CS252859B1 - Method of tungsten thin layers formation on conductive substrate - Google Patents

Method of tungsten thin layers formation on conductive substrate Download PDF

Info

Publication number
CS252859B1
CS252859B1 CS841754A CS175484A CS252859B1 CS 252859 B1 CS252859 B1 CS 252859B1 CS 841754 A CS841754 A CS 841754A CS 175484 A CS175484 A CS 175484A CS 252859 B1 CS252859 B1 CS 252859B1
Authority
CS
Czechoslovakia
Prior art keywords
tungsten
layers
electrically conductive
conductive substrate
hexacarbonyl
Prior art date
Application number
CS841754A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS175484A1 (en
Inventor
Milan Ferdinandy
Mikulas Czajlik
Jozef Kral
Dusan Liska
Original Assignee
Milan Ferdinandy
Mikulas Czajlik
Jozef Kral
Dusan Liska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milan Ferdinandy, Mikulas Czajlik, Jozef Kral, Dusan Liska filed Critical Milan Ferdinandy
Priority to CS841754A priority Critical patent/CS252859B1/en
Publication of CS175484A1 publication Critical patent/CS175484A1/en
Publication of CS252859B1 publication Critical patent/CS252859B1/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Riešenie určuje sposob přípravy temkýeih vrstiev wolframu, vytvárainých vo vákluu v plazme. Wolfram vytvára vrstvy na povrchu elektricky vodivého substrátu působením plazmy tvoreniej ineritným plynem a parami sUblimujúeeho hexalkarbonylu wolframu, pri tlaku z intervalu 10-3 Pa až 102 Pa a pri teplete substrátu do 550 ‘O.The solution determines the method of preparing themes layers of tungsten formed in the bag in plasma. Tungsten forms layers on the surface electrically conductive substrate by acting plasma generated by inert gas and vapor Tungsten hexalkarbonyl, t pressure from 10-3 Pa to 102 Pa; heat the substrate to 550 ‘O.

Description

Vyinález sa 'týká spósobu 'vytvárania tenkých vrstiev wolfrámu na elektricky vodívám substráte vo vákuu· v plazme rozkladom hexakarbonylu wolfrámu. V súčasnosti existuje celý rad metod a fechnologicikých postupov vytvárania vrstiev woilfirámu. Medzi najvýznamnejšie metódy patří ich nanášanie vo vákuu priamym odpařováním wolfrámu, chemické sposoby a spósob termického rozkladu hexakarbonylu wolfrámu na obriatom substráte.The invention relates to a method for forming tungsten thin layers on electrically conducting substrates in a plasma vacuum by decomposing tungsten hexacarbonyl. At present, there are a number of methods and techniques for forming woilfires. Among the most important methods are their application in vacuum by direct evaporation of tungsten, chemical methods and the method of thermal decomposition of tungsten hexacarbonyl on a giant substrate.

Doposial1 používané metódy založené na priamom odpařovaní wolfrámu vo vákuu stú energeticky náročné, a spojené s problémami, ktoré sposobuje vysoká teplota, odparovania wolfrámu a nízká rýchloisť odparovania. Alko nevýhody chemických postupov možno uviesť poměrně inevyihiovujúcu čistotu wolframových vrstiev z důvodu líahkej oxidácie wolfrámu a zhoiršenú přilnavost vrstiev k substrátu.So far, methods based on direct evaporation of tungsten in vacuum have become energy intensive and associated with problems caused by high temperature, tungsten evaporation, and low evaporation rate. However, the disadvantages of the chemical processes can be mentioned by the relatively inclusive purity of tungsten layers due to the tungsten oxidation and the increased adhesion of the layers to the substrate.

Nevýhody doposial1 používaných postupov vyitvárainiia wolframových vrstiev na základe termického' rozkladu hexakarbonylu wolfrámu sú nevýbovujúca čistota zapříčiněná vysokým tlakom argóinu v reakčnej komore a vysoký obsah uhlíka vo vrstvě v důsledku termického rozkladu hexakarbonylu wolfrámu- priamo na povrchu substrátu.The disadvantages of the so far used tungsten layer extrusion processes based on thermal decomposition of tungsten hexacarbonyl are the lack of purity due to the high pressure of the argon in the reaction chamber and the high carbon content of the layer due to the thermal decomposition of tungsten hexacarbonyl directly on the substrate surface.

Vyššie uvedené nedostatky odstraňuje spósob vytvárania tenkých vrstiev wolfrámu na elektricky vodivom substráte, ktorého podstatou je, že na elektricky vodivý substrát, ktorý je kaitó-dou v iónovo plátovacoim systéme ina zápornom elektrickom potenciáli 0 až 10 kV oproti uzemnenej vákuovej komoře sa pósobí plazmou tvořenou parami sublimujúceho hexakarbonylu wolframu a inertným plynom, zvyčajne argónom, pri tlaku z intervalu 10' 3 Pa až 102 Pa pri teplote elektricky vodivého substrátu do 550 °C. Výhoda spósobu vytvárania tenkých vrstiev wolfrámu na elektricky vodivom substráte spočívá v tom, že takto vytvořené vrstvy dosahujú vysokú čistotu s minimálnym obsahom zbytkového uhlíka, čo je dané podimiemkami vákua a rozkladem hexakarbonylu wolfrámu v podmienkach plazmy. Ďalšia výhoda spósobu podfa vynálezu spočívá v tom, že změnou elektrických parametrov pri stimulácii plazmy možno regulovat vlastnosti vrstiev napr. štrulktúru. Ob-The aforementioned drawbacks are eliminated by the method of forming thin tungsten layers on an electrically conductive substrate, wherein the electrically conductive substrate, which is a kaitone in the ion plating system and a negative electrical potential of 0 to 10 kV, is treated with a vapor plasma. tungsten sublimating hexacarbonyl and an inert gas, usually argon, at a pressure from 10 -3 Pa to 102 Pa at an electrically conductive substrate temperature of up to 550 ° C. The advantage of the method of forming thin layers of tungsten on an electrically conductive substrate is that the layers thus formed achieve high purity with a minimum residual carbon content, which is due to the vacuum and decomposition of tungsten hexacarbonyl under plasma conditions. A further advantage of the method according to the invention is that by changing the electrical parameters in the stimulation of the plasma, the properties of the layers can be controlled, e.g. Ob-

Claims (2)

FREDMET Spósob vytvárania tenkých vrstiev wolframu na elektricky vodivom substráte, ktorý je katodou v iónovo plátovacom systéme' na zápornom elektrickom potenciáli 0 až 10 kV oproti uzemnenej vákuovej komoře, vyanačujúci sa tým, že na elektricky vodivý sub- 4 dohne rýchlosťou sublimácie hexakarbonylu wolfrámu možno regulovat rýchlosť rastu vrstiev wolfrámu. Spósob vytvárania vrstiev wolfrámu na elektricky vodivom substráte je dokumentovaný na následovných príkladoch. P r i k 1 -a d 1 Ocelové podložky boli umiestnené vo vákuovej ikomore odsatej oa počiatočný tlak IQ'3 Pa a následné boli čištěné a ohriaté. Ďalej bol do vákuovej komory napúšfaný argon na tlak 0,1 Pa a bolo započaté so- sublimáciou hexakarbonylu wolfrámu pomocou odporového ohřevu jeho zásobníka. Rýchlosť odparovania hexakarbonylu wolfrámu bola 1,3 g-min"1. Na elektricky vodivý substrát bol připojený záporný elektrický potenciál —2,8 kV oproti uzemnenej vákuovej komoře. Pri týchto podmienkach za čas 20 min, vznikli vrstvy wolfrámu o hrůbkách 3 ,um. Teplota substrátov bola udržiavaná počas celého postupu na hodnotě 300 °C. P -r í k 1 a dFREDMET A method of forming thin layers of tungsten on an electrically conductive substrate which is a cathode in an ionic cladding system at a negative electrical potential of 0 to 10 kV over a grounded vacuum chamber, causing the electrically conductive sub-4 to be suppressed by the sublimation rate of tungsten hexacarbonyl. growth rate of tungsten layers. The method of forming tungsten layers on an electrically conductive substrate is documented in the following examples. EXAMPLE 1 The steel washers were placed in a vacuum chamber sucked off and the initial pressure was 13 Pa and subsequently cleaned and heated. Further, argon was pumped into the vacuum chamber to a pressure of 0.1 Pa and was started by sublimation of tungsten hexacarbonyl by means of resistive heating of its reservoir. The evaporation rate of tungsten hexacarbonyl was 1.3 g-min -1. A negative electrical potential of -2.8 kV was attached to the electrically conductive substrate over a grounded vacuum chamber. Under these conditions for 20 min, tungsten layers of 3 µm were formed. The temperature of the substrates was maintained at 300 DEG C. throughout the process 2 Ocelové a duraloivé podložky boli za obdobných podmienok -ako v příklade 1 vystavené posobeniu plazmy pri' tlaku argonu 5.10'2 Pa, zápornom elektrickom potenciáli —2,5 ikV a- pri rýchlosti sublimácie hexakarbomylu wolfrámu 2 g. min"1. Pri týcihto podmienkach pri teplote piodloži-ek 200 CC po- dobu- 20 min. vznikli vrstvy wolfrámu o hrúbke 5 μΐη. V rámci vyššie uved-ených príkladov použitia sposobu podfa vynálezu bolo ověřené, že vplyvom změny pairametrov možno dosahovat rozinu štrulktúru, textům a rožne mechanické vlastnosti připravovaných vrstiev wolfrámu. Spósob poidfa vynálezu1 možno využiť hlavně v oblastiach, kde nia elektricky vodivých substrátoch je potřebná vrstva wolframu z hladiska ochrany a v oblastiach, kde je požadovaná podkladová vrstva wolfrámu pre raanáš-ainie dalších vr-stiev, připadne uvedeiným spósobom možno nanáša,ť vrstvy wolfrámu na lubovolný substrát, na ktorom sa nachádza elektricky vodivá vrstva iinej látky. VYNALEZU strát sa pósobí plazmou tvořenou parami sublimujúceho hexakarbonylu wolfrámu a inertným plynom, zvyčajne argónom pri tlaku z intervalu- 10'3 Pa- až 102 Pa, a pri teplote elektricky vodivého substrátu do 550 0 Celsia.2 Under the same conditions as in Example 1, steel and duralumin substrates were subjected to plasma treatment at an argon pressure of 5 × 10 Pa, a negative electrical potential of ,52.5 kV and - at a sublimation rate of tungsten hexacarbomyl of 2 g. Min -1. tungsten layers of 5 μΐη were formed at 20 ° C under 20 ° C temperature conditions. In the above-mentioned examples of use of the method of the invention, it was verified that the degree of structure, text and spit mechanical could be achieved by changing the pairameters. The properties of the present tungsten layers can be used mainly in areas where a tungsten layer is required for electrically conductive substrates, and in areas where a tungsten backing is required for other layers, it is possible to apply the same. that the tungsten layers on any substrate on which it is electrically conductive the other substance layer is fed with plasma formed by tungsten sublimating vapor-hexacarbonyl vapor and an inert gas, typically argon, at a pressure of 10 -3 Pa-10 Pa and an electrically conductive substrate temperature of 550 ° C.
CS841754A 1984-03-12 1984-03-12 Method of tungsten thin layers formation on conductive substrate CS252859B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS841754A CS252859B1 (en) 1984-03-12 1984-03-12 Method of tungsten thin layers formation on conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS841754A CS252859B1 (en) 1984-03-12 1984-03-12 Method of tungsten thin layers formation on conductive substrate

Publications (2)

Publication Number Publication Date
CS175484A1 CS175484A1 (en) 1987-03-12
CS252859B1 true CS252859B1 (en) 1987-10-15

Family

ID=5352718

Family Applications (1)

Application Number Title Priority Date Filing Date
CS841754A CS252859B1 (en) 1984-03-12 1984-03-12 Method of tungsten thin layers formation on conductive substrate

Country Status (1)

Country Link
CS (1) CS252859B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303867B6 (en) * 2009-03-26 2013-06-05 Vysoké ucení technické v Brne Device for application of ultra thin layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303867B6 (en) * 2009-03-26 2013-06-05 Vysoké ucení technické v Brne Device for application of ultra thin layers

Also Published As

Publication number Publication date
CS175484A1 (en) 1987-03-12

Similar Documents

Publication Publication Date Title
US5904961A (en) Method of depositing organic layers in organic light emitting devices
US7468121B2 (en) Conductive diamond electrode and process for producing the same
JP2004512430A (en) Plasma electroplating
US4173522A (en) Method and apparatus for producing carbon coatings by sputtering
GB2077770A (en) Gasless iron plating
EP0985057A1 (en) Method of forming diamond-like carbon coating in vacuum
WO1999060597A1 (en) Cold-emission film-type cathode and method for producing the same
EP0310656B1 (en) Surface treatment of polymers
JP4240471B2 (en) Method for forming transparent conductive film
US4696861A (en) Substrate processed for electroless plating for printed wiring pattern and process for manufacturing the processed substrate
CS252859B1 (en) Method of tungsten thin layers formation on conductive substrate
US3968270A (en) Process for preparation of metal coatings
EP1038306B1 (en) Method and device for improving surfaces
JP3016795B2 (en) Sticky deposition method of silver film, silver film and conductive, reflective or decorative film composed thereof
JPH03146489A (en) Coated filament for use in composite material
DD244149A1 (en) METHOD OF DEPOSITING IC LAYERS
GB1574677A (en) Method of coating electrically conductive components
Linden et al. On the mechanism of cathodic growth of tungsten needles by decomposition of hexacarbonyltungsten under high field conditions
CS248976B1 (en) Method of tungsten thin layers formation on solid substrate
JP2567843B2 (en) Hybrid ion plating method and apparatus
JPH062944B2 (en) Diamond-like carbon film deposition system
JPS6347362A (en) Ion plating device
JP3291088B2 (en) Coating method
Dugdale DC glow discharge techniques for surface treatment and coating
JPS62180077A (en) Coating method for inside surface of pipe