CS261512B1 - Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof - Google Patents
Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof Download PDFInfo
- Publication number
- CS261512B1 CS261512B1 CS862980A CS298086A CS261512B1 CS 261512 B1 CS261512 B1 CS 261512B1 CS 862980 A CS862980 A CS 862980A CS 298086 A CS298086 A CS 298086A CS 261512 B1 CS261512 B1 CS 261512B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- properties
- composition
- inhibiting
- soil
- function
- Prior art date
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 15
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 14
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 9
- 239000002689 soil Substances 0.000 title claims description 36
- 239000003795 chemical substances by application Substances 0.000 title description 2
- 239000010457 zeolite Substances 0.000 claims abstract description 28
- 239000002594 sorbent Substances 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 23
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011148 porous material Substances 0.000 claims abstract description 11
- 230000001546 nitrifying effect Effects 0.000 claims abstract description 9
- 239000000741 silica gel Substances 0.000 claims abstract description 7
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 7
- 239000005909 Kieselgur Substances 0.000 claims abstract description 5
- 239000004927 clay Substances 0.000 claims abstract description 5
- 239000000853 adhesive Substances 0.000 claims abstract description 4
- 230000001070 adhesive effect Effects 0.000 claims abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000006229 carbon black Substances 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 4
- 239000010455 vermiculite Substances 0.000 claims abstract description 4
- 229910052902 vermiculite Inorganic materials 0.000 claims abstract description 4
- 235000019354 vermiculite Nutrition 0.000 claims abstract description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract 6
- 239000001569 carbon dioxide Substances 0.000 claims abstract 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 46
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 230000006872 improvement Effects 0.000 claims description 5
- 239000002808 molecular sieve Substances 0.000 claims description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 4
- 239000003463 adsorbent Substances 0.000 claims description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 230000000813 microbial effect Effects 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 18
- 230000006870 function Effects 0.000 abstract description 7
- 241001310793 Podium Species 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 4
- 239000010451 perlite Substances 0.000 abstract description 3
- 235000019362 perlite Nutrition 0.000 abstract description 3
- 239000007787 solid Substances 0.000 abstract description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract 1
- 239000003245 coal Substances 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 36
- 229910052757 nitrogen Inorganic materials 0.000 description 20
- 239000003112 inhibitor Substances 0.000 description 14
- 235000010755 mineral Nutrition 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000003337 fertilizer Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- DCUJJWWUNKIJPH-UHFFFAOYSA-N nitrapyrin Chemical compound ClC1=CC=CC(C(Cl)(Cl)Cl)=N1 DCUJJWWUNKIJPH-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 5
- 229910001603 clinoptilolite Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000035558 fertility Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001651 autotrophic effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 244000005706 microflora Species 0.000 description 3
- 230000000802 nitrating effect Effects 0.000 description 3
- 150000002826 nitrites Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- AFBBKYQYNPNMAT-UHFFFAOYSA-N 1h-1,2,4-triazol-1-ium-3-thiolate Chemical compound SC=1N=CNN=1 AFBBKYQYNPNMAT-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 241001495394 Nitrosospira Species 0.000 description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- -1 essential Chemical compound 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 238000006396 nitration reaction Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- BSMKWRYLGIMNSN-UHFFFAOYSA-N 1,2,4-triazol-4-amine;hydrochloride Chemical compound Cl.NN1C=NN=C1 BSMKWRYLGIMNSN-UHFFFAOYSA-N 0.000 description 1
- BDLQNSYLACBVDC-UHFFFAOYSA-N 1-(2,5-dichlorophenyl)pyrrolidine-2,5-dione Chemical compound ClC1=CC=C(Cl)C(N2C(CCC2=O)=O)=C1 BDLQNSYLACBVDC-UHFFFAOYSA-N 0.000 description 1
- KQCMTOWTPBNWDB-UHFFFAOYSA-N 2,4-dichloroaniline Chemical compound NC1=CC=C(Cl)C=C1Cl KQCMTOWTPBNWDB-UHFFFAOYSA-N 0.000 description 1
- FOGYNLXERPKEGN-UHFFFAOYSA-N 3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfopropyl)phenoxy]propane-1-sulfonic acid Chemical compound COC1=CC=CC(CC(CS(O)(=O)=O)OC=2C(=CC(CCCS(O)(=O)=O)=CC=2)OC)=C1O FOGYNLXERPKEGN-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 241000605159 Nitrobacter Species 0.000 description 1
- 241000192147 Nitrosococcus Species 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- OKGXJRGLYVRVNE-UHFFFAOYSA-N diaminomethylidenethiourea Chemical compound NC(N)=NC(N)=S OKGXJRGLYVRVNE-UHFFFAOYSA-N 0.000 description 1
- ICXADQHBWHLSCI-UHFFFAOYSA-N dubinine Natural products C1=CC=C2C(OC)=C(CC(O3)C(C)(O)COC(C)=O)C3=NC2=C1 ICXADQHBWHLSCI-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229910052675 erionite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000003958 fumigation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000010423 industrial mineral Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 108091057662 miR-1972-1 stem-loop Proteins 0.000 description 1
- 108091063863 miR-1972-2 stem-loop Proteins 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000014075 nitrogen utilization Effects 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004856 soil analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- HIZCIEIDIFGZSS-UHFFFAOYSA-L trithiocarbonate Chemical compound [S-]C([S-])=S HIZCIEIDIFGZSS-UHFFFAOYSA-L 0.000 description 1
- 239000012989 trithiocarbonate Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
- Y02P60/21—Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures
Landscapes
- Cultivation Of Plants (AREA)
Abstract
Riešenie sa týká prostriedku na inhibovanie funkcie nitrifikačných baktérií, pódnu dezinfekcíu a komplexně zlepšenie pódnych vlastností. Podstatou přípravku je sulfid uhličitý — CS2 sorbovaný na tuhej poréznej látke, ktorou móže byť aktivně uhlie, spódium, syntetický zeolit, prírodný zeolit, alumína, křemelina, diatomit, silikagel, mikropórovité sklo, grafitizované sadze, adsorpčné hlíny, expandovaný perlit, vermikulit, alebo kombinácia týchto sorbentov. Póry sorbenta móžu byť po naadsorbovaní CS2 čiastočne, alebo úplné uzavreté látkou, alebo kombináciou viacerých látok s adhéznymi a/alebo hydrofobizujúcimi vlastnosťami.The solution relates to a composition for inhibiting functions of nitrifying bacteria, podium disinfection and comprehensively improve podium properties. The essence of the preparation is sulfide carbon dioxide - CS2 sorbed to solid porous substance that can be actively coal, podium, synthetic zeolite, natural zeolite, alumina, diatomaceous earth, silica gel, microporous glass, graphitized carbon black, adsorption clay, expanded perlite, vermiculite, or a combination of these sorbents. Sorbent pores can be adsorbed after adsorption CS2 partially or completely sealed with substance or a combination of multiple adhesives and / or hydrophobising properties.
Description
Riešenie sa týká prostriedku na inhibovanie funkcie nitrifikačných baktérií, pódnu dezinfekcíu a komplexně zlepšenie pódnych vlastností. Podstatou přípravku je sulfid uhličitý — CS2 sorbovaný na tuhej poréznej látke, ktorou móže byť aktivně uhlie, spódium, syntetický zeolit, prírodný zeolit, alumína, křemelina, diatomit, silikagel, mikropórovité sklo, grafitizované sadze, adsorpčné hlíny, expandovaný perlit, vermikulit, alebo kombinácia týchto sorbentov.The invention relates to a composition for inhibiting the function of nitrifying bacteria, soil disinfection and a complex improvement in soil properties. The essence of the preparation is carbon disulphide - CS 2 sorbed on a solid porous substance, which can be activated carbon, bottom, synthetic zeolite, natural zeolite, alumina, diatomaceous earth, diatomite, silica gel, microporous glass, graphitized carbon black, adsorption clays, expanded perlite, vermiculite, or a combination of these sorbents.
Póry sorbenta móžu byť po naadsorbovaní CS2 čiastočne, alebo úplné uzavreté látkou, alebo kombináciou viacerých látok s adhéznymi a/alebo hydrofobizujúcimi vlastnosťami.The sorbent pores may be partially or completely enclosed with a substance or a combination of several substances with adhesive and / or hydrophobizing properties after the CS 2 has been adsorbed.
Vynález sa týká prostriedku na inhibovanie funkcie nitrifikačných baktérií, pOdnu dezinfekciu a komplexně zlepšenie podnych vlastností.SUMMARY OF THE INVENTION The present invention relates to a composition for inhibiting the function of nitrifying bacteria, for day disinfection, and for complex improvement of the properties.
Úspěšné plnenie čoraz náročnějších úloh v rastlinnej výrobě zvyšuje nároky na vědecký, kvalifikovaný přístup i k zvyšovaniu úrodnosti a kultúrnosti půd celým komplexem agrotechnických opatření.Successful fulfillment of increasingly demanding tasks in crop production increases the demands for a scientific, qualified approach as well as increasing the fertility and culture of soils through the whole complex of agrotechnical measures.
Nie velmi priaznivý stav úrodnosti váčšiny našich polnohospodárskych pod často súvisí s nedostatočnou zásobou a kvalitou organickej hmoty a nich nízkou sorbčnou schopnosťou. Hlavně plesčité pody trpia obvykle významným nedostatkom vody, ktorá rýchlo. preniká do hlbky, kam odnáša minerálně živiny i látky organické, takže nie je zabezpečená potřebná vlaha a výživa pre pěstované polnohospodárske plodiny. Příčinou je malý obsah a často i horšia akosť ílovej frakcie, t. j. prirodzených minerálnych sorbentov v piesčltých pódach, následkom čoho je obmedzená možnost tvorby dostatočného a dokonalého humuso-ílového komplexu, ktorý je základom priaznivej podnej štruktúry.The not very favorable fertility status of most of our agricultural areas is often related to insufficient supply and quality of organic matter and low sorption capacity. Especially moldy pods usually suffer from a significant lack of water that quickly. penetrates deep, where it carries mineral nutrients and organic substances, so it does not provide the necessary moisture and nutrition for cultivated agricultural crops. The cause is low content and often worse quality of clay fraction, ie. j. natural mineral sorbents in sandy stages, resulting in a limited possibility of forming a sufficient and perfect humus-clay complex, which is the basis of a favorable substructure.
Dnes je už dobré známe, že používanie vysokých dávok priemyselných hnojiv pri nedostatočnej zásobě organickej hmoty v pódach a nízkej sorbčnej schopnosti pódy je nielen málo efektívne, ale móže mať vplyv na obmedzovanie výšky úrod, zhoršovanie ich kvality; na okyslovaníe pod, rozrušovanie štruktúrnych agregátov, číže na zhoršovanie chemických i fyzikálnych vlastností pod.It is now well known that the use of high doses of industrial fertilizers with insufficient organic matter in the podiums and low soil sorption capacity is not only poorly effective, but can have an impact on crop yield reduction and quality degradation; on acidification below, disruption of structural aggregates, thus deterioration of chemical and physical properties below.
Problematika využitia různých melioračných hmót na báze rozmanitých priemyselných odpadov a minerálnych sorbentov, z hladiska možnosti ich využitia pri zúrodňovaní pód u nás sa výskumne riešila najma v spojitosti s riešením otázok zúrodňovania půd s nízkou sorbčnou schopnosťou [STEJSKAL, J. (1961); STEJSKAL, J. — HRUŠKA, L. (1962)].The issue of utilization of various ameliorating materials based on various industrial wastes and mineral sorbents, from the point of view of their utilization in soil reclamation in the Czech Republic, has been researched especially in connection with solving the problems of soil reclamation with low sorption capacity [STEJSKAL, J. (1961); STEJSKAL, J. - HRUSKA, L. (1962)].
Podstatou metody zúrodňovania pód aplikáciou minerálnych sorbentov je skutočnosť, že vlastnosti aplikovaných sorbentov móžu za určitých podmienok významné zlepšit potenciálnu úrodnost pod s nízkou sorbčnou schopnosťou.The essence of the soil fertilization method by the application of mineral sorbents is that the properties of the sorbents applied can, under certain conditions, significantly improve the potential fertility below low sorption capacity.
Skór, ako sa začali využívať minerálně sorbenty v poínohospodárstve uplatnili sa sorpčné metody v rozsiahlej miere v priemysle, predovšetkým na čistenie a sušenie zemného plynu [Kirkpatrick, S. D., Chem. Eng. 68, 23 (1961)], na sušenie kvapalín (Malušov, V. A. a kol. Sintetičeskije cedity, Ird. AN SSSR, Moskva 1962), odstraňovanie amoniaku z plynu [Talisman, L. V. a kol., Chim. Prom. 47, 571 (1971)], pri regenerácii nitróznych plynov (Vančura, J., Návrh koncepce ochrany ovzduší, vypracovaný pro předsednictvo vědecké rady ministra lesního a vodního hospodářství. Praha 1968), pri rafinácii cukrovarníckej stavy (Schneider,In fact, as the mineral sorbents have started to be used in agriculture, sorption methods have been applied extensively in industry, in particular for the purification and drying of natural gas [Kirkpatrick, S. D., Chem. Eng. 68, 23 (1961)], for drying liquids (Malušov, V. A. et al. Sintetičeskije cedity, Ird. AN USSR, Moscow 1962), removing ammonia from the gas [Talisman, L. V. et al., Chim. Prom. 47, 571 (1971)], in the regeneration of nitrous gases (Vančura, J., Draft Concept for Air Protection, elaborated for the Presidium of the Scientific Council of the Minister of Forestry and Water Management. Prague 1968);
F. a kol., Technologie des Zuckers, Vlg. M. H. Schaper, Hanover 1968), na bielenie olejov a tukov (Gregor, M., Číčel, B., Bentonit a jeho využitie, Vyd. SAV, Bratislava 1969), v technologii spracovania ropy [Tabakov, A. V. a kol., Neftepererabotka i neftechimija č. 4, 133 (1971)] a v mnohých dalších priemyselných oblastiach (Kol., Adsorbenty, ich polučenie, svojstva i primenenie, Trudy II. Vsesojurnogo soveščanija po adsorbentam. Nauka Leningrad 1971).F. et al., Technology des Zuckers, Vlg. MH Schaper, Hanover 1968), for bleaching oils and fats (Gregor, M., Cicel, B., Bentonite and its use, Ed. SAS, Bratislava 1969), in oil processing technology [Tabakov, AV et al., Neftepererabotka i neftechimija č. 4, 133 (1971)] and in many other industrial areas (Kol., Adsorbents, their Gluing, Confusion and Perception, Trudy II. Vsesojurnogo soveščanija po adsorbentam. Nauka Leningrad 1971).
Ako sorpčné materiály sa uplatnili predovšetkým rožne druhy aktívneho uhlia a syntetické zeolity tzv. molekulové šitá.The sorbent materials used were mainly various types of activated carbon and synthetic zeolites, the so-called. molecular sewn.
Představitelům „klasických“ sorbentov s heterogénnou štruktúrou tvořenou mikropórami, přechodnými pórami a makropórami je aktivně uhlie. Dubinin so spolupracovníkmi [Dubinin Μ. M. a kol., Zur. firč. chim. 23, 1 129 (1949)] rozdělil aktivně uhlia podta adsorpčného chovania sa k parám pri nízkých relativných tlakoch na dva limitně štruktúrne typy. K prvému štruktúrnemu typu zařadil aktivně uhlia s převážným zastúpením mikropórov, k druhému typu aktivně uhlia s makropórami. Aktivně uhlia obsahujúce vo velkej miere mikropóry i makropóry a tiež aktivně uhlia s převahou přechodných pórov nazval aktívnym uhlím zmiešaného štruktúrneho typu. V případe molekulových sít je sitoácia odlišná. Granulka molekulového šita pozostáva z primárných kryštálikov zeolitu spojených prímesou pojivá a tvoří bidisperznú štruktúru. Vo vnútri kryštálikov sú primárné póry, medzi kryštálikmi sú sekundárné póry.Representatives of “classical” sorbents with a heterogeneous structure consisting of micropores, intermediate pores and macropores are activated carbon. Dubinin with colleagues [Dubinin Μ. M. et al., Zur. fırça. chim. 23, 1 129 (1949)] divided the activated carbon according to the adsorption behavior towards vapors at low relative pressures into two limiting structure types. The first type of activated carbon was classified as active carbon with the majority of micropores, the second type of activated carbon with macropores. Activated charcoal containing to a large extent micropores and macropores and also activated charcoal predominantly transient pores called activated charcoal of a mixed structural type. In the case of molecular sieves, the sieve is different. The molecular sieve granule consists of primary crystals of zeolite bound by admixture with a binder and forms a bidisperse structure. Inside the crystals there are primary pores, between the crystals there are secondary pores.
Schopnost molekúl adsorbátu preniknúť do otvorov pórovitých materiálov je charakterizovaná kritickým rozmerom molekuly. Napr. pre dvojatómové molekuly a normálně uhlovodíky je to priemer reťazca. Kritický rozměr niektorých látok uvádza napr. Timopejev Ρ. P., Kinetika adsorbcii. Izd. AN SSSR, Moskva 1962. Kritický rozměr nie je však vždy dostatočným kritériom a.dsorpčných schopností molekúl na zeolitoch. Okrem charakteru pórovitej štruktúry závisí adsorpčná kapacita a selektivita jednotlivých sorbentov od velkosti dostupného specifického povrchu, od charakteru, velkosti a mechanizmu pósobenia povrchových sil, od teploty a parciálneho- tlaku (koncentrácie) adsorbátu.The ability of adsorbate molecules to penetrate the openings of porous materials is characterized by the critical size of the molecule. E.g. for diatomic molecules and normally hydrocarbons, this is the chain diameter. The critical dimension of some substances is shown e.g. Timopejev Ρ. P., Kinetics of Adsorption. Izd. AN USSR, Moscow 1962. However, the critical dimension is not always a sufficient criterion for the a.dsorbent ability of molecules on zeolites. In addition to the nature of the porous structure, the adsorption capacity and selectivity of the individual sorbents depend on the size of the specific surface area available, the nature, size and mechanism of surface forces, the temperature and the partial pressure (concentration) of the adsorbate.
Po úspešnej priemyselnej aplikácii syntetických zeolitov bol inicovaný záujem geo'lógov o hladanie analogických prírodných materiálov. Postupné boli v róznych častiach světa nájdené ich velké zásoby. Známe sú predovšetkým ložiská prírodných zeolitov v Japonsku, USA, Mexiku, Korei, Kube, MLR, BER, Juhoslávii, NSR, ZSSR a Itálii.After the successful industrial application of synthetic zeolites, the interest of geologists in the search for analogous natural materials was initiated. Gradually, large reserves were found in different parts of the world. The deposits of natural zeolites in Japan, USA, Mexico, Korea, Cuba, MLR, BER, Yugoslavia, West Germany, USSR and Italy are known.
Použitie prírodných zeolitov v polnohospodárstve je podmienené ich dobrými adsorpčnými a ionovýmennými vlastnoťaimi. Z celkového počtu 34 minerálnych druhov zeolitov, vyskytujúcich sa v přírodě majú prak5 tický význam najma klinoptilolit, mordenit, chabazit a erionit, ktoré okrem uvedených vlastností tvoria ložiskové akumulácie.The use of natural zeolites in agriculture is determined by their good adsorption and ion-exchange properties. Of the 34 naturally occurring mineral types of zeolites, clinoptilolite, mordenite, chabazite and erionite are of practical importance, which in addition to the above-mentioned properties constitute bearing accumulations.
V ČSSR je v súčasnosti popísaná len jedna — z hfadiska potenciálnych praktických aplikácii zeolitovej suroviny — významnejšia lokalita zeolitických tufitov na severe východoslovenskej panvy, v smere Vranov — Kučín — Nižný Hrabovec — Pusté Čemerné (Šamajová, E. — Kraus, I.: Prognózně oblasti slovenských zeolitov a možnosti ich využitia. In: Zborník referátov z konferencie SLOVZEO ‘84 s. 6—11, Vysoké Tatry 1984).In the CSSR only one is currently described - in terms of potential practical applications of zeolite raw material - a more important site of zeolite tuffites in the north of the eastern Slovak basin, in the direction of Vranov - Kučín - Nižný Hrabovec - Pusté Čemerné (Šamajová, E. - Kraus, I) In: Proceedings of the conference SLOVZEO '84 pp. 6-11, High Tatras 1984).
Hlavným horninotvorným minerálem tufitu z tohoto ložiska je klinoptilolit, ktorého obsah v hornině stanovený na základe ionovýmennej kapacity sa pohybuje od 40 do 63 % (Kozáč, J. et al. 1981). Chemické zloženie klinoptilolitu z tejto lokality je následovně (Hassler, J.: Přírodně zeolity — Přírodně molekulové šitá. Nepublikovaný materiál, 1983):The main rock-forming mineral of tuffite from this deposit is clinoptilolite, whose content in the rock determined on the basis of ion exchange capacity ranges from 40 to 63% (Kozáč, J. et al. 1981). The chemical composition of clinoptilolite from this site is as follows (Hassler, J .: Natural Zeolites - Naturally Molecular Sewn. Unpublished Material, 1983):
0,05 % 0,01 % 0,90 % 2,50 % % 4,90 %0.05% 0.01% 0.90% 2.50%% 4.90%
Z vyměnitelných katiónov převažuje Ca?+ a K+, na základe čoho možno tento prírodný zeolit zařadit medzi tzv. K—Ca typy.Of the exchangeable cations, Ca ? + And K + predominate. K — Ca types.
Zeolity sú z hfadiska chemického hydratované aiumínosilikáty, pričom základným útvarom ich kryštálovej mriežky sú gufovité útvary zložené z 24 tetraédrov SiO4.Zeolites are hydrated aiuminosilicates from the chemical point of view, with the basic formation of their crystal lattice being spherical formations composed of 24 SiO 4 tetraethers.
V týchto útvaroch sú niektoré atomy kremíka přepojené cez kyslík vazbou Si—O— —Si, čím sú v kryštáloch vytvořené vefké dutiny — otvory.In these formations, some of the silicon atoms are linked through oxygen by a Si-O-Si bond, creating large voids in the crystals.
V týchto otvoroch sú uložené katióny alebo molekuly (vody), ktoré sú tu viazané van der Waalsovými silami.These openings contain cations or molecules (water) which are bound here by van der Waals forces.
Ak cez zeolit obsahujúci napr. Ca2+ iónyIf a zeolite containing e.g. Ca 2+ ions
Cs+ > Rb+ > K+ > NH4+ > Ba2+ > Sr2+ > Na+ Cs +> Rb +> K +> NH 4 +> Ba 2+ > Sr 2+ > Na +
Táto selektivita je daná poměrným zastupením hliníka v štruktúre zeolitů. Z uvedeného vyplývá, že čím je v štruktúre zeolitů viac atómov hliníka, tým sú vačšie jeho ionecháme pretekať roztok NaCl dójde k výměně vápnika za sodík. Pri opatovnom přetékaní roztoku vápenatej s-oii, dójde k opatovuej výměně. V zeolitoch je obvyklé stechiometrické zastúpenie kremíka a hliníka ku kyslíku v pomere 1 : 2, t.j. (Si, Al) : : O — 1 : 2, pričom atomy kremíka móžu byť hliníkom substituované maximálně do 50 %. Náhradou kremíka hliníkom dochádza k narušeniu elektrónove] rovnováhy, ktorá sa kompenzuje prijatím iónov Na+, K+, Ca2+, připadne iných. V literatúre je popísaný rad selektivity klinoptilolitu voči katiónom:This selectivity is due to the relative representation of aluminum in the zeolite structure. This implies that the more aluminum atoms in the zeolite structure, the greater the ionic flow of the NaCl solution, the exchange of calcium with sodium. When the calcium solution is overflowed gently, an exchange of gaps occurs. In zeolites, the stoichiometric ratio of silicon and aluminum to oxygen is 1: 2, ie (Si, Al): 0 - 1: 2, with the silicon atoms being substituted by up to 50% by aluminum. The replacement of silicon with aluminum leads to a disturbance of the electron balance, which is compensated by the uptake of Na + , K + , Ca 2+ ions, or others. A number of clinoptilolite selectivity towards cations is described in the literature:
> Ca2+ > Fe3+ > Al3 > Mg2+ > Li+ novýmenné vlastnosti. Niektoré základné vlastnosti vybraných druhov prírodných zeolitov sú zahrnuté v tabufke:> Ca 2+ > Fe 3+ > Al 3 > Mg 2+ > Li + new properties. Some basic properties of selected types of natural zeolites are included in the table:
2S15122S1512
Významnou a společnou vlastnosťou prakticky všetkých zeolitov je stabilnosť kryštálovej mriežky, ktorá sa pri dehydratácii nerozpadá a je schopná vodu opátovne přijat.An important and common feature of virtually all zeolites is the stability of the crystal lattice, which does not disintegrate during dehydration and is capable of recuperating water.
Výsledky výskumu ukázali, že zeolitové tufy a tufity neutralizujú kyslé půdy a obzvlášť účinné regulujú uvoTňovanie amoniakálneho dusíka, ako aj ostatných základných, sekundárných a stopových rastlinných živin, najma kationického charakteru z aplikovaných minerálnych i organických hnojív. Například v Japonsku sa už niekolko· rokov používá prírodný zeolit na reguláciu vlhkosti půdy a odstraňovanie nepříjemného zápachu maštaíného hnoja a močovky pri hnojení půdy.Research results have shown that zeolite tuffs and tuffites neutralize acidic soils and are particularly effective in regulating the release of ammoniacal nitrogen as well as other essential, secondary and trace plant nutrients, particularly of cationic nature from applied mineral and organic fertilizers. For example, in Japan, natural zeolite has been used for several years to control soil moisture and to remove the unpleasant odor of manure and slurry when fertilizing the soil.
Přesnými pokusmi a meraniami sa zistilo, že dusík aplikovaný v hnojivách sa rastlinami využívá v priemere na 30—40 %, pričom straty dusíka sú tiež příčinou závažných ekologických problémov (Referáty a závěry IX. světového kongresu C. I. E. C. o priemyselných hnojivách, Budapešť, 11,—16. jún 1984). V poslednej době sa preto preverujú nové spůsoby efektívnejšieho využitia dusíka z hnojív, medzi ktorými zaoherá významné postavenie použitia inhibítorov nitrifikácie.Precise experiments and measurements have shown that nitrogen applied to fertilizers is on average used by plants at 30-40%, while nitrogen losses also cause serious environmental problems (Reports and Conclusions of the 9th CIEC World Conference on Industrial Fertilizers, Budapest, 11, - June 16, 1984). Recently, therefore, new ways of using nitrogen more efficiently from fertilizers have been investigated, among which a significant role for the use of nitrification inhibitors will play.
Vplyvom inhibítorov nitrifikácie dochádza v půdě k spomaleniu, alebo po určitú dobu až k zastaveniu premeny amoniakálneho na dusitanový dusík, čo umožňuje zníženie strát dusíka vyplavováním alebo denitriíikáciou, vzhladom k tomu, že amoniakálny dusík je v pode podstatné menej pohyblivý než dusičnanový, připadne dusitanový dusík.As a result of nitrification inhibitors, the soil slows down or, for some time, stops the conversion of ammoniacal to nitrite nitrogen, allowing the reduction of nitrogen losses by leaching or denitrification, since ammoniacal nitrogen is substantially less mobile than nitrate or nitrite nitrogen .
Nitrifikácia je biologický enzymatický proces, pri ktorom sa oxidujú redukované dusíkaté látky s přechodným uvolňováním dusitanov a ich následnou oxidáciou na dusičnany. Ždrojom dusíka pre oxidáciu sň predovšetkým amónne soli (tzv. autotrofná nitrifikácia), připadne aj organické dusíkaté látky (heterotrofná nitrifikácia). Uvedené procesy zabezpečuje Specifická fyziologická skupina mikroorganizmov — nitrifikačná mikroflóra, ktorá procesmi oxidácie dusíka- získává energiu pre svoje životné pochody.Nitrification is a biological enzymatic process in which reduced nitrogenous substances are oxidized with transient release of nitrites and their subsequent oxidation to nitrates. Nitrogen source for oxidation is mainly ammonium salts (so-called autotrophic nitrification), or organic nitrogenous substances (heterotrophic nitrification). These processes are ensured by a specific physiological group of microorganisms - nitrifying microflora, which through the processes of nitrogen oxidation - gains energy for its life processes.
V procesoch autotrofnej nitrifikácie rozlišujeme dva základné stupně. V prvom sa oxiduje amoniak na dusitany (nitritácia), v druhom pokračuje oxidácia až na dusičnany (nitratácia). Každý stupeň oxidácie zabezpečuje specifická skupina autotrofných mikroorganizmov. Nitritéciu vykonává nitritačná mikroflóra reprezentovaná baktériemi, predovšetkým z rodov Nitrosomonas, Nitrosocystis, Nitrosococcus, Nitrosolobus a Nitrosospira. Bioehemickú podstatu ich aktivity možno stručné vyjádřit zjednodušenou reakčnou schémou (Alexander, M.: So-il Nitrogen. Madison — Wisconsin, 1965, s. 309):In the processes of autotrophic nitrification we distinguish two basic stages. In the first, ammonia is oxidized to nitrites (nitritation), in the second, oxidation continues to nitrates (nitratation). Each degree of oxidation is provided by a specific group of autotrophic microorganisms. Nitrites are performed by nitritating microflora represented by bacteria, mainly from the genera Nitrosomonas, Nitrosocystis, Nitrosococcus, Nitrosolobus and Nitrosospira. The bio-chemical nature of their activity can be briefly expressed by a simplified reaction scheme (Alexander, M .: So-il Nitrogen. Madison-Wisconsin, 1965, p. 309):
nan je viazaná na funkciu špecifických tzv. nitratačných baktérií, reprezentovaných predovšetkým rodom Nitrobacter. Pri značnomnan is bound to the function of specific so-called. nitrating bacteria, mainly represented by the genus Nitrobacter. At considerable
OHOH
H2O / 1/2 O2’H 2 O / 1/2 O 2 '
HO—N=O----> HO—N=O----> HO—N \ — H2O iHO — N = O ----> HO — N = O ----> HO — N \ - H 2 O i
OH OOH O
Uvádza sa (Delvič, K.: Krugovorot azota. Biosféra, Izd. Mir 1972), že energetický zisk nitrifikácie je asi 276 KJ a pri následnej nitratácii 73 KJ na mól.It is reported (Delvic, K .: Krugovorot azota. Biosphere, Izd. Mir 1972) that the energy gain of nitrification is about 276 KJ and the subsequent nitration of 73 KJ per mole.
Dnes poznáme už niekolko desiatok chemických látok schopných selektívne potláčať aktivitu nitrifikačnej mikroflóry — ínhibítorov nitrifikácie.Today we know dozens of chemicals capable of selectively suppressing the activity of nitrifying microflora - nitrification inhibitors.
Patentované sú například: 2-chlór-6-trichlórmetylpyridín (Nitrapyrin, N-Serve), 4-auiíno-4H-l,2,4-triazolhydrochlorid (ATC), 2-merkapto-l,3,4-triazol (MT), amidínotiomečovina (ASV), 2,4-dichloranilin, N-(2,5-dichlórfenyl) sukcinimid, 2-merkaptobenzH,0 OH / 1/2 O,,For example, 2-chloro-6-trichloromethylpyridine (Nitrapyrin, N-Serve), 4-amino-4H-1,2,4-triazole hydrochloride (ATC), 2-mercapto-1,3,4-triazole (MT) are patented , amidinothiourea (ASV), 2,4-dichloroaniline, N- (2,5-dichlorophenyl) succinimide, 2-mercaptobenzyl, 0 OH / 1/2 O,
N—O----► NH ----> HO—N=O \ — h2oN — O ---- ► NH ----> HO — N = O \ - h 2 o
OH zjednodušení možno nitratáciu, ktorá je spojená najsker s hydratáciou a potom s následnou oxidáciou a dehydratáciou:OH simplification may be nitration, which is associated first with hydration and then with subsequent oxidation and dehydration:
—O tiazol (MBT), dikyandismid (DIDJN), 2-amíno-4-chlór-6-metyl-pyriroidin (AM), 2-(4-amínofenylsulíonylamido)tiazol (CIBÁZOL, ST] (Hauck, R. D.: „Mode of Action of Nitrification Inhibitors“. Nitrification Inhibítors — Pctentials and Limitations. American Society of Agronomy and Soil Science Society of America, Madison 1980; Toman,—O thiazole (MBT), dicyandismide (DIDJN), 2-amino-4-chloro-6-methylpyriroidine (AM), 2- (4-aminophenylsulfonylamido) thiazole (CIBÁZOL, ST) (Hauck, RD: 'Mode of Action of Nitrification Inhibitors. "Nitrification Inhibitors - Pctentials and Limitations. American Society of Agronomy and Soil Science Society of America, Madison 1980;
J. — Socha, J.: „Zefektivněni využití dusíku v zemědělství — nitriřikační inhibitory“. Chemické listy, 75 (1981), s. 743—752; Slangen, J. H. G. — Kerkhoff, P.: „Nitrification inhibitors in agriculture and horticulture: A literatuře review.“ Agricultural Universi261512 ty, De Drejen 3, 6 703 BC Wageningen, Netherlands j.J. - Socha, J .: "Efficiency of nitrogen utilization in agriculture - nitrification inhibitors". Chemické listy 75 (1981), p. 743-752; Slangen, J. H. G. - Kerkhoff, P .: "Nitrification Inhibitors in Agriculture and Horticulture: A Literature Review." Agricultural Universi261512 ty, De Drejen 3, 6 703 BC Wageningen, Netherlands j.
Popři použití celého radu obvykle značné komplikovaných organických zlúčenín sa v sederndesiatych rokoch, v krajinách Západnej Európy začali skúšať aj podstatné jednoduchšie inhibitory anorganického charakteru. V o Velkej Británii Ashworth, J. a splupracovníci s úspechom ověřili použitie sulfidu uhličitého (sirouhlikuj — CS;i, pre inhibíciu nitrifikácie [Ashworth, J. — Briggs, G. G. — Evans, A. A. — Matual, J.: „Inhibiton of nitrification by nitrapyrin, carbondisulphide and trithiocarbonate“. J. Sci. Food Agric. 28, 673—683 (1977); Ashworth, J. — Widdowson, F. V. — Penny, A. — Bird, E. — Hewitt, Μ. V. — Gibhs, A. j.: „Nitrification inhibitors for grass.“ Report for 1977, part 1, 276—278, Rothamsted Experimental Station].In addition to the use of a number of usually complicated organic compounds, substantially simpler inhibitors of inorganic character have also begun to be tested in the western European countries in Western Europe. In the UK, Ashworth, J. and collaborators have successfully verified the use of carbon disulfide (carbon disulfide - CS ; i , for inhibiting nitrification [Ashworth, J. - Briggs, GG - Evans, AA - Matual, J .: "Inhibiton of nitrification by nitrapyrin, carbondisulphide and trithiocarbonate. "J. Sci. Food Agric., 28, 673-683 (1977); Ashworth, J. - Widdowson, FV - Penny, A. - Bird, E. - Hewitt, V. V. - Gibhs , A. j .: "Nitrification inhibitors for grass." Report for 1977, part 1, 276-278, Rothamsted Experimental Station].
Sulfid uhličitý (sirouhlíkj — CS2 sa ukázal ako vysoko účinný inhibitor funkcie baktérií ovplyvňujúcich oxidáciu amoniakálneho dusíka.Carbon disulfide (carbon disulphide - CS 2) has been shown to be a highly effective inhibitor of the function of bacteria affecting the oxidation of ammonia nitrogen.
Vysokú inhibičnň účinnost CS·, už pri jeho koncentrácii 10 ug.g“1 půdy hohatej na obsah humusu (2,93 % organického uhlíka) experimentálně potvrdili tiež Kudejarov, V. N. a Jenkinson, D. S. [„The effects of biocidal treatments on metabolism in soli — VI. Fumigation with carbon disulphide.“ Soil Biol. Bicchem. Vol. 8, (1976), s. 375—378). Rovnako Bremner, J. M. a Bundy, L, na základe výsledkov vykonaných pokusov konstatovali, že sulfid uhličitý bol efektivnější než patentované a komerčně dodávané inhibitory organického charakteru N-Serve, AM, ST, a to v dávke blízkej 2 hmot. dielom CS2 na 106 hmot. dielo-v půdy. [Bremner, J. M. — Bundy, L.: „Inbibition of nitrification in soils by volatile sulfur compounds.“ Soil Biol. Bicchem., Vol. 6, (19741. s. 161—165].Kudejarov, VN and Jenkinson, DS have also experimentally confirmed the high inhibitory activity of CS · at a concentration of 10 µg.g -1 of soil rich in humus content (2.93% organic carbon). - VI. Fumigation with carbon disulphide. ”Soil Biol. Biochem. Vol. 8, (1976), p. 375-378). Similarly, Bremner, JM and Bundy, L, based on the results of the experiments, found that carbon disulfide was more effective than the patented and commercially supplied organic inhibitors of N-Serve, AM, ST at a dose close to 2 wt. CS 2 per 10 6 wt. work-in soil. [Bremner, JM - Bundy, L .: "Inbibition of Nitrification in Soils by Volatile Sulfur Compounds." Soil Biol. Bicchem., Vol. 6, (19741, pp. 161-165).
V poslednom období použitie CS?. na Inhibíciu nitrifikácie na základe rozsiahlych pokusov doporučili tiež podny biológivin ZSSR a Kanady [Kudejarov, V. N. — Sokolov, O. A. — Bočkarev, A. N. — Egorova, E. F. — Semenov, V. M. — Sabaev, V. P. — — Derakina, R. S.: „Serouglerod kak sredstvo povyšenija effektivnosti azotnvch udobrenij.“ Chimija v cel. chozjaj., Vol. 22, 2 (19S4J, s. 10—14; Malhi, S. S. — Nyboru, M.: „An evaluation of carbon disulphide as a sulphur fertilizer and as a nitrification inhibitor.“ Plant and Soil, 65, (1982), s. 203—218).Recently, the use of CS ?. to inhibit nitrification based on extensive experiments, they also recommended the biology of the USSR and Canada [Kudejarov, VN - Sokolov, OA - Bochkarev, AN - Egorova, EF - Semenov, VM - Sabaev, VP - Derakina, RS: azotnvch udobrenij. ' chozjaj., Vol. 22, 2 (19S4J, pp. 10-14; Malhi, SS - Nyboru, M .: "Evaluation of carbon disulphide as a sulphur fertilizer and as a nitrification inhibitor." Plant and Soil, 65, (1982), p. 203-218).
Na možnost použitia CS2 ako inhibítora nitrifikácie u nás vo svojich prácach upozornili tiež Lišfanská, J. [Agrochémia, 22, 10, (1982), s. 285—289] a najma Balík, J. so> spolupracovníkům [Referát na konferencii „Dusík — hnojivá — půda — rastlina“, Praha 1983; Agrochémia, 24, 3, (1984), s. 69—71], ktorí publikovali výsledky spoločných výskumov vedených v sledovanej oblasti spolu so sovietskymi pódnymi biológmi [Kudejarov, V. N. — Sabaev, V. P. — Knop, K. — Balík, J. — Vaněk, V.: „Priinenenie serougleroda dlja ingíbirovanija nitrifikácii v počve.“ Agrochimija, 11, (19851, s. 3—8). Tito zistili, že CS2 aplikovaný v dávke 1 mg/100 g půdy zabezpečil podstctnú inhibíciu nitrifikačných pochodov v p-de.The possibility of using CS 2 as nitrification inhibitor with us in his work also drew attention Lišfanská, J. [Agrochémia, 22, 10 (1982), p. 285–289] and especially Balík, J. so> co-workers [Report on conference “Nitrogen - fertilizers - soil - plant”, Prague 1983; Agrochemistry, 24, 3, (1984), p. 69–71], who published the results of joint research conducted in the field of study together with Soviet soil biologists [Kudejarov, VN - Sabaev, VP - Knop, K. - Balík, J. - Vaněk, V .: „Priinenenie serougleroda dlja ingíbirovanija nitrification Agrochimija, 11, (19851, pp. 3-8). They found that CS 2 applied at a dose of 1 mg / 100 g of soil provided substantial inhibition of β-day nitrification processes.
Ako výhody sulfidu uhličitého (CS2) v porovnaní s dnes komerčně dodávanými inhibítormi (N-Serve, ATC) sa uvádzajú: nižšia cena, rýchlejšie prenikanie do- viičšieho okruhu v podnom profile a hlavně to, že posobí bez reziduí a je zdrojom rastlinami asimilovateťnej síry.The advantages of carbon disulfide (CS 2 ) over today's commercially available inhibitors (N-Serve, ATC) include: lower cost, faster penetration of the other circuit in the sub-profile and, above all, it works without residues and is a source of assimilable plants sulfur.
Nevýhody použitia sulfidu uhličitého (CSo.) súvisia predovšetkým s jeho fyzikáljio-chemickými vlastnosťami — vysoká, tenzia pár CS? už aj pri teplotách běžných pre jeho aplikáciu (bod varu: 46,3 °Cj, tvorba výbušných zmesi so vzduchom v širokom rozmedzí vzájemných pomerov (1—50 obj. pere. CS2. vo vzduchu pri 20 °C), nízká zápalnosť (bod zápalnoetí: 30 °Ci, relativné nízkou teplotou vznietenia (asi 100 °C), nízká rozpustnost vo vodě (0,2 % pri 0 °C; 0.014 % pri 50 °Cj a pod. Z uvedených dovodov sa hladajú možnosti aplikácie CS2, ktoré by popři bezpečnej aplikácii vytvárali předpoklady pre dlhodobejšie pSsmenjo CS2 v prde (roztoky sulfidu uhličitého v koncentrovanou) kvapalnom amoniaku, příprava vodných emulzií v roztokoch čpavkovej vody alebo- alkalických hydroxidov).The disadvantages of using carbon disulfide (CSo.) Are mainly related to its physico-chemical properties - high CS vapor pressure? even at temperatures common for its application (boiling point: 46.3 ° Cj, formation of explosive mixtures with air in a wide range of proportions (1 - 50% by volume. CS 2. in air at 20 ° C), low flammability ( ignition point: 30 ° C, relatively low flash point (about 100 ° C), low water solubility (0.2% at 0 ° C; 0.014% at 50 ° Cj, etc. ) which, in addition to safe application, would create the prerequisites for longer-term CS 2 in the fed (carbon disulfide solution in concentrated) liquid ammonia, preparation of aqueous emulsions in ammonia water or alkaline hydroxide solutions).
Teraz sa zistilo, že uvedené výhody použitia sulfidu uhličitého — CS2 ako prostriedku na inhibovanie funkcie baktérií ovplyvňujúcich oxidáciu am o oia kál něho dusíka a tiež prostriedku na dezinfekční půdy pri súčasnom odstranění, resp. minimalizaci) nevýhod sávisiacicb o jeho fyzikáhio-chemickými vlastnosťami je možné dosiahnuť využitím vynálezu. Predmetom vynálezu je prestriedok na inhibovanie funkcie nitrifikačných baktérií, pódnu dezinfekciu a komplexně zlepšenie pádných vlastností vyznačujúci sa tým, že «obsahuje minimálně 2 . 101 a maximálně 4,8 . 10”1 hmotnostných percent sulfidu uhličitého — CS·, viazanéhc na sorbenta. Ako sorbent sa používá aktivně uhlie a/alebo kostné uhlie tzv. spódium a/alebo syntetický zeolit tzv. molekulové šito a/alebo prírodný zecíit a/alebo alumina a/alebo křemelina a/alebo diatornit a/alebo polymérna koloidná kyselina křemičitá tzv. silikagél a/alebo mikropórovité sklo a/alebo grafitizované sadze a/alebo adsorpčná hlina a/alebo expandovaný perlit a/alebo vermikulit.It has now been found that the aforementioned advantages of using carbon disulfide - CS 2 as a means to inhibit the function of bacteria affecting the oxidation of ammoniacal nitrogen and also a composition for disinfectant soils while removing or disinfecting the soil. minimizing the drawbacks depending on its physicochemical properties can be achieved by utilizing the invention. SUMMARY OF THE INVENTION The present invention provides a means for inhibiting the function of nitrifying bacteria, soil disinfection, and a comprehensive improvement of the healing properties, characterized in that it comprises at least 2. 10 1 and maximum 4.8. 10 '1 percent by weight of carbon disulfide - EN ·, viazanéhc the sorbent. Activated charcoal and / or bone charcoal so-called sorbent is used as sorbent. a podium and / or a synthetic zeolite, so-called. molecular sieve and / or natural zirconium and / or alumina and / or diatomaceous earth and / or diatorite and / or polymeric colloidal silicic acid, so-called. silica gel and / or microporous glass and / or graphitized carbon black and / or adsorbent clay and / or expanded perlite and / or vermiculite.
Póry sorbenta můžu byt po naadsorbovaní CS2 čiastočne alebo úplné uzavreté látkou alebo kombináciou látok vyznačujúcicb sa adhéznymi a/alebo hydrofobizujúcimi vlastnosťami. Ako látky uvedeného typu može prostriedok obsahovat vodné sklo a/alebo lignosulfónovú kyselinu a/alebo- soli lig11 nosulfónovej kyseliny a/alebo škrob a/alebo kondenzáty močoviny s aldehydmi a/alebo parafín a/alebo vosky.The sorbent pores may be partially or completely enclosed with a substance or combination of substances exhibiting adhesion and / or hydrophobizing properties after the CS 2 has been adsorbed. As substances of the above type, the composition may comprise waterglass and / or lignosulfonic acid and / or salts of nosulfonic acid ligands and / or starch and / or urea condensates with aldehydes and / or paraffin and / or waxes.
Významnou výhodou riešenie je skutečnost, že použitím róznych reálných sorbento-v, ktoré majú zložitú heterogénnu štruktúru tvorenú pórmi rozličných rozmerov, tvaru a usporiadania sa dosiahne široká variabilita v sorpčných kapacitách, ako aj povahe sorpčných sil medzi sorbentom a molekulami CS2.A significant advantage of the solution is that by using different real sorbents having a complex heterogeneous structure formed by pores of different dimensions, shape and arrangement, a wide variability in sorption capacities as well as the nature of sorption forces between sorbent and CS 2 molecules is achieved.
Posobením podneho roztoku a podnych baktérií dochádza k postupnému dlhodobejšiemu uvoíňovaniu CS2 zo struktury sorbentu, čo umožňuje do-siahnuť časovo cielený účinok v súlade s požiadavkami pěstovaných kultur a vlastnosťami půdy. S výhodou sa ako tuhá látka používajú přírodně zeolity. Vzhtadom na velkost sorpčných sil medzi prírodným zeolitom a CS3 sa dosiahne výrazný dlhodobý inhibičný účinok a dezinfekčný účinek pri súčasnom zlepšení potenciálu úrodnosti pod v důsledku zlepšenia ich fyzlkálno-chemických vlastností, predovšetkým sorpčných a iónovýmenných schopnosti, stabilizácie obsahu vlhkosti, zníženia kyslosti a viazania NHJ' a K! iónov. Z výrobkov čsl. priemyslu sú v súčasnosti dostupné nasledujúce přípravky na báze prírodných zeolitov (výrobea — Keramické závody n. p. Košice):By impregnating the under solution and the undergrowth bacteria, CS 2 is gradually released from the sorbent structure over a longer period of time, allowing a time-targeted effect to be achieved in accordance with the requirements of cultivated crops and soil characteristics. Preferably, naturally occurring zeolites are used as the solid. Given the magnitude of sorption forces between natural zeolite and CS 3 , a significant long-term inhibitory effect and disinfectant effect is achieved while improving fertility potential as a result of improving their physico-chemical properties, in particular sorption and ion-exchange properties, moisture content stabilization, acidity reduction and NHJ binding 'a K ! ions. From products čsl. The following products based on natural zeolites (manufactures - Ceramics works np Košice) are currently available to industry:
SLOVSORB typ 0,2-1,6SLOVSORB type 0,2-1,6
SLOVSORB typ 1,6-3,0SLOVSORB type 1,6-3,0
NOPEST — granulovaný nosič pesticídnych látok na ničenie podnych škodcov.NOPEST - granulated carrier of pesticide substances for pest control.
Predíženie inhibičnéhoi účinku navrhovaného prostriedku je možné ďalej dosiahnu ť úpravou povrchu so-rbenta, po naadsorbovaní CS2, použitím vhodného adheziva, alebo hydrofobizujúcej látky.The prolongation of the inhibitory effect of the proposed composition can be further achieved by treating the surface of the sorbent, after CS 2 adsorption, by using a suitable adhesive or hydrophobizing agent.
Sulfid uhličitý móže byť naadsorbovaný na sorbent s cietom výroby prostriedku, ktorý je predmetom vynálezu, alebo sa móžu využiť sorbenty po adsorpcii používané v priemysle na zachytávanie exhalácií CS2 (výroba CS3, výroba viskózového hodvábu, výroba gumárenských chemikálií ...).The carbon disulfide may be adsorbed onto the sorbent with the aim of producing the composition of the invention, or post-adsorption sorbents used in industry to capture CS 2 exhalations (manufacture of CS 3 , manufacture of viscose rayon, manufacture of rubber chemicals ...) may be used.
Vynález sa uplatni predovšetkým na intenzívně využívaných poínohospodárskych podach určených na pestovanie zeleniny, v skleníkoch, fóliovníkoch, v oblastiach ochrany spodných vod a na piesčitých pódach, kde z hladiska ekologického a hygienického bude nevyhnutné znížif aplikované dávky dusíkatých hnojív a uskutočniť všetky dostupné opatrenia pre ich lepšie využitie pěstovanými plodinami a zníženie ich strát.In particular, the invention will be applied to intensively used agricultural soils for growing vegetables, greenhouses, greenhouses, groundwater protection areas and sandy soils where, from an ecological and hygienic point of view, it will be necessary to reduce the application rates of nitrogen fertilizers and take all available measures to better use of cultivated crops and reduction of their losses.
Predmet vynálezu ozrejmujú, ale nijako neobmedzujú nasledujúce příklady.The following examples illustrate the invention but do not limit it in any way.
Příklad 1 skutočná hustota 1,7 g/cm3, zdánlivá hustota 0,73 g/cm3 sa desorbovalo v prúde žiarovkárenského dusíka pri teplote 400 °C počas 4 hodin. Potom sa pri teplote 20 °C a koncentrácií 50 mg/1 CS2 v nosnom plyne — dusíku naadsorbovalo na uvedené aktivně uhlie 357,8 mg/g sulfidu uhličitého'. Takto připravená vzorka sa použila v biologických pokusoch zameraných na inhibovanie činnosti nitritačných a nitratačných baktérií a tiež na zlepšenie vlastností pódy.Example 1 an actual density of 1.7 g / cm 3 , an apparent density of 0.73 g / cm 3 was desorbed in a stream of incandescent nitrogen at 400 ° C for 4 hours. Then, at a temperature of 20 ° C and a concentration of 50 mg / l CS 2 in the carrier gas - nitrogen, 357.8 mg / g of carbon disulfide was adsorbed to said activated carbon. The sample thus prepared was used in biological experiments aimed at inhibiting the activity of nitritating and nitrating bacteria as well as improving the properties of the soil.
Příklad 2Example 2
Prírodný zeolit z lokality Nižný Hrabovec, zloženia 71,60 % hmot. SiO2, 13,00 % hmot. A12O3, 1,50 % hmot. Fe2O3, 2,80 % hmot. CaO, 0,8 % hmot. MgO, 0,20 % hmot. TiO2, 0,05 % hmot. P2O5, 0,01 °/o hmot. MnO, 0,90 pere. hmot. Na2iO a 2,50 % hmot. K2lO, obchodný názo-v Slovsorb typ 1,6-3,0 (velkost častíc 1,6-3,0 mm), výrobea Keramické závody n. p. Košice (KERKO) sa desorboval pri teplote 350 °C počas 4 hodin. Uvedený nárast teploty z 20 na 350 °C sa dosiahol za 1,5 hodiny. Po vychladnutí na laboratořím teplotu sa na takto aktivovaný zeolit naadsorbovalo zaliatim kvapalným CS2 v uzavrete] banke 32,3 mg CS2 na 1 g zeolitu. Takto připravená vzorka sa použila v blotloglckom pokuse zhodnom s príkladom i. Příklad 3Natural zeolite from locality Nižný Hrabovec, composition 71.60 wt. % SiO 2 , 13.00 wt. % Al 2 O 3 , 1.50 wt. % Fe 2 O 3 , 2.80 wt. CaO, 0.8 wt. MgO, 0.20% wt. % TiO 2 , 0.05 wt. P 2 O 5 , 0.01% w / w. MnO, 0.90 washes. wt. % Na 2 O and 2.50 wt. K 2l O, trade name Slovsorb type 1.6-3.0 (particle size 1.6-3.0 mm), manufactured by Keramické závody np Košice (KERKO) was desorbed at 350 ° C for 4 hours. This temperature rise from 20 to 350 ° C was achieved in 1.5 hours. After cooling to room temperature, 32.3 mg CS 2 per g of zeolite was adsorbed onto the activated zeolite by pouring liquid CS 2 in a sealed flask. The sample thus prepared was used in a blotting experiment in accordance with Example i. Example 3
Vzorka silikagélu — typ A sa pri teplote 140 °C desorbovala v prúde vyčištěného žiarovkárenského dusíka počas 4 hodin. Po vychladnutí vzorky na laboratórnu teplotu sa na takto aktivovaný sorbent nasorbovalo zaliatim v uzatvorenej banke 37,5 mg CS2 na 1 g silikagélu. Prebytočného CS2 sa vzorka zbavila vo- vákuovej sušiarni pri teplote cca 25 °C. V modelovom bubnovom granulátore sa striekaním nanieslo na povrch silikagélu vodné sklo ( 1,36; mól SiO2/ /mól Na2O = 3,4; sušina — 41,5 %) v množstve 8,8 mg/g.A sample of type A silica gel was desorbed at 140 ° C in a stream of purified incandescent nitrogen for 4 hours. After cooling the sample to room temperature, the sorbent thus activated was adsorbed by embedding in a sealed flask 37.5 mg CS 2 per 1 g silica gel. Excess CS 2 was removed from the sample in a vacuum oven at about 25 ° C. In a model drum granulator, a water glass (1.36; mole SiO 2 / / mole Na 2 O = 3.4; dry matter - 41.5%) was sprayed onto the silica gel at 8.8 mg / g.
Příklad 4Example 4
Vzorka přípravku podá příkladu 1 sa použila v nádobových pokusoch v skleníku pri štúdiu vplyvu přípravku na nitrifikáciu NH;i — dusíka. Pokus sa uskutočnil za nasledovných podmienok: Póda — hnedozem, teplota — cca 20 °C, množstvo aplikovaného N — 55 mg vo formě (NH/,)2.SO4/g půdy, množstvo přípravku 68,3 mg/g pódy obsahujúceho 18 mg CS2. V porovnávacom pokuse sa nepoužil CS2. Na základe vykonanej analýzy pódy sa z obsahu N přidaného do půdy zistili tieto obsahy NH4—N, NO3—N a celkového N po 10, 20 a 30 dňoch:A sample of the formulation of Example 1 was used in a greenhouse container experiment to study the effect of the formulation on nitrification of NH 2 - nitrogen. The experiment was carried out under the following conditions: soil - brown, temperature - approx. 20 ° C, amount of N - 55 mg applied as (NH 4 ) 2 SO 4 / g soil, amount of preparation 68.3 mg / g of soil containing 18 mg CS 2 . CS 2 was not used in the comparative experiment. Based on the soil analysis, the following levels of NH 4 —N, NO 3 —N and total N after 10, 20 and 30 days were determined from the N content added to the soil:
Aktivně uhlie HS — 43, frakcia 4—4,5 mm, dní vzorka a b c dní a b c dní a b cActivated carbon HS - 43, fraction 4 - 4,5 mm, days sample a b c days a b c days a b c
1* 36 7 43 19 30 49 2 59 511 * 36 7 43 19 30 49 2 59 51
41 —2 39 48 —4 44 29 21 50 * — kontrolná vzorka a — NH3 dusík b — NO3 dusík c — celkový dusík41 —2 39 48 —4 44 29 21 50 * - control sample a - NH 3 nitrogen b - NO 3 nitrogen c - total nitrogen
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS862980A CS261512B1 (en) | 1986-04-24 | 1986-04-24 | Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS862980A CS261512B1 (en) | 1986-04-24 | 1986-04-24 | Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CS298086A1 CS298086A1 (en) | 1988-07-15 |
CS261512B1 true CS261512B1 (en) | 1989-02-10 |
Family
ID=5368569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS862980A CS261512B1 (en) | 1986-04-24 | 1986-04-24 | Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS261512B1 (en) |
-
1986
- 1986-04-24 CS CS862980A patent/CS261512B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS298086A1 (en) | 1988-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jakkula et al. | Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity | |
Rehakova et al. | Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type | |
CN108251118B (en) | Biochar, soil heavy metal stabilization agent and preparation method thereof | |
Ramesh et al. | Zeolites and their potential uses in agriculture | |
Sangeetha et al. | Zeolite and its potential uses in agriculture: A critical review | |
AU2007288097B2 (en) | Acid-impregnated activated carbon and methods of forming and using the same | |
Morera et al. | Bioavailability of heavy metals in soils amended with sewage sludge | |
US5127187A (en) | Soil or soil improver containing porous ion exchanger | |
Szerement et al. | Use of zeolite in agriculture and environmental protection. A short review | |
Mahesh et al. | Zeolite farming: A sustainable agricultural prospective | |
KR20190018184A (en) | Particle type soil conditioner and fertilizer composition using bio-char, and preparation method of the same | |
CN104307855A (en) | Method for repairing heavy metal contaminated soil in situ by adopting multifunctional biological charcoal | |
EA005040B1 (en) | Mineral wool plant substrate | |
Taheri‐Soudejani et al. | Composts containing natural and mg‐modified zeolite: the effect on nitrate leaching, drainage water, and yield | |
Ramesh et al. | Zeolitic farming | |
Hasanabadi et al. | Feasibility study on reducing lead and cadmium absorption by alfalfa (Medicago scutellata L.) in a contaminated soil using nano-activated carbon and natural based nano-zeolite | |
CN112830838A (en) | An environmentally friendly heavy metal soil remediation agent | |
Prisa | Zeolites: A potential strategy for the solution of current environmental problems and a sustainable application for crop improvement and plant protection | |
CS261512B1 (en) | Inhibiting agent for nitrification bacteria function,particularly for soil disinfection and complex improving properties thereof | |
Taheri Soudejani et al. | Improving quality of municipal solid waste compost through Mg-modified zeolite | |
Sari et al. | Effects of NP-SR fertilizer composition and water logging on soil chemical properties and n fertilizer efficiency in paddy field | |
Prisa | Study and evaluation of natural zeolite and dried zeolite for the cultivation of friggitello pepper | |
Cataldo et al. | Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547 | |
Dasoju et al. | Paclobutrazol drench activity in coir-and peat-based root substrates | |
Tran et al. | Evaluation of natural zeolite as adsorbent material for the recovery of nutrients from manure wastewater |