CS267799B1 - The method of heat stabilizing the activity of the alpha-amylase enzyme - Google Patents

The method of heat stabilizing the activity of the alpha-amylase enzyme Download PDF

Info

Publication number
CS267799B1
CS267799B1 CS888264A CS826488A CS267799B1 CS 267799 B1 CS267799 B1 CS 267799B1 CS 888264 A CS888264 A CS 888264A CS 826488 A CS826488 A CS 826488A CS 267799 B1 CS267799 B1 CS 267799B1
Authority
CS
Czechoslovakia
Prior art keywords
alpha
activity
amylase
amylase enzyme
enzyme
Prior art date
Application number
CS888264A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS826488A1 (en
Inventor
Jiri Ing Csc Zemek
Viera Ing Povazanova
Ludovit Doc Ing Csc Polivka
Jozef Rndr Kocan
Original Assignee
Zemek Jiri
Viera Ing Povazanova
Ludovit Doc Ing Csc Polivka
Jozef Rndr Kocan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zemek Jiri, Viera Ing Povazanova, Ludovit Doc Ing Csc Polivka, Jozef Rndr Kocan filed Critical Zemek Jiri
Priority to CS888264A priority Critical patent/CS267799B1/en
Publication of CS826488A1 publication Critical patent/CS826488A1/en
Publication of CS267799B1 publication Critical patent/CS267799B1/en

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

RieSonio sa týká sposobu tepelnej stabilizáoie enzýmu alfa—amylázy v prostředí vodnýoh roztokov orgoniokýoh zlúéenin a dvoma až tromi hydroxylovými skupinami za přítomnosti chloridu vápenatého, Postup má využitie v textilnom priemyslu pri odstraňovaní Škrobových Slíoht.The solution relates to a method of thermal stabilization of the alpha-amylase enzyme in the environment of aqueous solutions of organometallic compounds and two to three hydroxyl groups in the presence of calcium chloride. The procedure is used in the textile industry for removing starch stains.

Description

Vynález ea týká sposobu tepelnej stabilizácie aktivity technického preparátu alfa-amylázy alfa-1,4-glukan glukanohydroláza, EC 3.2.1.1., ktorý ea používá v textilnom priemysle v procese odstranovania Škrobových Šlicht.The invention relates to a process for the thermal stabilization of the activity of the technical preparation of alpha-amylase alpha-1,4-glucan glucan hydrolase, EC 3.2.1.1., Which ea uses in the textile industry in the process of removing starch sizings.

K odstraňovaniu Škrobových Šlicht sa použivajú nestabilizované preparáty alfa-amylázy produkované niektorými metofilnými kmeňmi rodu Baoillus. Nevýhodou týchto enzýmov je, že neznéšajú vyšSie teploty, pri teplotách nad 60 °C sa tepelne denaturujú a v dósledku toho strácajú svoje katalytické vlastnosti. Nie sú proto využitelné v procesech, kde odšlichtovnnie ea prevádza při teplotách vyššich ako 70 °C. Existujú pritoecelý rad metéd k stabilizáoii enzýmových aktivit. Tieto metody využivajú chemické, fyzikálně alebo fyzikálno-ohemické postupy k tepelnej etabilizáoii enzýmovýoh aktivit. Moderně koncepcia termostability enzýmov sa odvodzuje od dvoch základných teérií:Unstabilized alpha-amylase preparations produced by some metophilic strains of the genus Baoillus are used to remove Starch Sizings. The disadvantage of these enzymes is that they do not withstand higher temperatures, they are thermally denatured at temperatures above 60 ° C and, as a result, they lose their catalytic properties. They are therefore not usable in processes where the sizing plant is carried out at temperatures higher than 70 ° C. There are a number of methods available for stabilizing enzyme activities. These methods use chemical, physical or physicochemical procedures to thermally stabilize enzymatic activities. The modern concept of thermostability of enzymes is derived from two basic theories:

1. Zvýšené stabilita enzýmov sa připisuje spoluúčasti ňalšich zložiek buňky (lipidov, polysacharidov, proteínov apod.) na suboeluléraej úrovni. Výsledkem takto prirodzene imobilizovanýoh systémov, napr. v biomembránach Je skutečnost, že v týchto Struktúrach doohádza k uchovaniu katalyticky aktívnej konformácie aktívneho centra aj za teplotně extrémnych podmienok. Ovplyvnením interakci! enzýmového proteinu s nosičem možno reguloval počet konformačných fluktuácii a tým potlačil u enzýmov denaturačný přechod tak reverzibilnáho (Davidov, R.M. , Vesterman, B.G., Genkin, M.V., Blumenfeld, L.A., Krylov, O.V.: Dokl. Akad. Nauk SSSR, 256, 491, 1981) ako aj ireverzibilného charakteru (Martinek, K., Klibanov, A,M., Goldmacher, V.S., Berezin, I.V.: Biochim. Biophys. Aota, 485, 1 ’977).1. The increased stability of enzymes is attributed to the participation of other components of the cell (lipids, polysaccharides, proteins, etc.) at the suboellular level. As a result of such naturally immobilized systems, e.g. in biomembranes It is a fact that in these Structures the catalytically active conformation of the active center is preserved even under temperature extreme conditions. Influencing interaction! of a carrier protein with a carrier can regulate the number of conformational fluctuations and thus suppress the denaturing transition so reversible in enzymes (Davidov, RM, Vesterman, BG, Genkin, MV, Blumenfeld, LA, Krylov, OV: Dokl. Akad. Nauk SSSR, 256, 491, 1981) as well as of an irreversible character (Martinek, K., Klibanov, A, M., Goldmacher, VS, Berezin, IV: Biochim. Biophys. Aota, 485, 1977).

2, ϋ termofilných mikroorganizmoT sa zvýšená termostabilita enzýmov, katalytickou Specif itou analogických enzýmov produkovaných mezefilnými organizmami, odvodzuje od čiastočne pozměněnoj konformácie, ktorá na úrovni primárnéj Struktúry sa odlišuje od obdobných proteínov, produkovaných mezefilnými organizmami. Tak napr. termostabilná alfa-amylézá z Bacillus stearothermophilus (Manning, G.B., Cambell, L.L. : J. Biol. Chera, 236, 2952 196l) má na rozdiel od alfa-amylézy z Baoillus subtilis nezložeiru štruktúrou, blízkou tzv. random coil, u viacerých dalších enzýmov z termofilných orgonizmov sa popisuje právě globulárna štruktúra enzýmového proteinu. U enzýmov niektorých termostabilných mikoorganizmov sa popisuje niekedy rigidnejšia štruktúra proteinu, ani tento aspekt (ako sa však zistilo při detailněJšich štúdiách) nemá obecnú platnosl (Amelunxen, R.E., Murdock, A.L.: Microbial life at extreme enviroments, Kusher, D. ed., Academic Press, London, New York, San Francisco, 217, 1978).2, ϋ thermophilic microorganismsT, the increased thermostability of enzymes, catalytic specificity of analogous enzymes produced by mesophilic organisms, is derived from a partially altered conformation, which at the level of the primary structure differs from similar proteins produced by mesophilic organisms. For example. thermostable alpha-amylase from Bacillus stearothermophilus (Manning, G.B., Cambell, L.L.: J. Biol. Chera, 236, 2952 196l) has, in contrast to alpha-amylase from Baoillus subtilis, a non-complexing structure close to the so-called random coil, for several other enzymes from thermophilic orgonisms, the globular structure of the enzyme protein is described. Enzymes of some thermostable microorganisms sometimes describe a more rigid protein structure, nor is this aspect (as found in more detailed studies) of general application (Amelunxen, RE, Murdock, AL: Microbial life at extreme enviroments, Kusher, D. ed., Academic Press, London, New York, San Francisco, 217, 1978).

Z uvedeného teoretického přehledu vyplývá, že existuje celý rad obecných technik, ktoré však v konkrétných případech stabilizácie onzýmov nie sú využivateíné z technických alebo ekonomických dovodov.The above theoretical overview shows that there are a number of general techniques, which, however, in specific cases of stabilization of enzymes are not usable for technical or economic reasons.

V případe topelnej stabilizácie aktivity alfa-amylézy produkovanej mezofilnými zástupeami rodu Baoillus, uvedené nedostatky odstraňuje postup pódia vynálezu, kterého podstata spočívá v tom, že enzýmový protein alfa-anrylázy o aktivitě 0,5 /Ukat až ImkatIn the case of heat stabilization of alpha-amylase activity produced by mesophilic representatives of the genus Baoillus, the above-mentioned process is eliminated by the process of the invention, the essence of which consists in the fact that the alpha-anrylase enzyme protein with activity 0.5 / Ukat to Imkat

O * , sa rozpustí vo vodnom roztoku o objeme 1 dnr organických di- alebo trihydroxy- zlučenin, napr. glykolu, dietylénglykolu, trietylénglykolu, glyoerolu a to Jednotlivo alebo ich zmesi o koncentrácii 0,1 až 10 % hmot. 3 obsahem chloridu vápenatého o koncentrácii 5 až 50 mmol.l-’. Uvedeným zásahom sa teplotně optimum alfa-amy lázy predlží od 40 °C až po 100 °C, Výhodou uvedeného postupu Je Jeho technické nenáročnost, Jednoduchost prevedenia a skutočnosí, že teplotně zévislosl aktivity takto upravenoJ alfa—amylězy Vykazuje súvislú úroveň v širokom rozsahu teplot, prakticky od JO °C až po 100 °C. Výhodou Je aj ekonomické nenéročnosl použitých vstupných surovin.O *, is dissolved in an aqueous solution with a volume of 1 dnr of organic di- or trihydroxy compounds, e.g. of glycol, diethylene glycol, triethylene glycol, glycerol individually or mixtures thereof in a concentration of 0.1 to 10% by weight. 3 containing calcium chloride in a concentration of 5 to 50 mmol.l - '. This advantage prolongs the temperature optimum of alpha-amylase from 40 ° C to 100 ° C. practically from JO ° C up to 100 ° C. The advantage is also the economic simplicity of the used raw materials.

cs 2Ó7 799 B1cs 2Ó7 799 B1

Příklad 1Example 1

Enzým alfa—amyláza (Baoillua subtilis), 2 g o aktivitě 0,5 ,ukat sa rozpustí vo vodnom roztoku monootylénglykolu (etán-1,2-diolj 1 dmJ) o koncentraci! 0,1 jí hmot, obsahujúcom chlorid vápenatý o konoentrácii 50 mmol.l 1. Zatiaí čo póvodný enzým stráca katalytická aktivitu při expozici! na 90 °C po dobu 5 minát, alfa-amyláza upravená uvedeným spósobom si zachovává katalytická aktivitu bez poklesu s porovnáním s aktivitou pri JO °C aj při expozíoii na 100 °C po dobu 5 minát.The enzyme alpha-amylase (Baoillua subtilis), 2 go activity 0.5, ukat is dissolved in an aqueous solution monootylénglykolu (ethane-1,2-dm J diolj 1) hydrochloride! 0.1 wt.%, Containing calcium chloride with a concentration of 50 mmol.l 1 . While the original enzyme loses catalytic activity upon exposure! at 90 ° C for 5 minutes, the alpha-amylase treated in this way retains its catalytic activity without decreasing compared to the activity at 10 ° C even when exposed to 100 ° C for 5 minutes.

Příklad 2Example 2

Enzým alfa-amyláza X Bacillus licheniformií. ! g o aktivitě i mkat sa rozpustí vo vodnom roztoku diotylónglykolu (2,2'-bis/etonol/éter; 1 dm-1) o konoentrácii 5 £ hmot, obsahujúoom chlorid vápenatý o konoentrácii 10 mmol.l- . Zatiaí -δο povodný enzým stráca svoju aktivitu při expozíoii na 85 °C po dobu 5 minát, alfa-amyláza upravená uvedeným spósobom si zachovává svoju katalytická aktivitu bez poklesu s porovnáním s aktivitou při JO °C aj pri expozíoii na 100 °C po dobu 10 minát.Enzyme alpha-amylase X of Bacillus licheniformia. ! To activity, mkat is dissolved in an aqueous solution of diotylene glycol (2,2'-bis / ethanol / ether; 1 dm- 1 ) with a concentration of 5% by weight, containing calcium chloride with a concentration of 10 mmol.l - . While the flood enzyme loses its activity when exposed to 85 ° C for 5 minutes, the alpha-amylase treated as such retains its catalytic activity without decreasing compared to the activity at 10 ° C even when exposed to 100 ° C for 10 minutes. minate.

Příklad JExample J

Enzým alfa-amyláza z Bacillus subtilis, 1,5 β o aktivitě 50 ,ukat sa rozpustí vo vodnom roztoku triotylónglykolu ( 1,8-dihydroxy-3,6-dioxa-oktári) 1 dmJ) o konoentrácii 10 hmot, obsahujácom chlorid vápenatý o konoentrácii 5 mmol.l-1, Zatiaí čo póvodný enzým stratil aktivitu při oxpozícii na 90 °C po dobu 5 min., alfa-amyláza upravená uvedeným spósobom si zachovává svoju katalytická aktivitu bez poklesu s porovnáním a aktivitou pri 30 °C aj při expozíoii na 100 °C po dobu 5 minát.The enzyme alpha-amylase from Bacillus subtilis, 1.5 β with activity 50, is dissolved in an aqueous solution of triotylene glycol (1,8-dihydroxy-3,6-dioxa-octar) (1 dm J ) at a concentration of 10 wt., Containing calcium chloride At a concentration of 5 mmol.l -1 , while the original enzyme lost its activity when oxposed at 90 ° C for 5 min, the alpha-amylase treated in this way retains its catalytic activity without decreasing compared to the activity at 30 ° C even at exposure to 100 ° C for 5 minutes.

Příklad 4Example 4

Postupuje sa pódia příkladu 1, s tým rozdielom, že sa použije alfa-amyláza z Bacillus 3tearothermophilus, 2 g o aktivitě 10 /Ukat a k stabilizéoii namiesto monootylénglykolu sa použije glyoerol.The procedure of Example 1 was followed, except that alpha-amylase from Bacillus 3thearothermophilus, 2 g with an activity of 10.

Příklad 5Example 5

Postupuje sa podlá příkladu 2 s tým rozdielom, že sa k stabilizáoii použije ekvimoláma zmes monoetylénglykolu, dietylénglykolu, trietylánglykolu a glyoerolu o úhrnnej koncontráoii 5 jí hmot. Enzým alfa-amyláza stabilizovaný v uvedenom prostředí si zachovává svoju enzýmovú aktivitu bez poklesu aj pri expozíoii na 100 °C po dobu 10 mírnit.The procedure of Example 2 is followed, except that an equimolar mixture of monoethylene glycol, diethylene glycol, triethylene glycol and glycerol with a total concentration of 5% by weight is used for stabilization. The alpha-amylase enzyme stabilized in said medium retains its enzyme activity without decreasing even when exposed to 100 ° C for 10 minutes.

Vynález má využitie v prooese stabilizáoie alfa-amylázovej aktivity voči účinku vyšších teplot, například pře proces odstranovania škrobových šlicht při zvýšenaj teplote,The invention has utility in the process of stabilizing alpha-amylase activity against the effects of higher temperatures, for example in the process of removing starch sizings at elevated temperatures.

Claims (5)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION Spósob tepelnej stabilizáoie aktivity alfa-amylázy vyznačený tým, že enzýmový protein alfa-amylázy o aktivitě 0,5 /Ukat až 1 mkat sa rozpustí vo vodnom roztoku 1 dnP organických di- alebo trihydroxy-zlúčenín, napr. glykolu, tj. etán-1,2—diolu., dietylánglykolu, tj. 1,5—dihydroxy-3-oxapentánu, trietylánglykolu, tj. 1,8-dihydroxy-3,6-dioxa-oktánu, glyoerolu, jednotlivo alebo v ioh iubovoínej zmesi o konoentrácii 0,1 až 10 Jí hmot, s obsahom chloridu vápenatého o konoentrácii 5 až 50 mmol.l-1.A process for the thermal stabilization of alpha-amylase activity, characterized in that the alpha-amylase enzyme protein with an activity of 0.5 .mu.m to 1 mcat is dissolved in an aqueous solution of 1 dnP of organic di- or trihydroxy compounds, e.g. glycol, i.e. ethane-1,2-diol, diethylene glycol, i.e. 1,5-dihydroxy-3-oxapentane, triethylene glycol, i.e. 1,8-dihydroxy-3,6-dioxa-octane, glyoerol, singly or in any mixture with a concentration of 0.1 to 10% by weight, with a calcium chloride content of 5 to 50 mmol.l -1 .
CS888264A 1988-12-14 1988-12-14 The method of heat stabilizing the activity of the alpha-amylase enzyme CS267799B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS888264A CS267799B1 (en) 1988-12-14 1988-12-14 The method of heat stabilizing the activity of the alpha-amylase enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS888264A CS267799B1 (en) 1988-12-14 1988-12-14 The method of heat stabilizing the activity of the alpha-amylase enzyme

Publications (2)

Publication Number Publication Date
CS826488A1 CS826488A1 (en) 1989-07-12
CS267799B1 true CS267799B1 (en) 1990-02-12

Family

ID=5433011

Family Applications (1)

Application Number Title Priority Date Filing Date
CS888264A CS267799B1 (en) 1988-12-14 1988-12-14 The method of heat stabilizing the activity of the alpha-amylase enzyme

Country Status (1)

Country Link
CS (1) CS267799B1 (en)

Also Published As

Publication number Publication date
CS826488A1 (en) 1989-07-12

Similar Documents

Publication Publication Date Title
Costa et al. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents
Costa et al. Studies of stabilization of native catalase using additives
Baxter An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium
George et al. A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability
US9944920B2 (en) Biodegradable immobilized enzymes and methods of making the same
US4999202A (en) Composition having bacteriocidal or bacteriostatic acitivity
FI98378B (en) New, highly thermostable amylase
Freeze et al. Thermostable aldolase from Thermus aquaticus
US4600693A (en) Thermostable alpha amylase having a low requirement for calcium ions, derived from a bacillus microorganism
Goel et al. Antibiofilm Potential of Alpha‐Amylase from a Marine Bacterium, Pantoea agglomerans
Damaso et al. Production and properties of the cellulase-free xylanase from Thermomyces lanuginosus IOC-4145
Guerfali et al. Catalytic properties of the immobilized Talaromyces thermophilus β-xylosidase and its use for xylose and xylooligosaccharides production
CS267799B1 (en) The method of heat stabilizing the activity of the alpha-amylase enzyme
Björck et al. An immobilized two‐enzyme system for the activation of the lactoperoxidase antibacterial system in milk
Lu et al. Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions
Anthon et al. Evidence for multiple effects in the methanol activation of chloroplast coupling factor 1
Winarno et al. Mode of action of ethylene oxide on spores of Clostridium botulinum 62A
Sakka et al. Purification and characterization of xylanase A from Clostridium stercorarium F-9 and a recombinant Escherichia coli
Horigome et al. The stability of taka-amylase A immobilized on various sizes of matrix
Middaugh et al. The effect of temperature on ribose-5-phosphate isomerase from a mesophile, Thiobacillus thioparus, and a thermophile, Bacillus caldolyticus
Schachter et al. Product inhibition in the glycine N-acylase reaction
Al-Baarri et al. Lactoperoxidase immobilized onto various beads for producing natural preservatives solution
Jefferies et al. l‐Asparaginase bound to collagen membranes: Effect of glutaraldehyde crosslinking on stabilization of catalytic activity
SUGIURA et al. Studies on dextranase. IV. Immobilization of dextranase from Penicillium funiculosum IAM 7013
Janeĉek et al. Chemical stabilization of Bacillus subtilis α-amylase by modification with D-glucono-δ-lactone