CS260276B1 - Connection for parison level height measuring and regulation by means of laser - Google Patents

Connection for parison level height measuring and regulation by means of laser Download PDF

Info

Publication number
CS260276B1
CS260276B1 CS863639A CS363986A CS260276B1 CS 260276 B1 CS260276 B1 CS 260276B1 CS 863639 A CS863639 A CS 863639A CS 363986 A CS363986 A CS 363986A CS 260276 B1 CS260276 B1 CS 260276B1
Authority
CS
Czechoslovakia
Prior art keywords
laser
output
photodetector
input
circuit
Prior art date
Application number
CS863639A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS363986A1 (en
Inventor
Abdullatif Abdalla
Original Assignee
Abdullatif Abdalla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abdullatif Abdalla filed Critical Abdullatif Abdalla
Priority to CS863639A priority Critical patent/CS260276B1/en
Publication of CS363986A1 publication Critical patent/CS363986A1/en
Publication of CS260276B1 publication Critical patent/CS260276B1/en

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Zapojenie na meranie a reguláciu výšky hladiny skloviny laserom v taviacich agregátoch s presnosťou + 0,1 mm v rozsahu 0 až 10 mm, pričom použitie uvedeného zapojenia vylučuje negativné vplyvy vibrácií taviacich agregátov a fluktuácii laserového lúča na přesnost merania. Zapojenie je vytvořené tak, že laserový lúč, ktorý prenáša informácie o změnách výšky hladiny skloviny dopadá na fotodetektor a vyvotlá na jeho výstup impulzy, ktoré sa zosilňujú v zosilňovači a vyhodnocujú sa vo vyhodnocovacej jednotke. Podl'a úrovně signálu z výstupu vyhodnocovacej jednotky sa vytvárajú impulzy s premenlivou striedou v obvode, ktorý riadi činnost zakladača a zároveň činnost obvodu vibrátore pri zakladači.Connection for height measurement and regulation glass levels by laser in melting aggregates with an accuracy of + 0,1 mm in the range 0 to 10 mm, wherein said use wiring eliminates the negative effects of vibration melting aggregates and laser fluctuations beam for measurement accuracy. engagement it is designed so that the laser beam that it transmits information about level changes the enamel hits the photodetector and coils pulses on its output, which are amplified in the amplifier and evaluated in the evaluation unit. According to the signal level z The output of the evaluation unit is generated variable pulses in the circuit which controls the operation of the stacker and at the same time operation of the vibrator circuit at the stacker.

Description

Vynález sa zaoberá zapojením na meranie a reguláciu výšky hladiny skloviny laserom v taviacich agregátoch.The present invention relates to a connection for measuring and controlling the level of glass by laser in the melting aggregates.

Známe zariadenia na meranie výšky hladiny skloviny, ktoré používajú laserovú techniku sú negativné ovplyvnené vibráciami taviaceho agregátu a fluktuáciami lesarového lúča šíriaceho sa prostředím taviaceho agregátu. Nezaoberajú sa reguláciou hladiny skloviny. Pre zabezpečenie ivysokej přesnosti merania vyžadujú použitie špeciálnej optiky, ktorá by obmedzila vplyv chvenia konštrukcie taviaceho agregátu a vplyv fluktuácií laserového lúča na výsledky merania a pre reguláciu hladiny sklwiny si vyžadujú pomocné regulátory, alebo riadiace mikropočítače.Known glass level gauges that use laser technology are adversely affected by the vibration of the melting aggregate and the fluctuations of the lesar beam propagating through the melting aggregate environment. They do not deal with the regulation of enamel levels. To ensure high-precision measurement, they require the use of special optics, which would limit the effect of the melt build-up and the effect of laser beam fluctuations on the measurement results, and auxiliary controllers or microcomputers require slope control.

Uvedené nedostatky odstraňuje zapojenie podl'a vynálezu, ktoré vylučuje vplyv vibrácií taviaceho' agregátu a vplyv turbulentného prostredia na presndsť merania, ktorá tu dosahuje + 0,1 mm v rozsahu 0 až 10 mm a umocňuje priame riadenie zakladača sklářského kmeňa a vibrátora pri zakladači. . ''-W3SThe above mentioned drawbacks are eliminated by the connection according to the invention, which eliminates the effect of the melting aggregate vibration and the influence of the turbulent environment on the metering delay, which here reaches + 0.1 mm in the range of 0 to 10 mm and enhances direct control of the glass batch and vibrator stacker. . '' -W3S

Podstata merania spočívá vo využití javu fluktuácií laserového lúča šíriaceho sa turbulentným prostředím taviaceho agregátu vysielaného' podía obr. 2 opísaného v tomto texte. Laserový lúč je vystavený systematickým účinkom prítomnej tepelnej turbulencie nad povrchom skloviny. Turbulencia sposobuje fluktuácie polohy laserovej stopy v rovině kolmej na směr šírenia. Tieto fluktuácie prebiehajú |vo vertikálnom a horizontálnom smere danej rovině, pričom sa pre meranie výšky hladiny skloviny používajú fluktuácie vo vertikálnom smere, ktoré sú opísané Gaussovským rozdělením. Hustota rozdelenia fjyjtých fluktuácií je znázorněná plnou křivkou na obr. 3 a je charakterizovaná střednou hodnotou y0. Pri napr. zvýšení hladiny skloviny sa posúva Celá křivka f(y) z polohy y0 do polohy y; bez toho, že by sa změnil jej tvar, pričom rozdiel y! — y0 je úměrný příslušnému zvýšeniu hladiny. Takže každá změna výšky hladiny skloviny sposobuje príslušnú změnu v hustotě rozdelenia fluktuácií polohy laserovej stopy na dvoch nad sebou umiesthených segmentech 13 a 14 fotodetektora. Příkladné prevedenie zapojenia na meranie a reguláciu výšky hladiny skloviny je na obr. 1, ktoré pozostáva z dvojsegmentového fotodetektora 10, kterého výstupy 11, 12 sú připojené k vstupom 21, 22 zosilňovača 20, ktorý svojimi výstupmi 23, 25 jeThe essence of the measurement is to exploit the phenomenon of fluctuations in the laser beam propagating through the turbulent environment of the melting aggregate transmitted as shown in Fig. 2 described herein. The laser beam is exposed to the systemic effect of the present thermal turbulence over the enamel surface. Turbulence causes fluctuation of the laser track position in a plane perpendicular to the propagation direction. These fluctuations take place in the vertical and horizontal directions of the plane, using fluctuations in the vertical direction as described by the Gaussian distribution to measure the level of glass. The density distribution of the fluctuations is shown by the full curve in FIG. 3 and is characterized by a mean value of y0. For example, when the glass level is increased, the whole curve f (y) moves from y0 to y; without changing its shape, taking the difference y! - y0 is proportional to the respective level increase. Thus, any change in the level of the glass causes a corresponding change in the density distribution of the fluctuations of the laser track position on the two superimposed segments 13 and 14 of the photodetector. An exemplary embodiment of the connection for measuring and controlling the level of glass is shown in FIG. 1, which consists of a two-segment photodetector 10, the outputs 11, 12 of which are connected to the inputs 21, 22 of the amplifier 20, which outputs 23, 25 is

Claims (4)

PREDMET Zapojenie na meranie a reguláciu výšky hladiny skloviny laserom pozostávajúci z dwojsegmentového fotodetektora, ktorého výstupy sú připojené k vstupom zosllňovača, vyznačujúceho sa tým, že jeho výstupy (23), (25) sú připojené k vstupom (31), připojený k vstupom 31, 32 vyhodnocovacej jednotky 30, ktorej výstup 33 je připojený k vstupu 41 obvodu riadenia zakladača 40, ktorý svojim výstupom 45 je připojený k vstupu 54 obvodu riadenia vibrátora 50. Pre vysvetlenie podstaty činnosti zapojenia podía obr. 1 sú přiložené pomocné výkresy chr.OBJECT A glass level measurement and regulation device consisting of a laser segment detector whose outputs are connected to the input of the amplifier, characterized in that its outputs (23), (25) are connected to inputs (31) connected to inputs 31, 32 of the evaluation unit 30, the output 33 of which is connected to the input 41 of the stacker control circuit 40, which is connected to the input 54 of the control circuit of the vibrator 50 by its output 45. 2, obr.2, FIG. 3, obr.3, FIG. 4, ktoré nie sú predmetom vynálezu. Na obr. 2 je znázorněný spósob umiestnenia meracej aparatúry na taviacom agregáte, kde z jednej strany 'taviaceho agregátu 100 je umiestnený laser 90,, ktorý vysiela laserový lúč 91 cez otvor v stene taviaceho agregátu pod uhlom a, pričom lúč 91 dopadá na povrch skloviny 110 a po odraze vychádza odrazený lúč 92 z protilahlej strany a dopadá kolmo na fotodetektor 10. Laserový lúč je vystavený systematickým účinkom prítomnej turbulencie nad povrchom skloviny. Turbulencia sposobuje fluktuácie polohy laserovej stopy na fotodetektore 10. Hustota rozdelenia týchto fluktuácií f(y), ktorá má Gaussovský charakter podía obr. 3, je charakterizovaná střednou hodnotou y0. Pri napr. zvýšení hladiny skloviny sa posúva celá křivka f (y) z polohy y0 do polohy yf bez toho, že by sa změnil jej tvar, pričom rozdiel yi — y0 je priamoúmerný příslušnému zvýšeniu hladiny. Pri posuve křivky f (y) na segmenty 13, 14 fotodetektora 10, ktoré sú podía obr. 4 umiestnené nad sebou, sa mění hustota rozdelenia fluktuácií laserového lúča na týchto segmentoch v rytme zvýšenia a zníženia hladiny skloviny. Změny hustoty rozdelenia fluktuácií vyvolajú na fotodetektore 10 z obr. 1 pravoúhlé impulzy, ktoré sa upravujú a zosilňujú v zosllňovači 20 a vyhodnocujú sa v obvode '30, ktorý vyrába na svojom výstupe 33 napaťový signál 0 4-10 V a na výstupe 34 prúdový signál 4-1-20 mA. Tieto signály zodpovedajú výške hladiny skloviny v rozsahu 0-4-10 milimetrov. Chvenie taviaceho agregátu, ktoré spósobuje kmitanie laserovej stopy na fotodetektore, spadá do oblasti fluktuácií pod křivkou f (y) z obr. 3, preto nemá vplyv na přesnost merania. Napaťový signál z výstupu 33 je přivedený cez bod 41 k obvodu 40, ktorý vyrába impulzy s premenlivou striedou pre riadenie činnosti zakladača sklářského kmeňa cez kontakty 42 a 43, lobvod 50, ktorý vyrába impulzy pre riadenie činnosti vibrátora pri zakladači cez kontakty 52 a 53 je připojený k objvodu 40 cez body 54 a 45. VYNALEZU (32) vyhodnocovacej jednotky (30), ktorej výstup (33) je pripiojený k vstupu (41) obvodu riadenia zakladača (40), ktorý svojim výstupom (45) je připojený k vstupu (54) obvodu riadenia vibrátora (50). 3 listy výkresov 2602784 which are not the subject of the invention. Figure 2 illustrates a method of positioning a measuring apparatus on a melter assembly where a laser 90 is disposed from one side of the melter assembly 100, which emits a laser beam 91 through an opening in the melting aggregate wall at an angle α, with beam 91 impinging on the enamel surface 110 and after reflection, the reflected beam 92 emanates from the opposite side and impinges perpendicular to the photodetector 10. The laser beam is exposed to the systemic effect of the present turbulence above the enamel surface. Turbulence causes the fluctuation of the laser track position on the photodetector 10. The density of the distribution of these fluctuations f (y) having the Gaussian character of Figure 3 is characterized by a mean value of y0. For example, when the glass level is increased, the entire curve f (y) is shifted from the position of y0 to the position of yf without changing its shape, whereby the difference yi-y0 is directly proportional to the respective increase in the level. As the f (y) curve is shifted to the segments 13, 14 of the photodetector 10, which are positioned one above the other in Figure 4, the density distribution of the laser beam fluctuations in these segments varies in rhythm of increase and decrease in glass level. The fluctuation density variations on the photodetector 10 of FIG. 1 will produce rectangular pulses that are adjusted and amplified in amplifier 20 and evaluated in circuit 30 which produces a 4-10V voltage signal at its output 33 and a current signal at output 34 4-1-20 mA. These signals correspond to the glass level in the range of 0-4-10 millimeters. The agitation of the melting aggregate, which causes the laser track to oscillate on the photodetector, falls within the range of fluctuations below the curve f (y) of FIG. 3, therefore it does not affect the measurement accuracy. The voltage signal from output 33 is fed through point 41 to circuit 40, which produces pulses of varying alternation to control the operation of the glass batcher via contacts 42 and 43, the circuit 50 that produces pulses to control the operation of the vibrator on the stacker via contacts 52 and 53 is connected to the outlet 40 via points 54 and 45. DISCHARGE (32) of the evaluation unit (30), the output (33) of which is connected to the input (41) of the stacker control circuit (40), which is connected to the input (45) 54) the vibrator control circuit (50). 3 sheets of drawings 260278 i 280276i 280276 OBR.4FIG.4
CS863639A 1986-05-20 1986-05-20 Connection for parison level height measuring and regulation by means of laser CS260276B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS863639A CS260276B1 (en) 1986-05-20 1986-05-20 Connection for parison level height measuring and regulation by means of laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS863639A CS260276B1 (en) 1986-05-20 1986-05-20 Connection for parison level height measuring and regulation by means of laser

Publications (2)

Publication Number Publication Date
CS363986A1 CS363986A1 (en) 1988-05-16
CS260276B1 true CS260276B1 (en) 1988-12-15

Family

ID=5377013

Family Applications (1)

Application Number Title Priority Date Filing Date
CS863639A CS260276B1 (en) 1986-05-20 1986-05-20 Connection for parison level height measuring and regulation by means of laser

Country Status (1)

Country Link
CS (1) CS260276B1 (en)

Also Published As

Publication number Publication date
CS363986A1 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
EP0595666A3 (en) Procedure for precise determination of velocity of a liquid, in particular of aortic flow using an intracorporal probe.
US4674882A (en) Precision optical displacement measuring instrument using servo controlled fiber optic sensor
US4758065A (en) Fiber optic sensor probe
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
CS260276B1 (en) Connection for parison level height measuring and regulation by means of laser
US3229511A (en) Stress sensor and control system for limiting stresses applied to aircraft
US4433235A (en) Focusing position detecting device in optical magnifying and observing apparatus
US4011447A (en) System for detecting the edges of a moving object employing a photocell and an amplifier in the saturation mode
JPS5796203A (en) Contactless displacement detector employing optical fiber
US4160388A (en) Power measuring apparatus for ultrasonic transducers
JPS6182117A (en) DC feedback eddy current distance meter
KR100266910B1 (en) Vertical average flow speed measurement device for river etc.
JPS644132B2 (en)
KR100241021B1 (en) Non-contact energizing roll surface measuring device in electroplating line
JPH03293564A (en) Laser doppler speedometer with copying servo mechanism
JPH09178425A (en) Measuring instrument
Echeverria et al. High‐precision magnetic levitation device with electro‐optical feedback
SE0003974D0 (en) Arrangement by apparatus for measuring mass flow
RU2200944C2 (en) Method of determination of characteristics of liquid surface layer
Zeng et al. Angle-compensation sensor for measuring the shape of a dragonfly wing
JPS6459109A (en) Moving position measuring apparatus for moving object
SU696306A1 (en) Method of determining distance for contact-free measuring of mechanical oscillations
JPH0421109Y2 (en)
SU1427245A1 (en) Device for measuring attenuation of light-conducting cables
JPS56107185A (en) Beam measurement