CS270843B1 - Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions - Google Patents

Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions Download PDF

Info

Publication number
CS270843B1
CS270843B1 CS885768A CS576888A CS270843B1 CS 270843 B1 CS270843 B1 CS 270843B1 CS 885768 A CS885768 A CS 885768A CS 576888 A CS576888 A CS 576888A CS 270843 B1 CS270843 B1 CS 270843B1
Authority
CS
Czechoslovakia
Prior art keywords
iii
precipitate
metal
tenside
acid
Prior art date
Application number
CS885768A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS576888A1 (en
Inventor
Sona Prom Pharm Csc Lubkeova
Jan Ing Csc Novak
Karel Prochazka
Original Assignee
Sona Prom Pharm Csc Lubkeova
Novak Jan
Karel Prochazka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sona Prom Pharm Csc Lubkeova, Novak Jan, Karel Prochazka filed Critical Sona Prom Pharm Csc Lubkeova
Priority to CS885768A priority Critical patent/CS270843B1/en
Publication of CS576888A1 publication Critical patent/CS576888A1/en
Publication of CS270843B1 publication Critical patent/CS270843B1/en

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

The method applies to the removal of metallic ions such as Th(IV), UO2<2+>, La(III), Sr(II), Fe(III), Zn(II), Cs(II), Ni(II), Hg(II), Pb(II), Cu(II) from aqueous solutions with the subsequent regeneration of used tenside that tensides of acids, type 2-/alkyl/-3-/2-hydroxyethyl/-3-azepentadium, with alkyl C6 to C20 act on the aqueous solutions of metals so that a molar ratio of tenside and metal is 1:1 to 3 in the extent of pH 1 to 9, while a separable precipitate of the metal complex with tenside arises either directly, or the pH is necessary for the creation of precipitate is achieved by adding mineral acids, such as sulphuric acid, nitric acid, hydrochloric acid (hydrogen chloride), and subsequently by adding the foresaid mineral acids in a concentration of 1 to 5 moles x dm<-3> to the isolated precipitate of the complex. Metallic ion is isolated in the form of a soluble inorganic salt under simultaneous precipitation of the original tenside. By the method described, 80 to 99.9 mass % of metal is removed from the aqueous solutions, and by a subsequent regeneration of tenside, 90 to 99 mass % of the original tenside is possible to obtain for repetitive use.

Description

Vynález sa týká spůsobu odstraňovania kovových iónov ako sú Th(IV), U02 2+, La(III),The invention relates to a method for removing metal ions such as Th (IV), U 2 2+ , La (III),

Sr(II), Fe(III), Zn(II), Cd(II), Ni(II), Hg(II), Pb(II), Cu(II) z vodných roztokov.Sr (II), Fe (III), Zn (II), Cd (II), Ni (II), Hg (II), Pb (II), Cu (II) from aqueous solutions.

V súčasnosti sa к odstraňovaniu kovových iónov z vodných roztokov používajú viaceré spůsoby: metody extrakčné - Morrison G.A., Freiser H.: Extrakčné metody v analytické chémii, SNTL, Praha (1962); Calligaro L., Mantovani A., Belluco U., Acampora M.: Polyhedron 2, 1189 (1983); Malát, M.: Fresenius Z. Anal.Chem. 297, 417 (1979); Pakalns P.: Water Res. 15, 7 (1981); Chakravortty V., Oash K.C.S Mohanty S.R.: Radiochim. Acta 40, 89 (1986); Grimm R., Kolařík, Z.: 3. Inorg. Nucl. Chem.36, 189 (1974); Schepper A.: Hydrometallurgy 4, 285 (1979). V klasickej extrakcii přítomnost’ tenzidov ovplyvňuje vlastnosti medzifázového povrchu, čím sa může negativné ovplyvnit rýchlosť extrakcie a extrakčná účinnost1 Huttinger K.3., Schegk 3.R.: Chem.Ing. Těch. 53, 574 (1981); Osseo-Asare K.: Proč. Int. Solv. Extr. Conf. ISEC '83,Denver 278 (1983). Pri použití tenzidu ako súčasti vodnej fázy v extrakcii pozoruje sa interferencia tenzidu s obomi fázami za vzniku emul2ií, čo celý proces negativné ovplyvňuje - Pakalns P.: Water Res. 15, 7 (1981). iónový flotačný proces zahrňuje prídavok ionogénneho tenzidu к roztoku iónov opačného náboja. Prebublávaním systému vzduchom alebo dusíkom sa tenzid adsorbuje spolu so separovanou zložkou na povrchu bublin a takto sa z roztoku odděluje - Berg H.W., Downey D.M.: Anal. Chim. Acta 120, 237 (1980); 121, 239 (1980); 123, 1 (1981); Lieam-Fang-Wu, Rui-Chim Kuo, Shang-Da Huang:Several methods are currently used to remove metal ions from aqueous solutions: extraction methods - Morrison GA, Freiser H .: Extraction Methods in Analytical Chemistry, SNTL, Prague (1962); Calligaro L., Mantovani A., Belluco U., Acampora M., Polyhedron 2, 1189 (1983); Malat, M .: Fresenius Z. Anal.Chem. 297, 417 (1979); Pakalns P .: Water Res. 15, 7 (1981); Chakravortty V., Oash KC With Mohanty SR: Radiochim. Acta, 40, 89 (1986); Grimm R., Kolarik, Z .: 3. Inorg. Nucl. Chem. 36, 189 (1974); Schepper A .: Hydrometallurgy 4, 285 (1979). In classical extraction, the presence of surfactants affects the properties of the interfacial surface, which may negatively affect the extraction rate and extraction efficiency. 1 Huttinger K.3. Those. 53, 574 (1981); Osseo-Asare K .: Why. Int. Solv. Extr. Conf. ISEC '83, Denver 278 (1983). When using a surfactant as part of the aqueous phase in extraction, the surfactant interferes with both phases to form emulsions, which negatively affects the whole process - Pakalns P .: Water Res. 15, 7 (1981). the ion flotation process involves the addition of an ionogenic surfactant to the counterion ion solution. By bubbling the system through air or nitrogen, the surfactant is adsorbed along with the separated component on the surface of the bubbles and is thus separated from the solution - Berg HW, Downey DM: Anal. Chim. Acta 120,237 (1980); 121, 239 (1980); 123, 1 (1981); Lieam-Fang-Wu, Shang-Da Huang:

3. Chines, Chem. Soc. 27, 165 (1980). К izolácii rady kovo/boli použité chelatačné sorbenty: Kálalová E., Radová Z. ,lllbert K., Kálal 3., švec F.: Europ. Polym. 3. 13, 299 (1977); Radová Z., Kálalová E., Kálal 3., Kukuškin 3u.N., Simanová S.A., Konovalov L.V., Pak V.N.: AngeW. Makromol. Chem 81, 55 (1979); Kálalová E.: Chem. Prům. 31, 70 (1981). Ekonomickému využitiu týchto metod v mnohých prípadoch bráni nevratnost’ sorpčného procesu, použitie elučných kyselin o vysokej koncentrácii alebo vyhrievanie kolon pře zvýšenie efektu desorpcie kovo - Kanart G.A., Chow A.: Anal. Chim. Acta 78, 375 (1975). Pře získavanie kovov využívá sa aj technika ionomeničov - Brapter K., Slonawska K.: Talanta 27, 745 (1980), Korkisch 3.: Analytical techniques in ev»ironmental chemistry, Pergamon Press 449 (1981). Pri viacstupňovej separácii je ionovýmenhý proces kombinovaný s inými prekoncentračnými r* · technikami - ako je odparovanie alebo extrakcia.3. Chines, Chem. Soc. 27, 165 (1980). Chelating sorbents were used to isolate the metal series: Kálalová E., Radová Z., lllbert K., Kálal 3., švec F .: Europ. Polym. 13, 299 (1977); Radová Z., Kálalová E., Kálal 3., Kukuškin 3u.N., Simanova S.A., Konovalov L.V., Then V.N .: AngeW. Dep. Chem., 81, 55 (1979); Kálalová E .: Chem. Avg. 31, 70 (1981). In many cases, the irreversibility of the sorption process, the use of high-concentration elution acids or column heating to enhance the metal desorption effect prevent Kanal G.A., Chow A .: Anal. Chim. Acta 78: 375 (1975). Ion exchange techniques are also used to obtain metals - Brapter K., Slonawska K .: Talanta 27, 745 (1980), Korkisch 3: Analytical Techniques in Evolutionary Chemistry, Pergamon Press 449 (1981). In multi-stage separation, the ion exchange process is combined with other preconcentration techniques - such as evaporation or extraction.

Vyššie uvedené nedostatky sú odstránené spůsobom odstraňovania kovových iónov ako sú Th(IV), U02 2+, La(III), Sr(II), Fe(III), Zn(II), Cd(II), Ni(II), Hg(II), Pb(II), Cu(II) z vodných roztokov s následnou regeneráciou použitého tenzidu, ktorého podstatou je, Že na vodný roztok s obsahom kovových iónov sa působí tenzidmi typu kyselin 2-/alky1/-3-/2-hydroxyetyl/-3-azapentándiových s alkylom C^ až C2q v molárnom pomere tenzid ku kovu 1:1 až 3 v rozsahu pH 1 až 9 za vzniku separovatel’nej zrazeniny komplexu kovu s tenzidom, ku ktorej sa přidá minerálna kyselina ako je kyselina sírová, dusičná, chlorovodíková v koncentrácii 1 až 5 mol.dm”5, pričom kovový ión sa izoluje vo formě rozpustnej anorganickej soli a tenzid sa oddělí vo formě zrazeniny. Prídavkom minerálnych kyselin ako sú kyselina sírová, kyselina dusičná, kyselina chlorovodíková sa upravuje pH vodného roztoku s obsahom kovových iónov.The above drawbacks are eliminated Ways to the removal of metal ions such as Th (IV), U0 2 2+, La (III), Sr (II), Fe (III), Zn (II), Cd (II), Ni (II) , Hg (II), Pb (II), Cu (II) from aqueous solutions followed by regeneration of the surfactant used, which is based on the treatment of the aqueous solution containing metal ions with acidic surfactants of the 2- (alkyl1) -3-) type Of 2-hydroxyethyl / -3-azapentanedioid with a C 1 -C 2 alkyl in a surfactant to metal molar ratio of 1: 1 to 3 in the pH range of 1 to 9 to form a separable precipitate of the metal surfactant complex to which a mineral acid such as is sulfuric, nitric, hydrochloric acid at a concentration of 1 to 5 mol.dm &lt; -5 &gt;, the metal ion being isolated in the form of a soluble inorganic salt and the surfactant separated as a precipitate. By adding mineral acids such as sulfuric acid, nitric acid, hydrochloric acid, the pH of the aqueous solution containing the metal ions is adjusted.

Postup podl’a vynálezu je demonstrovaný na príkladoch.The process according to the invention is demonstrated by examples.

Příklad 1Example 1

К vodě obsahujúcej 2.10”4 mol.dm”5 La(III) sa přidá ekvivalentně množstvo sodnej soli kyseliny 2-/hexadecyl/-3-/2-hydroxyetyl/-3-azapentándiovej. V takto pripravenom roztoku vytvára sa priamo při pH 4,2 zrazenina komplexu kovu s tenzidom, ktorá sedimentuje v priebehu 5 až 20 minut. Po oddělení zrazeniny filtráciou zníži sa obsah La(III) v roztoku o 96 % hmot.. Z izolovanej zrazeniny možno prídavkom kyseliny sírovej c/^SQ^/ = 2 mol.dm”5 regenerovat 99 % hmot, původného tenzidu, ktorý sa oddělí ako zrazenina od roztoku súčasne získanej soli kovu a může sa opakované využit’ к ďalšiemu procesu zrážania kovových iónov.К water containing 10.2 "4 mol.dm" 5 La (III) was mixed with the equivalent amount of the sodium salt of 2- / hexadecyl / 3- / 2-hydroxyethyl / 3-azapentándiovej. In the solution thus prepared, a precipitate of the metal-surfactant complex forms directly at pH 4.2, which sedimentes within 5 to 20 minutes. After separation of the precipitate by filtration, the content of La is reduced (III) in a solution of 96% by weight .. From the precipitate may be isolated by addition of sulfuric C / SQ ^ ^ / = 2 mol.dm "5 recovered 99% by weight, the original surfactant to be removed as a precipitate from a solution of the simultaneously obtained metal salt and can be reused for further metal ion precipitation process.

iand

Příklad 2Example 2

- 4 - 3- 4 - 3

К vodě obsahujúcej 3,5.10 mol.dm Cd(II) sa přidá také množstvo sodnej' soli kyseliny 2-/hexadecyl/-3-/2-hydroxyetyl/-3-azapentándiovej, aby poměř molářnych hmotností tenzidu a kovu bol 1:1 až 2. V takto připravených roztokoch vytvára sa priamo v oblasti pH vyššom ako 6,5 zrazenina kovu s tenzidom, ktorá sédimentuje v priebehu 1 až 10 minút. Po oddělení zrazeniny filtráciou zníži sa obsah Cd(II) v roztoku maximálně o 98 4 hmot.. Z izolovanej zrazeniny možno prídavkom kyseliny chlorovodíkovéj с/HCl/ = 3 mol.dm} regenerovat’ 99 % hmot, povodného tenzidu, ktorý sa oddělí ako zrazenina od roztoku súčasne získanej suli kovu a može sa opakovaně využit' к ďalšiemu procesu zrážania kovových iónov.To water containing 3.5.10 mol.dm of Cd (II), add an amount of 2- (hexadecyl) -3- (2-hydroxyethyl) -3-azapentanedioic acid sodium salt such that the molar mass ratio of surfactant and metal is 1: 1 In the solutions thus prepared, a precipitate of metal with a surfactant forms directly in the pH range of more than 6.5, which settles within 1 to 10 minutes. After separation of the precipitate by filtration, the content of Cd (II) in the solution is reduced by a maximum of 98% by weight. a precipitate from a solution of the metal salt obtained simultaneously and can be reused for further metal ion precipitation process.

Příklad 3Example 3

К vodě obsahujúcej 5.104 mol.dm“·5 Th(IV) sa přidá také množstvo sodnej soli kyseliny 2-/decyl/-3-/2-hydroxyetyl/3-azapentándiovej, aby poměr molářnych hmotností tenzidu ku kovu bol 1:1 až 2. V oblasti pH 2,5 vytvára sa zrazenina komplexu Th(IV) s tenzidom, ktorá sedimentuje v priebehu 1 až 5 minút. Po oddělení zrazeniny filtráciou poklesne obsah Th(IV) v roztoku maximálně o 99 % hmot.. Z izolovanej zrazeniny možno prídavkom kyseliny sírovej c/HzSO^/ - 4 mol.dm} regenerovat’ 99 % hmot, povodného tenzidu, ktorý sa oddělí ako zrazenina od roztoku súčasne získanej soli kovu a može sa opakované využít к ďalšiemu procesu zrážania kovových iónov.In water containing 5.10 4 mol.dm · · 5 Th (IV), add an amount of 2- (decyl) -3- (2-hydroxyethyl) 3-azapentanedioic acid sodium salt such that the molar mass ratio of surfactant to metal is 1: 1 In the pH range of 2.5, a precipitate of a complex of Th (IV) with a surfactant is formed, which settles over 1 to 5 minutes. After separation of the precipitate by filtration, the content of Th (IV) in the solution decreases by a maximum of 99% by weight. From the isolated precipitate, 99% by weight of the float surfactant can be recovered by adding sulfuric acid c / H 2 SO 4. a precipitate from a solution of the co-obtained metal salt and can be reused for another metal ion precipitation process.

Příklad 4Example 4

-4 - 3 2 +-4 - 3 +

К vodě obsahujúcej 5.10 mol.dm U09 sa přidá ekvivalentně množstvo sodnej soli z 2 + kyseliny 2-/decyl/-3-/2-hydroxyetyl/-3-azapentádiovej Při pH 4,5 vytvára sa zrazenina U02 s tenzidom. Po oddělení zrazeniny filtráciou zníži sa obsah kovu v roztoku o 99,9 4 hmot. Příklad 5An equivalent amount of sodium salt of 2- (decyl) -3- (2-hydroxyethyl) -3-azapentadioic acid is added to water containing 5.10 mol.dm of UO 9 at pH 4.5, a precipitate of UO 2 with a surfactant is formed. After separation of the precipitate by filtration, the metal content of the solution is reduced by 99.9% by weight. Example 5

К vodě obsahujúcej 2,5.10^ mol.dm} Sr(II) sa přidá ekvivalentně množstvo sodnej soli kyseliny 2-/decyl/-3-/2-hydroxyety»l/-3-azapentádiovej. V takto pripravenom roztoku vytvára sa priamo v oblasti pH 5,5 zrazenina kovu s tenzidom. Po oddělení zrazeniny filtráciou zníži sa obsah kovu v roztoku o 98 % hmot.An equivalent amount of 2- (decyl) -3- (2-hydroxyethyl) -3-azapentadioic acid sodium salt is added to water containing 2.5 x 10 6 mol.dm -1 Sr (II). In the solution thus prepared, a metal precipitate with a surfactant forms directly in the pH range 5.5. After separation of the precipitate by filtration, the metal content of the solution is reduced by 98% by weight.

Příklad 6Example 6

К vodě obsahujúcej 2,5.10”} mol.dm} Fe(III) sa přidá ekvivalentně množstvo sodnej soli kyseliny 2-/hexadecyl/-3-/2-hydroxyetyl/-3-azapentádiovej. V oblasti pH 3 vytvára sa zrazenina komplexu Fe(III) s tenzidom. Po oddělení zrazeniny filtráciou zníži sa obsah kovu v roztoku o 97 % hmot.An equivalent amount of 2- (hexadecyl) -3- (2-hydroxyethyl) -3-azapentadioic acid sodium salt was added equivalently to water containing 2.5.times.10@-4 mol.dm} Fe (III). In the pH range 3, a precipitate of the Fe (III) complex with a surfactant is formed. After separation of the precipitate by filtration, the metal content of the solution is reduced by 97% by weight.

Příklad 7Example 7

К vodě obsahujúcej 3.10“4 mol.dm} Cu(II) sa přidá ekvivalentně množstvo sodnej soli kyseliny 2-/hexadecyl/-3-/2-hydroxyetyl/-3-azapentándiovej. V takto pripravenom roztoku vytvára sa priamo v oblasti pH 6 zrazenina komplexu kovu s tenzidom. Po oddělení zrazeniny filtráciou zníži sa obsah Cu(II) v roztoku o 95 % hmot.К water containing 3.10 <4 mol.dm} Cu (II) was added the equivalent amount of the sodium salt of 2- / hexadecyl / 3- / 2-hydroxyethyl / 3-azapentándiovej. In the solution thus prepared, a precipitate of the metal-surfactant complex forms directly in the pH range 6. After separation of the precipitate by filtration, the Cu (II) content of the solution is reduced by 95% by weight.

Separáciu kovových iónov s použitím chelátotvorných tenzidov typu kyselin 2-/alkyl/-3-/2-hydroxyetyl/-3-azapentádiových při jednoduchej izolovatefnosti chelátov kovov, vysoké j výťažnosti procesu v přepojení s možnosťou vysokého stupňa regenerácie póvodných zložiek, možno využit’ ako jednoduché a ekonomicky výhodné metodu v oblasti dekontaminácie odpadových vód a kontaminovaných povrchov, vo vzťahu к ochraně životného prostredia i ako metodu získavania kovov z priemyselných odpadov.Separation of metal ions using chelating surfactants of the 2- (alkyl) -3- (2-hydroxyethyl) -3-azapentadioic acid type with simple metal chelate isolation, high yield of the process in interconnection with the possibility of a high degree of regeneration of the parent components can be used as a simple and economical method for decontamination of waste water and contaminated surfaces, in relation to environmental protection and as a method of recovering metals from industrial waste.

Claims (2)

1. Spósob odstraňovania kovových iónov ako sú Th(IV), U02 2\ La(III), Sr(II), Fe(III), Zn(II), Cs(II), Ni(II), Hg(II), Pb(II), Cu(II) z vodných roztokov s následnou regeneráciou použitého tenzidu, vyznačujúci sa tým, že na vodný roztok s obsahom kovových iónov sa pósobí tenzidmi typu kyselin 2-/alkyl/-3-/2-hydroxyetyl/-3-azapentándiových ^8 alkylom C6 až C2Q v molárnom pomere tenzid ku kovu 1:1 až 3 v rozsahu pH 1 až 9 za vzniku separovatelnej zrazeniny komplexu kovu s tenzidom, ku ktorej sa přidá minerálna kyselina ako je kyselina sírová, dusičná, chlorovodíková v koncentrácii 1 až1. A method of removing metal ions such as Th (IV), U0 2 2 \ La (III), Sr (II), Fe (III), Zn (II), C (II), Ni (II), Hg (II ), Pb (II), Cu (II) from aqueous solutions followed by regeneration of the surfactant used, characterized in that the aqueous solution containing metal ions is treated with 2- (alkyl) -3- (2-hydroxyethyl) acid surfactants. 3-azapentándiových ^ 8 alkyl C 6 to C 2Q in a molar ratio of surfactant to the metal of 1: 1 to 3 in the range of pH 1-9 to form a precipitate peelable metal complex with a surfactant, to which is added a mineral acid such as sulfuric acid, nitric acid , hydrochloric acid at a concentration of 1 to 5 mol.dm \ pričom kovový ión sa izoluje vo formě rozpustnej anorganickej soli a ten- · zid sa oddělí vo formě zrazeniny.5 mol.dm &lt; -1 &gt; wherein the metal ion is isolated in the form of a soluble inorganic salt and the tideide is collected as a precipitate. 2. Spósob podlá bodu 1 vyznačujúci sa tým, že pH sa upravuje prídavkom minerálnych kyselin , ako sú kyselina sírová, kyselina chlorovodíková a kyselina dusičná.2. The process according to claim 1, wherein the pH is adjusted by the addition of mineral acids such as sulfuric acid, hydrochloric acid and nitric acid.
CS885768A 1988-08-25 1988-08-25 Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions CS270843B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS885768A CS270843B1 (en) 1988-08-25 1988-08-25 Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS885768A CS270843B1 (en) 1988-08-25 1988-08-25 Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions

Publications (2)

Publication Number Publication Date
CS576888A1 CS576888A1 (en) 1989-12-13
CS270843B1 true CS270843B1 (en) 1990-08-14

Family

ID=5403201

Family Applications (1)

Application Number Title Priority Date Filing Date
CS885768A CS270843B1 (en) 1988-08-25 1988-08-25 Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions

Country Status (1)

Country Link
CS (1) CS270843B1 (en)

Also Published As

Publication number Publication date
CS576888A1 (en) 1989-12-13

Similar Documents

Publication Publication Date Title
RU2122249C1 (en) Method of purifying material containing radioactive impurities
RU2142172C1 (en) Radioactive material decontamination process
US4279870A (en) Liquid-liquid extraction process for the recovery of tungsten from low level sources
EP0132902A2 (en) Recovery of uranium from wet process phosphoric acid by liquid-solid ion exchange
Pospiech Synergistic solvent extraction of Co (II) and Li (I) from aqueous chloride solutions with mixture of Cyanex 272 and TBP
KR20080073038A (en) Recycling method for pcb wastes sludge including copper hydroxide
Chanda et al. Removal of uranium from acidic sulfate solution by ion exchange on poly (4-vinylpyridine) and polybenzimidazole in protonated sulfate form
CS270843B1 (en) Method of metallic iones e.g.th(iv),uo2 2+,la(iii),sr(ii),fe(iii),zn(ii),cd(ii),ni(ii),hg(ii),cu(ii) removal from aqueous solutions
CS270845B1 (en) Method of metallic iones cu(ii),pb(ii),hg(ii),cd(ii),ni(ii),zn(ii),sr(ii),fe(iii),la(iii), uo2 2+,th(iv) removal from aqueous solutions
US4540435A (en) Solvent extraction of gold and silver anions under alkaline conditions
CS270844B1 (en) Method of metallic iones cu(ii),pb(ii),hg(ii),cd(ii),ni(ii),zn(ii),sr(ii),la(iii),uo2 2+, th(iv) removal from aqueous solutions
US3785803A (en) Extraction of mercury from alkaline brines
Nakai et al. Ion-pair formation of a copper (II)-ammine complex with an anionic surfactant and the recovery of copper (II) from ammonia medium by the surfactant-gel extraction method
Tsezos et al. The elution of radium adsorbed by microbial bioman
Makovskaya et al. Copper recovery from rinse waters after ammoniac etching of printed circuit boards
NO872216L (en) PROGRESS FOR THE EXTRACTION OF INDIUM, GERMANIUM AND / OR GALLIUM.
Noguerol et al. Transport of selenite through a solid supported liquid membrane using sodium diethyldithiocarbamate, Na (DDTC), as carrier between hydrochloric acid solutions
Charewicz et al. Foam separation and precipitate flotation. The problem of surfactant recovery and reuse
JPH06504948A (en) Mercury removal and/or recovery methods
Gallacher Liquid Ion Exchange in Metal Recovery and Recycling
Morais et al. The influence of competitive species on uranium recovery using resin and solvent extraction techniques
JPH1194994A (en) Method for removing uranium and tru from liquid containing them
GB878244A (en) Process for selective extraction of nitrates from aqueous nitrate-sulfate solutions
CS197821B1 (en) Method of preparing concentrate eluate of heavy metals,especially of uranium
CS201270B1 (en) Method of preparation of the concentrated eluate of heavy metals,notably uranium