CS257459B1 - Connection for cobalt recorvery from cyclohexane oxidation process - Google Patents
Connection for cobalt recorvery from cyclohexane oxidation process Download PDFInfo
- Publication number
- CS257459B1 CS257459B1 CS858893A CS889385A CS257459B1 CS 257459 B1 CS257459 B1 CS 257459B1 CS 858893 A CS858893 A CS 858893A CS 889385 A CS889385 A CS 889385A CS 257459 B1 CS257459 B1 CS 257459B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- cobalt
- reaction mixture
- extractor
- ion exchange
- hydrolyzed
- Prior art date
Links
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 21
- 239000010941 cobalt Substances 0.000 title claims abstract description 21
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 230000003647 oxidation Effects 0.000 title claims description 11
- 238000007254 oxidation reaction Methods 0.000 title claims description 11
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 title claims description 9
- 238000000034 method Methods 0.000 title description 5
- 239000011541 reaction mixture Substances 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005342 ion exchange Methods 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims abstract description 5
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 claims description 3
- 238000005903 acid hydrolysis reaction Methods 0.000 claims description 2
- 230000002378 acidificating effect Effects 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims description 2
- 238000004821 distillation Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Zapojeníe na spatné získavanie kobaltu z reakčnej zmesi spočívá v tom, že obsahuje extraktory reakčnej zmesi a hydrolyžovanéj reakčnej zmesi, výstupy ktorých sú spojené so zmiešavačom dalej spojeným s magnetickým upravovačom vody a ionexovým filtrom.Involvement for poor cobalt recovery the reaction mixture consists in that it contains reaction mixture extractors and hydrolyzed reaction mixture, the outputs of which are combined with a mixer next to the magnetic water treatment and ion exchange filter.
Description
Vynález sa týká zapojenia na spatné získavanie kobaltu z procesu oxidácie cyklohexánu na cyklohexanon a cyklohexanol.The invention relates to a circuit for the poor recovery of cobalt from the process of oxidation of cyclohexane to cyclohexanone and cyclohexanol.
Oxidácia cyklohexánu na cyklohexanon a cyklohexanol vzduchom prebieha za přítomnostiThe oxidation of cyclohexane to cyclohexanone and cyclohexanol by air takes place in the presence
24Co ionov ako katalyzátora. Kobalt sa po oxidácii cyklohexánu naspat nezískává a cestou vedlajších produktov reakcie sa dostává do spalovně dalej v popole na odkalisko popolovín. Vedlajším produktom výroby cyklohexanonu je soda, ktorá obsahuje kobalt. Ten negativné ovplyvftuje jej kvalitu, teda aj možnost použitia. Nastávajú tak nenávratné straty kobaltu a životné prostredie sa znečisťuje cennou surovinou.24Co ions as catalyst. After the oxidation of cyclohexane, cobalt is not recovered and, through the by-products of the reaction, it reaches the incineration plant in the ashes for the ash-flue-gas sludge. The by-product of cyclohexanone production is soda, which contains cobalt. This negatively affects its quality and thus the possibility of use. This leads to irreversible losses of cobalt and the environment is polluted with valuable raw material.
Podstata zapojenia na spátné získavanie kobaltu z procesu oxidácie cyklohexánu podlá vynálezu spočívá v tom, že pozostáva z extraktora reakčnej zmesi a extraktora hydrolyzovanej extrakčnej zmesi, ktorých výstupy vodnej fázy sú spojené v zmiešavači, ktorého výstup je spojený so vstupom do magnetického upravovača vody, výstup ktorého je spojený so vstupom do ionexového filtra. Na ionexový filter je tiež připojený přívod tlakového vzduchu.The principle of the invention for the recovery of cobalt from the cyclohexane oxidation process according to the invention is that it consists of a reaction mixture extractor and a hydrolyzed extraction mixture extractor whose aqueous phase outlets are connected in a mixer whose outlet is connected to a magnetic water treatment inlet. is connected to an ion exchange filter inlet. A pressure air supply is also connected to the ion exchange filter.
Zapojenie podlá tohoto vynálezu umožňuje spatné získávat kobalt z procesu oxidácie cyklohexánu vo formě regeneračných roztokov z ionexových filtrov.The present invention makes it possible to recover cobalt from the cyclohexane oxidation process in the form of regeneration solutions from ion exchange filters.
Pri použití zapojenia podlá tohoto vynálezu je možné získat až 95 % kobaltu dávkovaného do reaktora na homogénnu oxidáciu cyklohexánu. Výhodou zapojenia podlá tohoto vynálezu je, že využívá pre svoju funkciu polohové energiu. ' Na pripojenom obrázku je bloková schéma zapojenia na spatné získávanie kobaltu z procesu oxidácie cyklohexánu, kde extraktor JL reakčnej zmesi pracuje pri teplote 60 až 90 °C a extraktor 2 hydrolyzovanej reakčnej zmesi pri teplote 80 až 120 °C. Extrakčným činidlom je v oboch prípadoch voda. Ako extraktor 2 hydrolyzovanej reakčnej zmesi je možné využit separátor vodnej organickej fázy zo separácie destilačných zvyškov po kyslej hydrolýze, v ktorom súčasne prebieha extrakcia kobaltu z organických zvyškov do vodnej fázy. V extrakci 2 pre+ 2 bieha druhý stupen extrakcie Co ionov vodou.Using the circuitry of the present invention, it is possible to obtain up to 95% of the cobalt fed to the homogeneous cyclohexane oxidation reactor. The advantage of the circuitry according to the invention is that it uses positional energy for its function. The attached figure is a schematic circuit diagram for the recovery of cobalt from the cyclohexane oxidation process, where the reaction mixture extractor JL operates at 60-90 ° C and the hydrolyzed reaction mixture extractor 2 at 80-120 ° C. The extraction agent is water in both cases. As the extractor 2 of the hydrolyzed reaction mixture, an aqueous organic phase separator from the separation of distillation residues after acid hydrolysis can be used, at the same time the extraction of cobalt from the organic residues into the aqueous phase takes place. In Extraction 2 for + 2, the second stage of extraction of Co ions takes place with water.
Ako extraktor 2 hydrolyzovanej reakčnej zmesi sa móže využit exj kontinuálna rotačná odstředivka na kvapalné fázy. Extrakčným činidlom je vodná fáza z odstředivky.As an extractor 2 of the hydrolyzed reaction mixture, an exj continuous rotary centrifuge for liquid phases can be used. The extraction agent is the aqueous phase of the centrifuge.
Zmiešanie extrakčných činidiel z extraktov JL a 2 nastáva v zmiešavači 3, ktorým móže byt v najjednoduchšom případe aj rozšířené potrubie. Ionexový filter 5 pozostáva z jednej a najvýhodnéjšie z troch kolon naplněných silno kyslým katexom, kde sa kobalt zachytává vo formě Co ionov. Z něho sa získá známým spósobom ako regenerát 7_ ionexovej náplně.The mixing of the extracting agents from extracts 1 and 2 takes place in the mixer 3, which in the simplest case can also be an expanded pipe. The ion exchange filter 5 consists of one and most preferably three columns packed with a strongly acidic cation exchanger, where the cobalt is captured in the form of Co ions. From this it is obtained in a known manner as ion exchanger regenerate 7.
Zapojenie je možné aplikovat aj s jednotlivými extraktormi oddelene. Pri aplikáeii len extraktora _! sa získá zhruba 50 až 60 % kobaltu dávkovaného do oxidácie. Pri zapojení podlá obr., tj. aj s druhým stupnom extrakcie v extraktore _2 hydro]yzovanej zmesi zvyšuje stupeň extrakcie kobaltu na 90 až 95 % množstva dávkovaného do oxidácie.The wiring can also be applied separately with the individual extractors. When applying only the extractor! about 50 to 60% of the cobalt fed to the oxidation is obtained. In the connection according to FIG. even with a second extraction stage in the hydrolyzed blend extractor 2, the cobalt extraction rate increases to 90-95% of the amount fed to the oxidation.
Příklad 1Example 1
Extrakčné vody získané z extrakcie reakčnej zmesi obsahujúce kobalt v koncentrácii 70 mg/1 (300 m^ extrakčnej zmesi je extrahované 7 H20, tepl°te 78 °C) sa vedú cez magnetický upravovač vody a z něho do ionexovej veže naplnenoj slino kyslým katexom. Katex sa nasýti kobaltem a po regeneraci i regenerát obsahuje Co v koncentrácii 30 g/1. Získá sa celkove 55 % kobaltu vloženého do reakčnej zmesi. Kobalt v extrakčných vodách už nebol dokázaný.Extraction water obtained from the extraction of the reaction mixture containing cobalt at a concentration of 70 mg / l (300 m extr of extraction mixture is extracted with 7H 2 O, temperature 78 ° C) is passed through a magnetic water purifier and from there to an ion exchange tower filled with saliva. cation exchange. The cation exchange resin is saturated with cobalt and, after regeneration, the regenerate also contains Co at a concentration of 30 g / l. A total of 55% of the cobalt introduced into the reaction mixture is obtained. Cobalt in extraction waters has not been proven.
Příklad 2 extrakčných vod z extrakcie reakčnej zmesi s obsahom Co 80 mg/i sa spojilo soExample 2 of the extraction water from the extraction of the reaction mixture containing Co 80 mg / l was combined with
A m extrakčných vod z extrakcie hydrolyzovanej reakčnej zmesi s obsahom kobaltu 60 mg/1. Získalo sa 95 % kobaltu dávkovaného do reakčnej zmesi.A m of extraction water from the extraction of the hydrolyzed reaction mixture with a cobalt content of 60 mg / l. 95% of the cobalt fed to the reaction mixture was obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS858893A CS257459B1 (en) | 1985-12-05 | 1985-12-05 | Connection for cobalt recorvery from cyclohexane oxidation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS858893A CS257459B1 (en) | 1985-12-05 | 1985-12-05 | Connection for cobalt recorvery from cyclohexane oxidation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CS889385A1 CS889385A1 (en) | 1987-10-15 |
CS257459B1 true CS257459B1 (en) | 1988-05-16 |
Family
ID=5440128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS858893A CS257459B1 (en) | 1985-12-05 | 1985-12-05 | Connection for cobalt recorvery from cyclohexane oxidation process |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS257459B1 (en) |
-
1985
- 1985-12-05 CS CS858893A patent/CS257459B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS889385A1 (en) | 1987-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102597253B (en) | Process for economically manufacturing xylose from hydrolysate using electrodialysis and direct recovery method | |
CN115403187A (en) | System for extracting hydrobromic acid from bromine-containing wastewater and treatment method thereof | |
CN106744721A (en) | The recovery separation method and application of sulfuric acid and dissolubility titanium in titanium white waste acid | |
CN103012104A (en) | Method for treating butanol-octanol waste alkali liquor and recycling butyric acid | |
CN103787542B (en) | The wastewater recovery processing technique that a kind of Preparation of Sebacic Acid From Castor Oil produces and device | |
CN109160655A (en) | A kind of metallurgy salty scrap acid recovery processing technique | |
CN103305286B (en) | Coke oven gas purifying system for efficiently recycling coking plant heat source and desulfurated liquid waste treatment method | |
CN103274540A (en) | Alternative circulation high-ammonia-nitrogen wastewater processing and recovering method, and system apparatus thereof | |
CS257459B1 (en) | Connection for cobalt recorvery from cyclohexane oxidation process | |
CN105645514B (en) | A separation and purification method of ammonium sulfate and sodium sulfate mixed solution in the regeneration process of flue gas desulfurizer | |
CN108773924A (en) | The comprehensive recovering process of active ingredient in clavulanic acid extraction raffinate | |
CN101723430B (en) | Method for comprehensive utilization of waste water generated in purifying process of citric acid | |
CN206188415U (en) | Fodder level copper sulphate production system | |
CN110183322B (en) | Method for treating low-concentration acetic acid wastewater containing mineral acid salts | |
JPS55157389A (en) | Treatment of waste water from refuse combustion facility | |
CN106477663A (en) | A kind of method that nano-silicon gel purification processes gallic acid production wastewater | |
CN106748932A (en) | A kind of post-processing approach and device for preparing methionine | |
CN103031442A (en) | Method for comprehensively utilizing arsenious waste liquor produced in copper-smelting process | |
CN105905928B (en) | A kind of handling process for preparing waste liquid during 3,6 dichlorosalicylic acids | |
CN100415654C (en) | Method for purification and resource recycling of H acid production wastewater | |
CN110790286B (en) | Method for disposing industrial byproduct sodium chloride | |
CN104058375A (en) | Safe production technique for manufacturing high-purity phosphine on large scale | |
CN103319019A (en) | Aspartame production mother solution recycling and treating method and system | |
CN115105863A (en) | Liquid-liquid two-phase or liquid-solid three-phase continuous separation equipment and method for separating oil phase in methionine production | |
CN209039261U (en) | A kind of brine waste processing system |