight of Mr, although they lack the protein component present in Cu / Zn-SOD, the composition and structure of the coordination polyhedron, resp. electron system on the central atom can to some extent actively mimic the center of the natural metalloenzyme Cu / Zn-SOD. The degree of dismutant activity against Oj in such coordination compounds depends on several factors, especially on the nature of bound ligands, the structure of the coordination polyhedron, including its distortions, the redox potential Cu / Cu 1 in the complex, but also on the environment, especially the pH in which the complex acts on the substrate. However, experimentally verified findings have shown that the dismutant activity of Cu / II / in such (model) complexes represents only a fraction of its activity, characteristic of natural Cu / Zn-SOD.

V sústavách in vitro prejavujú najvýznamnejšiu dizmutačnú aktivitu samotné akvamednaté katióny, avšak len v kyslej oblasti pH. V neutrálnej alebo v slabo zásaditej oblasti, aká charakterizuje fyziologické podmienky, však dizmutačná aktivita akvamednatých iónov prakticky zaniká. Určitý podiel katalytickej aktivity daného typu však Cu/II/ zachovává, pokial je viazaná v komplexoch s lyzínom, histidínom, indometacínom a pod. Dizmutačná aktivita Cu/II/ v jeho komplexe s etyléndiamíntetraacetáto-ligandom sa poznatelnejšie prejavuje taktiež v kyslej oblasti pH (W. F. Beyer, I. Fridovich, Anal. Biochem. 173, 160/ 1988).In vitro, aquamadate cations themselves show the most significant dismutating activity, but only in the acidic pH range. However, in the neutral or weakly basic region, which characterizes the physiological conditions, the dismutation activity of aqueducted ions practically disappears. However, Cu (II) retains some of the catalytic activity of a given type when bound in complexes with lysine, histidine, indomethacin and the like. The dismutant activity of Cu (II) in its complex with ethylenediaminetetraacetate ligand is also more noticeable in the acidic pH range (W. F. Beyer, I. Fridovich, Anal. Biochem. 173, 160 (1988)).

Ovplyvňovanie vlastností Cu/II/ iónov tým, že ich viazaním do koordinačných zlúčenin vhodných typov sa zachová aspoň určitý podiel ich dizmutačnej aktivity aj v podmienkach blízkých fyziologickým (neutrálna alebo slabo zásaditá oblast pH) má mimoriadny význam pre základný výskům (biochémia, molekulárna biológia, biokoordinačná chémia), ako aj z híadiskaInfluencing the properties of Cu / II / ions by binding them to coordination compounds of suitable types maintaining at least a certain proportion of their dismutating activity even in conditions close to physiological (neutral or weakly basic pH range) is of particular importance for basic research (biochemistry, molecular biology, biocoordination chemistry) as well as in terms of

CS 271 963 Bl vyhladávania perspektivných zlúčenín na diagnostické účely, připadne na využitie vo farmakoterapeutickej praxi (antiflogistiká, antireumatiká, radioprotektíva, antiproliferative, antineoplastiká a i.). Z hladiska jednoduchosti použitia koordinačných zlúčenín Cu/II/ vo výskume alebo pri použití ako dizmutačne aktivnych látok je velmi významná tiež ich dostatečná rozpustnost vo vodě.CS 271 963 B1 search for promising compounds for diagnostic purposes, possibly for use in pharmacotherapeutic practice (antiphlogistics, antirheumatics, radioprotectives, antiproliferatives, antineoplastics, etc.). From the point of view of the ease of use of the Cu (II) coordination compounds in research or when used as dismutant active substances, their sufficient solubility in water is also very important.

Je tiež známe, že dianión Schiffovej zásady, odvodenej od salicylaldehydu a L-glutá2movej kyseliny vzorca /sal-L-gluH/ , t.j. N-salicylidén-L-glutamát vzorca ΖΪ,Η..CH=N-CH/COO-/2— 6It is also known that the dianion of Schiff's base, derived from salicylaldehyde and L-glutamic acid of formula (sal-L-gluH), i.e. N-salicylidene-L-glutamate of formula ΖΪ, Η..CH = N-CH / COO - / 2 - 6

-CH2-CH2-COOH 7 vytvára mednatý komplex vzorca Cu/sal-L-gluH/.3 H20, kde sal-L-gluH je to isté ako hoře. (Y. Nakao, K. Sakurai a A. Nakahara, Bull. Chem. Soc. Japan 40, 1536/1967/). V štvorcovo-pyramidálnej štruktúre tohoto komplexu sú okrem trojfunkčného Uganda vzorca /sal-L-gluH/ koordinované na Cu/II/ dve molekuly H20, takže sa jedná o monohydrát diakva-/N-salicy-lidém-L-glutamáto/mednatého komplexu (J. Soldánová, J. Kratsmár-šmogrovič, F. Pavelčík, V. Seressová a M. Žemlička, Proc. 11th Conf. Coord. Chem., Smolenice 1987, str. 365 -370). Koordinovaná L-forma Schiffovej zásady v tomto komplexe účinkom silných zásad racemizuje, čo sa využilo na jednoduchá přípravu komplexu vzorca Cu/sal-D,L-gluH/. .3H2O (J. Kratsmár-šmogrovič, V. Seressová, M. Žemlička a L. Gážová, čs. AO č. PV-6023-88). Neutralizáciou koncovéj, nekoordinovanéj karboxylovej skupiny v glutamátovej časti Schiffovej zásady v komplexe vzorca / Cu/sal-L-gluH//H2O/2 /.H2O, kde sal-L-gluH je to isté ako hoře, sa připravuje dobré rozpustná komplexná sol: dihydrát akva-/N-salicylidén-L-glutamáto/mednatanu draselného ( F. Jursík a B. Hájek,Collection Czechoslovak Chem. Commun. 37, 1652/1972), čo možno použit' aj na přípravu jej sodnej soli, resp. D,L-formy komplexu: akva-N-salicylidén-D,L-glutamáto/mednatanu draselného, alebo sodného.-CH 2 -CH 2 -COOH 7 forms a copper complex of formula Cu (sal-L-gluH) .3 H 2 O, where sal-L-gluH is the same as above. (Y. Nakao, K. Sakurai and A. Nakahara, Bull. Chem. Soc. Japan 40, 1536 (1967)). In the square-pyramidal structure of this complex, in addition to the trifunctional Uganda of the formula (sal-L-gluH), two H 2 O molecules are coordinated to Cu (II), so that it is diacva- (N-salicy-human-L-glutamate) copper monohydrate. complex (J. Soldánová, J. Kratsmár-šmogrovič, F. Pavelčík, V. Seressová and M. Žemlička, Proc. 11th Conf. Coord. Chem., Smolenice 1987, pp. 365 -370). The coordinated L-form of the Schiff base in this complex racemizes by the action of strong bases, which was used for the simple preparation of the complex of formula Cu (sal-D, L-gluH). .3H 2 O (J. Kratsmár-šmogrovič, V. Seressová, M. Žemlička and L. Gážová, Czech AO No. PV-6023-88). By neutralizing the terminal, uncoordinated carboxyl group in the glutamate part of the Schiff base in the complex of formula (Cu) / sal-L-gluH // H 2 O / 2 /.H 2 O, where sal-L-gluH is the same as above, good soluble complex salt: potassium- (N-salicylidene-L-glutamate) potassium mednate dihydrate (F. Jursík and B. Hájek, Collection Czechoslovak Chem. Commun. 37, 1652/1972), which can also be used to prepare its sodium salt , resp. D, L-forms of the complex: aqua-N-salicylidene-D, L-glutamate / potassium or sodium citrate.

Doteraz však nebolo známe, že chelatácia ligandami vyššie uvedeného zloženia, vzorca 2- 2- 3“ 3- .To date, however, it has not been known that chelation by ligands of the above composition, formula 2- 2- 3 "3-.

/sal-L-gluH/ , /sal-D,L-gluH/ a /sal-L-glu/ , alebo /sal-D,L-gluz ovplyvňuje superoxiddizmutázovú aktivitu Cu/II/ iónov tak, že sa táto zachová vo využiteínej miere aj v neutrálnom, resp. slabo zásaditom prostředí, typickom pre fyziologické podmienky.(sal-L-gluH), (sal-D, L-gluH) and (sal-L-glu), or (sal-D, L-gluz) affects the superoxide dismutase activity of Cu (II) ions by maintaining it in usable degree also in neutral, resp. weakly basic environment, typical for physiological conditions.

Spdsob riešenia podlá vynálezu spočívá v použití roztokov L-,alebo D,L-formy N-salicylidénglutamátomednatého komplexu, alebo N-salicylidénglutamátomednatanov vyššie uvedeného zloženia, v štandardných testovacích sústavách in vitro s radikálmiol ako substrátom, za podmienok podobných fyziologickým.The process according to the invention consists in using solutions of the L- or D, L-form of the N-salicylidene glutamate-copper complex or N-salicylidene glutamate-mandate of the above composition, in standard in vitro test systems with radical radium as substrate, under physiological-like conditions.

Výsledkem riešpnia je dizmutačná eliminácia superoxidových o7 radikálov, připadne ich záchyt pdsobením Cu/II/ koordinačných zlúčenín vyššie uvedeného zloženia, čo představuje ich nový, doteraz neznámy účinok, ktorým prevyšujú podobný účinok mnohých iných mednatých komplexov.The solution results in the dismutation elimination of superoxide α7 radicals, or their capture by the action of Cu / II / coordination compounds of the above composition, which represents their new, hitherto unknown effect, which exceeds the similar effect of many other copper complexes.

Ďalej uvedené příklady ilustrujú, ale neobmedzujú využitie spósobu podlá vynálezu.The following examples illustrate but do not limit the use of the method of the invention.

Příklad 1Example 1

Dizmutázová aktivita dihydrátu akva-/N-salicylidén-L-glutamáto/mednatanu draselného a na porovnanie aj metaloenzýmu Cu/Zn-SOD (komerčný preparát firmy SIGMA izolovaný z hovádzích erytrocytov) sa zisíovala nepriamou metodou v in vitro systéme xantín- xantínoxidáza, na základe spektrofotometrického stanovenia inhibície redukcie cytochrómu c, pri /V = 550 nm.The dismutase activity of aqua- (N-salicylidene-L-glutamate) potassium dihydrate dihydrate and, for comparison, the metalloenzyme Cu / Zn-SOD (a commercial preparation from SIGMA isolated from bovine erythrocytes) was determined by an indirect method in an in vitro system of xanthine xanthine oxidase, based on spectrophotometric determination of the inhibition of cytochrome c reduction, at λ = 550 nm.

Reakčná zmes (1 ml) obsahovala vždy 0,05 mol/1 fosfátový tlmivý roztok, pH = 7,8; -4 -5 - -5 etyléndiamíntetraacetát disodný /1.10 mol/, xantín /5.10 mol/, cytochrom c/1.10 mol/ a xatínoxidázu /0,01 U/.The reaction mixture (1 ml) each contained 0.05 mol / l phosphate buffer, pH = 7.8; Disodium -4--5--5-ethylenediaminetetraacetate (1.10 mol), xanthine (5.10 mol), cytochrome c (1.10 mol) and xatine oxidase (0.01 U).

Ako jednotka dizmutázovej aktivity (1U) v uvedenom systéme sa definuje 50 %-ná inhibícia redukcie cytochrómu c, zistenými hmotnostnými množstvami enzýmu Cu/Zn-SOD, resp. testovanej zlúčeniny. Za uvedených podmienok sa dosiahla dizmutázová aktivita 1U účinkomThe unit of dismutase activity (1U) in said system is defined as the 50% inhibition of cytochrome c reduction by the determined mass amounts of the enzyme Cu / Zn-SOD, resp. test compound. Under these conditions, dismutase activity was achieved by 1U effect

CS 271 963 BlCS 271 963 Bl

3,66.10-4 mg Cu/Zn-SOD, alebo 3,94.10-1 mg testovaného komplexu K/Cu/sal-L-glu//H2°/ J · .2H2O (0,093 %).3.66.10 -4 mg Cu / Zn-SOD, or 3.94.10 -1 mg of the tested K / Cu / sal-L-glu // H 2 ° / J · .2H 2 O complex (0.093%).

Příklad 2Example 2

Testováním komplexu / Cu/sal-L-gluH//H2O/2 J.H2O za rovnakých podmienok ako v příklade 1, sa zistila porovnatelná aktivita (0,091 %) , ako v příklade 1.By testing the complex / Cu / sal-L-gluH // H 2 O / 2 JH 2 O under the same conditions as in Example 1, a comparable activity was found (0.091%) as in Example 1.

Příklad 3Example 3

Testováním komplexu K/7Cu/sal-D,L-glu//H,O/ ] za podmienok identických ako v příklade z -i sa dizmutázová aktivita 1U dosiahla účinkom 3,95.10 mg tejto zlúčeniny (0,093 %) .By testing the K / 7Cu / sal-D, L-glu // H, O /] complex under conditions identical to Example z- 1, 1U dismutase activity was obtained by the action of 3.95.10 mg of this compound (0.093%).

Příklad 4 .Example 4.

Dizmutázová aktivita komplexných zlúčenín,(příklady 1 a 3):Dismuthase activity of complex compounds, (Examples 1 and 3):

ΚΓ Cu/sal-L-glu//H2O/ J.2 H2O a K£7Cu/sal-D,L-glu//H2O/J sa stanovila tiež nepriamou metodou v in vitro systéme xantín-xantínoxidáza, na základe spektrofotometrického zistovania inhibície redukcie 2-/4-jódfenyl/-3-/4-nitrofenyl/-5-fenyltetrazóliumchloridu (INT) na formazán, pri Λ = 485 nm. Reakčné zmesi (1 ml) obsahovali vždy 0,05 mol/1 tlmivého fosfátového roztoku /pH = 7,8/, /1.10-4 mol/, xantín /5.10-5 mol/, INT /9,8.10-2 mol/ a xantinoxidázu /0,01 U/. Jednotková dizmutázová aktivita (1 U), charakterizovaná 50 %-nou inhibíciou tvorby formazánu v systéme sa prejavila účinkom:ΚΓ Cu / sal-L-glu // H 2 O / J.2 H 2 O and K £ 7Cu / sal-D, L-glu // H 2 O / J were also determined by an indirect method in an in vitro xanthine- xanthine oxidase, based on spectrophotometric detection of inhibition of the reduction of 2- (4-iodophenyl) -3- (4-nitrophenyl) -5-phenyltetrazolium chloride (INT) to formazan, at λ = 485 nm. The reaction mixtures (1 ml) each contained 0.05 mol / l of phosphate buffer (pH = 7.8), (1.10 -4 mol), xanthine (5.10 -5 mol), INT (9.8.10 -2 mol) and xanthine oxidase (0.01 U). Unit dismutase activity (1 U), characterized by 50% inhibition of formazan formation in the system, was manifested by the effect of:

9,71.10-5 mg Cu/Zn-SOD (100 %)9.71.10 -5 mg Cu / Zn-SOD (100%)

5,95.10 mg K [ Cu/sal-L-glu//H2O/ J.2 H2O (0,163 %), alebo5.95.10 mg K [Cu / sal-L-glu // H 2 O / J.2 H 2 O (0.163%), or

5,37.10-2 mg K C Cu/sal-D,L-glu//H2O/ J (0,187 %).5.37.10 -2 mg KC Cu / sal-D, L-glu // H 2 O / J (0.187%).

Příklad 5Example 5

Dizmutázová aktivita chelátových komplexných zlúčenín Cu11 podía příkladu 1 a 3 sa okrem toho zistovala ich použitím ako scavengerov (vychytávačov)superoxidových aniónov OJ, pri stanovovaní ich tvorby polymorfonukleárnymi leukocytmi íudí (PMN Leu) pri fagocytóze zymozánu.In addition, the dismutase activity of the Cu 11 chelate complexes of Examples 1 and 3 was determined using them as scavengers of OJ superoxide anions in determining their formation by human polymorphonuclear leukocytes (PMN Leu) in zymosan phagocytosis.

Reakčné zmesi (1 ml) obsahovali heparinizovaný (5 U/ml) fosfátový tlmivý roztok s 0,1 % glukózy, pH 7,4; 3.105 PMN Leu, 25 molov cytochrómu c, 0,05 mg (150 U) Cu/Zn-SOD, alebo 0,05 mg, testovanej zlúčeniny a suspendovaný zymozán (20 častíc na jeden PMN Leu). Paralelné sa analyzovali kontrolně zmesi připravené v rovnakom zložení, ale bez Cu/Zn-SOD, resp. testovaných zlúčenín. Po 15 min inkubácie pri 37 °C sa zmesi ochladili v íadovom kúpěli, centrifugovali (10 min) pri 78 500 m.s. .The reaction mixtures (1 mL) contained heparinized (5 U / mL) phosphate buffer with 0.1% glucose, pH 7.4; 3.10 5 PMN Leu, 25 moles of cytochrome c, 0.05 mg (150 U) Cu / Zn-SOD, or 0.05 mg, of test compound and suspended zymosan (20 particles per PMN Leu). In parallel, control mixtures prepared in the same composition but without Cu / Zn-SOD, resp. test compounds. After 15 min incubation at 37 ° C, the mixtures were cooled in an ice bath, centrifuged (10 min) at 78,500 ms.

Z rozdielu absorbancie priA'= 550 nm supernatantov, reakčných zmesi obsahujúcich Cu/Zn-SOD, alebo testované zlúčeniny, resp. bez týehto komponentov sa vypočítali množstvá vytvořeného O· pomocou molového absorpčného koeficientu cytochrómu c (redukovaný-oxidovaný) £ = 9,6 * —2 nmol.cm .From the difference in absorbance at A '= 550 nm of supernatants, reaction mixtures containing Cu / Zn-SOD, or test compounds, resp. without these components, the amounts formed O · were calculated using the molar absorption coefficient of cytochrome c (reduced-oxidized) ε = 9.6 * -2 nmol.cm.

Z tvorby Oj radikálov, stanovenej v analyzovaných zmesiach podía uvedenej metody vyplývá dizmutázová aktivita Cu/Zn-SOD a testovaných akva-N-salicylidénglutamátomednatanov K/L- a D,L-formy/ zhrnutá v tab. 1.The formation of Oj radicals, determined in the analyzed mixtures according to the mentioned method, results in the dismutase activity of Cu / Zn-SOD and the tested aqua-N-salicylideneglutamate mandates K / L- and D, L-forms / summarized in tab. 1.

TABULKA 1TABLE 1

Scavenger Scavenger pmoly 0,7 pmoly 0.7 aktivita (%) activity (%) Cu/Zn-SOD Cu / Zn-SOD 7,7 7.7 100 100 K^řu/sal-L-glu//H2O/ ^.2 HjOKi Ru / sal-L-Glu // H2O / ^ .2 HJO 9,5 9.5 123,4 123.4 K£Cu/sal-D,L-glu//H2O/ 7K £ Cu / sal-D, L-glu // H 2 O / 7 6,9 6.9 89,6 89.6

Claims (1)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION Sposob ovplyvňovania katalytickej aktivity Cu/II/ na dizmutačnú elimináciu superoxidových Ot radikálov, vyznačený tým, že sa na substrát posobí jej koordinačnými zlúčeninami, v ktorých je chelatovaná ligandom všeobecného vzorcaProcess for influencing the catalytic activity of Cu (II) for the dismutant elimination of superoxide Ot radicals, characterized in that the substrate is treated with its coordination compounds in which it is chelated by a ligand of the general formula C o-c6h4-ch=n-ch/coo-/-ch2- ch2-coorJ 2“ kde R znamená H, K+, alebo Na+, odvedeným od salicylaldehydu a L-glutámovej, resp.C oc 6 h 4 -ch = n-ch / coo - / -ch 2 - ch 2 -coorJ 2 “where R is H, K + , or Na + , derived from salicylaldehyde and L-glutamic, respectively. D,L-glutámovej kyseliny.D, L-glutamic acid.
CS884947A 1988-07-08 1988-07-08 Method of cu/ii catalytic activity affection CS271963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS884947A CS271963B1 (en) 1988-07-08 1988-07-08 Method of cu/ii catalytic activity affection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS884947A CS271963B1 (en) 1988-07-08 1988-07-08 Method of cu/ii catalytic activity affection

Publications (2)

Publication Number Publication Date
CS494788A1 CS494788A1 (en) 1990-04-11
CS271963B1 true CS271963B1 (en) 1990-12-13

Family

ID=5393351

Family Applications (1)

Application Number Title Priority Date Filing Date
CS884947A CS271963B1 (en) 1988-07-08 1988-07-08 Method of cu/ii catalytic activity affection

Country Status (1)

Country Link
CS (1) CS271963B1 (en)

Also Published As

Publication number Publication date
CS494788A1 (en) 1990-04-11

Similar Documents

Publication Publication Date Title
Simpson et al. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli
Faulkner et al. Characterization of Mn (III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity
De Boer et al. Electron paramagnetic resonance studies on conformational states and metal ion exchange properties of vanadium bromoperoxidase
Hammond et al. The mechanism of ficin-catalysed reactions
Adjimani et al. Iron uptake in Mycelia sterilia EP-76
Taylor et al. Influence of pH on the kinetics of complex formation between aromatic sulfonamides and human carbonic anhydrase
Bayer et al. Amavadin, an example for selective binding of vanadium in nature: studies of its complexation chemistry and a new structural proposal
IE60468B1 (en) Novel metal chelate resins
MXPA04001475A (en) Enhancing solubility of iron amino acid chelates and iron proteinates.
Fraústo da Silva Vanadium in biology—the case of the Amanita toadstools
Nuiry et al. Kinetic mechanism and location of rate-determining steps for aspartase from Hafnia alvei
Tamilarasan et al. Absorption spectra of d10 metal ion derivatives of plastocyanin
Weil‐Malherbe Activators and inhibitors of brain glutaminase
Kassner et al. Heme formation from Fe (II) and porphyrin in the absence of ferrochelatase activity
Athar et al. Coordination of copperpolyamine complex with imidazoles potentiates its superoxide dismutase mimicking activity and abolishes its interaction with albumin
Krömer et al. Function of the chloroplastic malate valve for respiration during photosynthesis
CS271963B1 (en) Method of cu/ii catalytic activity affection
Colman A glutamyl residue in the active site of triphosphopyridine nucleotide-dependent isocitrate dehydrogenase of pig heart
Bernhard et al. Spectrophotometric and structural evidence as to the mechanism of protease catalysis at chemical bonding resolution
Gampp et al. Copper (II) complexes with linear pentadentate chelators
Friedman et al. The reactivities of isomers of dichlorodiammine-platinum (II) with dehydrogenase enzymes: Evidence for inhibition via cross-linkage
Hucho et al. Studies of Glutamate Dehydrogenase: Characterization of Histidine Residues Involved in the Activity and Association Photoactivated Labelling with Pyridoxal 5′‐Phosphate
Shanbhag et al. Schiff bases of pyridoxal 5'-phosphate and 5'-deoxypyridoxal with phenylglycine derivatives and their metal complexes
Khodr et al. The iron-binding properties of aminochelin, the mono (catecholamide) siderophore of Azotobacter vinelandii
Caudle et al. Dihydroxamic acid complexes of iron (III): ligand pKa and coordinated water hydrolysis constants