CS251462B1 - The method of powdering powders - Google Patents
The method of powdering powders Download PDFInfo
- Publication number
- CS251462B1 CS251462B1 CS839292A CS929283A CS251462B1 CS 251462 B1 CS251462 B1 CS 251462B1 CS 839292 A CS839292 A CS 839292A CS 929283 A CS929283 A CS 929283A CS 251462 B1 CS251462 B1 CS 251462B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- powders
- compacting
- solution
- khz
- compacted
- Prior art date
Links
Landscapes
- Forging (AREA)
Abstract
Riešenie sa týká spósobu skompaktňovania kovových, kovokeramických a keramických práškov. Podstatou riešenia je, že počas zhutňovacej a spekacej fázy sa na skompaktňovaný prášok působí ultrazvukom v rozmedzí frekvencií 15 až 213 kHz. Riešenie je možné využit v oceliarskom a keramickom priemysle.The solution concerns a method of compacting metal, cermet and ceramic powders. The essence of the solution is that during the compaction and sintering phase, the compacted powder is treated with ultrasound in the frequency range of 15 to 213 kHz. The solution can be used in the steel and ceramic industries.
Description
Vynález sa týka skompaktňovania kovových, kovokeramických a keramických práškov.The invention relates to the compacting of metal, metal-ceramic and ceramic powders.
Doteraz sa skompaktňovanie práškov u-skutočňuje lisovaním, valcovaním a kovaním a následným spekaním pri teplotách nad teplotu rekryštalizácie materiálu bez ďalšieho ovplyvňovania spekaných materiálov. Všetky doterajšie postupy sú vhodné pre výrobky menších rozmerov, pretože s rastom výšky výrobku sa nepriaznivo prejavuje pokles tlaku vplyvom trenia prášku o steny nástroja. Vo výrobkoch je pozorovaný vznik a existencia defektov, čo v mnohých prípadoch vedie k zhoršeniu ich mechanických a fyzikálnych vlastností. Doteraz známymi spôsobmi sa dosiahne hustota materiálu v rozmedzí 99,15 až 99,50 % kompaktného materiálu a vnútorné napätia sú v rozmedzí 100 až 200 MPa.So far, the compacting of powders has been effected by compression, rolling and forging and subsequent sintering at temperatures above the material's recrystallization temperature without further affecting the sintered materials. All prior art processes are suitable for products of smaller dimensions, because with the increase in the height of the product, the pressure drop due to the friction of the powder to the tool walls is adversely affected. In products, the formation and existence of defects is observed, which in many cases leads to a deterioration of their mechanical and physical properties. To date, the density of the material in the range of 99.15 to 99.50% of the compacted material is achieved and the internal stresses are in the range of 100 to 200 MPa.
Vyššie uvedené nedostatky sa odstránia spôsobom skompaktňovania práškov podľa vynálezu, ktorého podstata spočíva v tom, že počas zhutňovacej a spekacej fázy sa na skompaktňované prášky pôsobí ultrazvukom v rozmedzí frekvencií 15 až 213 kHz. Pri pôsobení ultrazvuku v impulznom režime je doba trvania impulzu 1 až 200 με a frekvencia opakovania impulzov 1 až 1 000 Hz.The aforementioned drawbacks are eliminated by the method of compacting the powders according to the invention, wherein ultrasound is applied to the compacted powders in the frequency range of 15 to 213 kHz during compacting and sintering phases. With ultrasound in pulse mode, the pulse duration is 1 to 200 με and the pulse repetition frequency is 1 to 1,000 Hz.
Spôsobom skompaktňovania práškov podľa vynálezu sa zlepšuje usporiadanie prášku do hutnejšieho stavu, čím sa zmenšujú, alebo úplne odstraňujú defekty typu pórov, dutín, bublín a iných necelistvostí. Zlepšia sa podmienky pre difúziu a tým aj mecha nické a fyzikálne vlastnosti výrobku. Hustota materiálu výrobkov získaných týmto spôsobom sa zvýši na 99,65 až 99,99 % kompaktného materiálu, vnútorné napätia sa znížia na 30 až 0 MPa a doba skompaktňovania sa skráti o 20 %.The method of compacting the powders of the invention improves the configuration of the powder to a denser state, thereby reducing or completely eliminating defects such as pores, cavities, bubbles and other imperfections. The diffusion conditions and thus the mechanical and physical properties of the product will be improved. The material density of the products obtained in this way is increased to 99.65 to 99.99% of the compacted material, the internal stresses are reduced to 30 to 0 MPa and the compacting time is reduced by 20%.
Príklad 1Example 1
Oceľ o chemickom zložení 0,86 % hmot. uhlíka, 5,67 % hmot. molybdénu, 6,82 % hmot. wolfrámu, 4,19 % hmot. chrómu, 1,62 percent hmot. vanádu, 0,42 % hmot. mangánu, 0,12 % hmot. kremíka a 0,026 % hmot. síry, bola lisovaná tlakom 200 MPa pri teplote 1 250 °C. Po lisovaní bola zistená merná hmotnosť 98,6 °/o.Chemical composition 0.86 wt. % carbon, 5.67 wt. % molybdenum, 6.82 wt. tungsten, 4.19 wt. of chromium, 1.62 percent by weight; % vanadium, 0.42 wt. % of manganese, 0.12 wt. % silicon and 0.026 wt. sulfur was compressed at 200 MPa at a temperature of 1250 ° C. A specific gravity of 98.6% was determined after compression.
Po aplikácii ultrazvukovej energie do systému v procese skompaktňovania s frekvenciou UZ vín 17,5 kHz bola dosiahnutá merná hmotnosť materiálu 99,65 %.After application of ultrasonic energy to the system in the process of compacting with the UZ of 17.5 kHz, the material density was 99.65%.
Príklad 2Example 2
Oceľ o chemickom zložení ako v príklade 1 bola izostaticky lisovaná po dobu 60 minút pri teplote 1 250 °C a tlaku 200 MPa. Výsledná merná hmotnosť dosiahla hodnotu 99,50 %.The chemical composition of Example 1 was isostatically pressed for 60 minutes at 1250 ° C and 200 MPa. The resulting specific gravity was 99.50%.
Po aplikácii ultrazvukovej energie impulzným ultrazvukovým generátorom v procese skompaktňovania o nasledovných hodnotách ultrazvukového poľa: frekvencia 20 kHz, opakovaná frekvencia 150 Hz, šírka impulzu 35 με, sa dosiahla merná hmotnosť 99,99 °/o.After the ultrasonic energy is applied by the pulsed ultrasonic generator in the compacting process with the following ultrasonic field values: frequency 20 kHz, repetition frequency 150 Hz, pulse width 35 με, specific gravity 99.99 ° / o.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS839292A CS251462B1 (en) | 1983-12-12 | 1983-12-12 | The method of powdering powders |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS839292A CS251462B1 (en) | 1983-12-12 | 1983-12-12 | The method of powdering powders |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS929283A1 CS929283A1 (en) | 1986-11-13 |
| CS251462B1 true CS251462B1 (en) | 1987-07-16 |
Family
ID=5443761
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS839292A CS251462B1 (en) | 1983-12-12 | 1983-12-12 | The method of powdering powders |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS251462B1 (en) |
-
1983
- 1983-12-12 CS CS839292A patent/CS251462B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS929283A1 (en) | 1986-11-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR20180087305A (en) | Systems and methods for forming a layer on the surface of a solid substrate and products formed thereby | |
| Clyens et al. | The dynamic compaction of powdered materials | |
| US3824097A (en) | Process for compacting metal powder | |
| GB1512391A (en) | Method of producing tubes bars or other elongated metal objects | |
| RU2085339C1 (en) | Method for obtaining porous semi-finished products from aluminum alloy powders | |
| ES2170505T3 (en) | PROCEDURE FOR THE MANUFACTURE OF A METAL PART OF SINTERED POWDER. | |
| Eksi et al. | Effect of sintering and pressing parameters on the densification of cold isostatically pressed Al and Fe powders | |
| CS251462B1 (en) | The method of powdering powders | |
| KR950704075A (en) | A process for densifying powdered ceramics and cermets at temperatures above 1400 ° C | |
| US4569822A (en) | Powder metal process for preparing computer disk substrates | |
| EP0380973A1 (en) | Reinforced materials | |
| Sutradhar et al. | Cold forging of sintered iron-powder preforms | |
| Manukyan et al. | Novel NiZr-based porous biomaterials: Synthesis and in vitro testing | |
| Linse | Dynamic compaction of metal and ceramic powders | |
| Olsson et al. | Direct forging of high-alloy steel powders to bar stock | |
| Singh et al. | Study of Mechanical Property of Sintered Iron Preform | |
| Andersen et al. | Novel metallic hollow sphere structures: processing and properties | |
| RU2776244C1 (en) | Method for producing a composite material and a product therefrom | |
| RU2822495C1 (en) | Method of producing dense material from titanium powder | |
| RU2838039C1 (en) | Method of producing laminar composite material based on titanium and laminar composite material based on titanium | |
| RU2220850C2 (en) | Composite blank for hot strain | |
| Bruson et al. | The consolidation kinetics of amorphous Ni80P20 powder under warm pressing | |
| SU741539A1 (en) | Method of producing supercharged materials | |
| SU996188A1 (en) | Method of producing semifabricate of powder mass | |
| McKotch et al. | Advances in Powder Metallurgy and Particulate Materials: 1997 |