CS269535B1 - Method of cyclohexane oxidation - Google Patents

Method of cyclohexane oxidation Download PDF

Info

Publication number
CS269535B1
CS269535B1 CS881159A CS115988A CS269535B1 CS 269535 B1 CS269535 B1 CS 269535B1 CS 881159 A CS881159 A CS 881159A CS 115988 A CS115988 A CS 115988A CS 269535 B1 CS269535 B1 CS 269535B1
Authority
CS
Czechoslovakia
Prior art keywords
oxidation
chamber
weight
water
air
Prior art date
Application number
CS881159A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS115988A1 (en
Inventor
Jozef Ing Csc Micak
Jan Ing Ferencik
Stefan Ing Barnak
Viktor Ing Csc Berezny
Original Assignee
Micak Jozef
Ferencik Jan
Stefan Ing Barnak
Berezny Viktor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micak Jozef, Ferencik Jan, Stefan Ing Barnak, Berezny Viktor filed Critical Micak Jozef
Priority to CS881159A priority Critical patent/CS269535B1/en
Publication of CS115988A1 publication Critical patent/CS115988A1/en
Publication of CS269535B1 publication Critical patent/CS269535B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

SpSsob rieši odstraňovanie reakčnej vody vznikajúcej při oxidácii cyklohexánu na cyklohexanol a cyklohexanon. Prevádzkovanie oxidačného reaktora podlá riešenia znižuje množstvo vody v reakčnej zmesi a tým aj pravděpodobnost jeho zanášania. Postupom podlo tohto riešenia sa zvyšuje selektivita oxidačného procesu.SpSsob solves the removal of the reaction water resulting from the oxidation of cyclohexane to cyclohexanol and cyclohexanone. Operation of the oxidation reactor according to the invention solutions reduce the amount of water in the reaction mixture and thus the likelihood its clogging. By the way this solution increases selectivity oxidation process.

Description

CS 269535 B1 1CS 269535 B1 1

Vynález se týká spdsobu oxidácie cyklohexánu na cyklohexanol a cyklohexanón zapřítomnosti oxidačného katalyzátore.The present invention relates to a process for the oxidation of cyclohexane to cyclohexanol and to cyclohexanone in the presence of an oxidation catalyst.

Oxidácia cyklohexánu na cyklohexanón a cyklohexanol kyslikom zo vzduchu za pří-tomnosti katalyzátore pri teplote 100 až 200 °C a tlaku 0,5 až 1,5 MPa prebieha vovalcovom, ležatom šestkomorovom reaktore, pričom jednotlivé komory reaktora predsta-vujú oxidačně stupně. Do i. až 5. oxidačného stupňa sa privádza katalyzátor - nafte-nát kobaltnatý a oxidujúci plyn - vzduch, ktorý zároveň mieša reakčnú zmes. Oxidáciacyklohexánu je exotermická reakcia so značným tepelným efektom, pričom nadbytkom reakč-ného tepla sa odpaří část reakčného roztoku. Páry spolu s použitým vzduchoro prechád-zajú cez rad chladiacich a separačných zariadeni, kde sa zbavujú kondenzovatelných pár.Nekondenzovatelný zvyšok sa vypúšta do atmosféry. S odplynom z reaktora je odvádzanáaj podstatná část reakčnej vody, ktorá nepriaznivo ovplyvňuje oxidáciu cyklohexánu nacyklohexanol a cyklohexanón. Nevýhodou popisaného sp6sobu oxidácie cyklohexánu je obmed-zené množstvo privádzaného vzduchu do jednotlivých oxidačných stupňov, ktoré je závislena stupni konverzie cyklohexánu. U.S. patent 3 530 185 z roku 1970 popisuje vertikálnyviacsekciový reaktor, kde sa kvapalina stýká protiprúdne s plynom. Reaktor je rozděle-ný na štyri zóny: oxidačná, koncentračná, vyhrievacia a stripovaco-chladiaca. Vzduch naoxidáciu sa privádza na 1. až 10. etáž, 11. až 14. etáž slúži ako vyhrievacia zóna reak-tora. Etáže 15. až 18. určujú stripovaco-chladiacu zónu reaktora. Pod 18. etáž reaktorasa privádza inertný plyn. Výhodou popisaného riešenia je plynulé narieóovanie oxidačné-ho plynu, privádzaného na vyššie etáže, použitým vzduchom z nižších etáží. Nevýhodouje spósob chladenia reakčnej zmesi v samotnom reaktore. U.S. patent 2 557 281 odporúča kontinuálně oddestilovanie vody, vznikajúcej prioxidácii tak, aby sa umožnila separácia izolovaných oxidačných produktov a následovněextrakcia kyselin vodou. Avšak aj pri tejto technologii sa viacej ako 20 % zreagované-ho cyklohexánu premení na ngžiadúce vedlajšie produkty, Podlá NSR patentu 1 047 778,tvorbě vysokomolekulárnych zlúčenín počas oxidácie, ktoré sa usadzujú na stěnách reakto-ra a spomalujú reakciu, móže sa zabránit vypráním cyklohexánu ešte před oxidéciou kys-lou vodou, avšak týmto spSsobom sa nedosiahne zvýšenie výtažku cyklohexanónu a cyklohe-xanolu.Oxidation of cyclohexane to cyclohexanone and cyclohexanol with oxygen from the air in the presence of a catalyst at a temperature of 100 to 200 ° C and a pressure of 0.5 to 1.5 MPa takes place in a cylindrical, horizontal, six-chamber reactor, the individual chambers of the reactor being oxidation steps. Catalyst-cobalt-naphtha-oxidizing gas-air catalyst is fed to the oxidation stage 1 to 5 at the same time, which simultaneously mixes the reaction mixture. Oxidation of cyclohexane is an exothermic reaction with a considerable heat effect, whereby excess of the heat of reaction evaporates some of the reaction solution. The vapors pass through a series of cooling and separation devices, together with the air flow used, to remove condensable vapors. The non-condensable residue is discharged into the atmosphere. With the degassing of the reactor, a substantial portion of the reaction water is removed, which adversely affects the cyclohexane oxidation of nacyclohexanol and cyclohexanone. A disadvantage of the described process of cyclohexane oxidation is the limited supply of air to the individual oxidation stages, which is dependent on the degree of conversion of cyclohexane. U.S. Pat. U.S. Patent 3,530,185 of 1970 discloses a vertical multi-section reactor where the fluid contacts the upstream gas. The reactor is divided into four zones: oxidation, concentration, heating and stripping. Air for oxidation is fed to trays 1 through 10, and trays 11 through 14 serve as the reactor heating zone. Stages 15-18 determine the reactor stripping-cooling zone. Under the 18th stage, the reactor feeds an inert gas. The advantage of the described solution is the continuous dilution of the oxidizing gas supplied to the higher trays by the used air from the lower trays. A disadvantage is the method of cooling the reaction mixture in the reactor itself. U.S. Pat. U.S. Patent 2,557,281 recommends continuously distilling off the water resulting from the oxidation so as to allow the separation of the isolated oxidation products and subsequent extraction of the acids with water. However, even with this technology, more than 20% of the reacted cyclohexane is converted to the desired by-products, according to German Patent 1,047,778, the formation of high molecular weight compounds during oxidation which deposits on the reactor walls and slows down the reaction can be prevented by scrubbing cyclohexane however, before oxidation with acidic water, an increase in cyclohexanone and cyclohexanol yield is not obtained.

Podstatou spSsobu oxidácie cyklohexánu na cyklohexanol a cyklohexanón podlá tohtovynálezu je oxidácia cyklohexánu v jednom až deviatich oxidačných stupňoch horizontál-neho oxidačného reaktora pri teplote 100 až 200 °C a tlaku 0,5 a 1,5 MPa. Pričom naoxidáciu cyklohexánu, s výhodou v štvrtom a piatom oxidačnom stupni sa použije zmesvzduchu a inertného plynu, s výhodou dusíka v pomere vzduch : dusík = 1 : 0,001, s vý-hodou 1 : 0,15. Množstvo inertného plynu privádzaného do jednotlivých oxidačných stup-ňov rastie v směre zvyšovania konverzie a úměrně množstvu vody v reakčnom produktev pomere hmot % vody : Nm3/h inertu = 1 : 100 až 100 000. Výhodou spósobu prevádzkovania oxidačného reaktora podlá tohto vynálezu je možnostplynulého odstraňovania reakčnej vody v jednotlivých oxidačných stupňoch nezávisle namnožstve oxidačného plynu. Znížením množstva vody při oxidácii cyklohexánu na cyklohe-xanón a cyklohexanol sa zníži pravděpodobnost zanášania oxidačného reaktora a zvyšova-nie množstva inertu v závislosti od stupňa konverzie a množstva reakčnej vody sa pozi-tivně prejaví na selektivitě oxidácie cyklohexánu na cyklohexanol a cyklohexanón.The subject of the invention is the oxidation of cyclohexane to cyclohexanol and cyclohexanone according to the invention by oxidizing cyclohexane in one to nine oxidation stages of a horizontal oxidation reactor at a temperature of 100 to 200 ° C and a pressure of 0.5 and 1.5 MPa. Whereby the oxidation of cyclohexane, preferably in the fourth and fifth oxidation steps, is carried out using an air / inert gas mixture, preferably nitrogen in air / nitrogen ratio = 1: 0.001, preferably 1: 0.15. The amount of inert gas fed to the individual oxidation stages increases in the direction of increasing the conversion and proportional to the amount of water in the reaction product by the weight% water: Nm 3 / h inert = 1: 100-100,000 ratio. of the reaction water in each oxidation stage independently of the amount of oxidizing gas. By reducing the amount of water in the oxidation of cyclohexane to cyclohexanone and cyclohexanol, the likelihood of fouling of the oxidation reactor is reduced, and the increase in the amount of inert, depending on the degree of conversion and the amount of reaction water, is positively influenced by the selectivity of cyclohexane to cyclohexanol and cyclohexanone.

Spósob prevádzkovania horizontálneho oxidačného reaktora je zřejmé z príkladov: Příklad 1 Súčasný stav oxidácie cyklohexánu na cyklohexanón a cyklohexanol prebieha v šest-komorovom horizontélnom valcovom reaktore. Do prvej komory reaktora sa privádza 600m3/h cyklohexánu, 5600 Nm3/h vzduchu a 0,060 m3/h katalyzátore, do druhej, treteja štvrtej komory sa privádza po 2900 m3/h vzduchu a po 0,005 m3/h katalyzétora. Do pia-tej komory reaktora sa privádza 2500 Nm3/h vzduchu a 0,005 m3/h katalyzátora. Do šies-tej komory sa privádza 0,010 m3/h katalyzátore, vzduch sa neprivádza. Reakcia prebiehaA method for operating a horizontal oxidation reactor is shown in the examples: EXAMPLE 1 The current state of oxidation of cyclohexane to cyclohexanone and cyclohexanol takes place in a six-chamber horizontal cylindrical reactor. 600 m3 / h of cyclohexane, 5600 Nm3 / h of air and 0.060 m3 / h of catalyst are fed to the first reactor chamber, and 2900 m3 / h of air and 0.005 m3 / h of catalyst are fed to the second, third chamber. 2500 Nm @ 3 / h of air and 0.005 m @ 3 / h of catalyst are fed to the reactor chamber. 0.010 m 3 / h of catalyst is fed into the sixth chamber, air is not fed. The reaction is in progress

Claims (2)

2 CS 2Θ9535 81 prl teplote ιβΟ °C a tlaku 0,9 MPa a 3,5 % konverziou a 80 % selektivitou na cyklohe-xanón a cyklohexanol. obsah vody v Jednotlivých komorách: 1. komora 0,0318 % hmot,,2, komora 0,0481 % hmot., 3. komora 0,0665 % hmot., 4. komora0,0726 % hmot., 5. komora 0,082 % hmot. a v 6. komoře 0,0686 % hmot.příklad 2 Proces popisaný v přiklade l, kde do Stvrtej a piatej komory oxidačného reaktorasa privedle po 500 Nm3/h dusika. obsah reakčnej vody vo Stvrtej a piatej reakčnej ko-·'more klesne na 0,05 % hmot. Přiklad 3 proces popisaný v příklade l, pričom do prvej komory oxidačného reaktora ea přivédie 100 Nm3/h, do druhej komory 200 Nm3/h, do tretej 300 Nm3/h, do Stvrtej 400 Nm3/h,do piatej 500 Nm3/h a do Siestej 300 Nm3/h dusika. Zniži sa množstvo vznikajúcej vodya zvýSi sa selektivita oxidécie o cca 2 %. PREDMET VYNÁLEZU2 CS 2Θ9535 81 with a temperature of 0.9 ° C and 3.5% conversion and 80% selectivity for cyclohexanone and cyclohexanol. water content in individual chambers: 1st chamber 0.0318% by weight, 2, chamber 0.0481% by weight, 3rd chamber 0.0666% by weight, 4th chamber0.0772% by weight, 5th chamber 0.082% wt. and, in the 6th chamber, 0.0686% by weight. Example 2 The process described in Example 1, wherein nitrogen was introduced into the fourth and fifth chambers of the oxidation reactor. the content of the reaction water in the fourth and fifth reaction vessels decreases to 0.05% by weight. Example 3, the process described in Example 1, wherein 100 Nm 3 / h is introduced into the first chamber of the oxidation reactor e and 200 Nm 3 / h into the second chamber, up to 300 Nm 3 / h on the third, up to 500 Nm 3 / h into the second Collect 300 Nm3 / h nitrogen. The amount of water formed is reduced and the oxidation selectivity increased by about 2%. SUBJECT OF THE INVENTION 1. Sposob oxidécie cyklohexénu na cyklohexanol a cyklohexanón v jednom až deviatichoxidačných stupňoch pri teplote 100 až 200 °C a tlaku 0,5 až 1,5 MPa vyznačujúci sa tým, že na oxidáciu cyklohexénu s výhodtuv Stvrtom a piatom oxidačnom stupni, sapoužije vzduch v ztnesi s inertným plynom, s výhodou s dusíkom v pomere vzduch : dusík rovnajúcora sa 1 : 0,001 až 1, s výhodou 1 : 0,15.Process for the oxidation of cyclohexene to cyclohexanol and cyclohexanone in one to nine oxidation stages at a temperature of 100 to 200 ° C and a pressure of 0.5 to 1.5 MPa, characterized in that air is used in the oxidation of cyclohexene in the fourth and fifth oxidation stages. with an inert gas, preferably with nitrogen in an air: nitrogen ratio equal to 1: 0.001 to 1, preferably 1: 0.15. 2. Sp8sob podlá bodu 1 vyznačujúci sa tým, že množstvo inertného plynu v zmesi so vzduchom privádzaného do jednotlivých oxidačných stupňov rastie v smere zvyšovania kon-verzie a úměrně množstvu vody v reakčnom roztoku v pomere hmotnostně percentó vody : Nm3/h inertu rovnajúcom sa 1 : 100 až 100 000.2. Process according to claim 1, characterized in that the amount of inert gas in admixture with the air supplied to the individual oxidation stages increases in the direction of increasing the proportion and in proportion to the amount of water in the reaction solution by weight percent of water: Nm @ 3 / h of an inert equal to 1 : 100 to 100,000.
CS881159A 1988-02-24 1988-02-24 Method of cyclohexane oxidation CS269535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS881159A CS269535B1 (en) 1988-02-24 1988-02-24 Method of cyclohexane oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS881159A CS269535B1 (en) 1988-02-24 1988-02-24 Method of cyclohexane oxidation

Publications (2)

Publication Number Publication Date
CS115988A1 CS115988A1 (en) 1989-09-12
CS269535B1 true CS269535B1 (en) 1990-04-11

Family

ID=5345255

Family Applications (1)

Application Number Title Priority Date Filing Date
CS881159A CS269535B1 (en) 1988-02-24 1988-02-24 Method of cyclohexane oxidation

Country Status (1)

Country Link
CS (1) CS269535B1 (en)

Also Published As

Publication number Publication date
CS115988A1 (en) 1989-09-12

Similar Documents

Publication Publication Date Title
US3987100A (en) Cyclohexane oxidation in the presence of binary catalysts
EP0297445B1 (en) Method for the production of methacrylic acid
JPS6217578B2 (en)
US4199410A (en) Purification of crude acrylic acid
JPS60115532A (en) Production of butadiene
US4925981A (en) Method of isolating methacrylic acid
US4587363A (en) Continuous preparation of oxygen-containing compounds
US2638481A (en) Maleic acid manufacture
US7786323B2 (en) Method for collecting (meth)acrolein or (meth)acrylic acid and collecting device for the same
CA2278574A1 (en) Pure ethylene oxide distillation process
CS269535B1 (en) Method of cyclohexane oxidation
US3068256A (en) Process for producing carboxylic acids
RU2181116C2 (en) Method of countercurrent synthesis of cyclohexane oxidation compounds
EP4038051B1 (en) Process for manufacturing alkanesulfonic acids
US3167577A (en) Method of preparing and employing phosphorus oxide smokes to make phosphate esters
JPH09202742A (en) Liquid phase oxidation of cyclohexane
US4440960A (en) Continuous preparation of 3-alkyl-buten-1-als
US2684984A (en) Production of cyclic alcohols and ketones
US3242647A (en) Hydrochloric acid recovery
US4006173A (en) Process for continuous preparation of carboxylic acids
US3423466A (en) Process for the production of benzaldehyde
US4278788A (en) Removal of residual catalyst from polyolefin polymers
GB2024201A (en) Process for producing methacrylic acid
JP4204097B2 (en) Method for producing methyl methacrylate
KR100580075B1 (en) Method for Purifying Isobutyric Acid