CS248651B1 - A method for measuring the wavelength and a device for carrying out this method - Google Patents

A method for measuring the wavelength and a device for carrying out this method Download PDF

Info

Publication number
CS248651B1
CS248651B1 CS359883A CS359883A CS248651B1 CS 248651 B1 CS248651 B1 CS 248651B1 CS 359883 A CS359883 A CS 359883A CS 359883 A CS359883 A CS 359883A CS 248651 B1 CS248651 B1 CS 248651B1
Authority
CS
Czechoslovakia
Prior art keywords
frequency
wavelength
sensors
determining
phase
Prior art date
Application number
CS359883A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Gustav Martincek
Milan Pokorny
Original Assignee
Gustav Martincek
Milan Pokorny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gustav Martincek, Milan Pokorny filed Critical Gustav Martincek
Priority to CS359883A priority Critical patent/CS248651B1/en
Priority to BG6561484A priority patent/BG45346A1/xx
Publication of CS248651B1 publication Critical patent/CS248651B1/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Vynález rieši stanovénie vlnovéj dlžky pri šireni harmoniských vln napatia v prostředí s vlnovou disperziou použitím stálej polohy dvobh snimačov. Týká sa oboru dynamickéj diagnostiky, dynamických nedeštruktívnych metod skúšania a kontroly kvality, založených na griamom tneranií fázových rychlostí vln napatia. Rieši problém určenia vlnovéj dlžky a fázovéj rýchlosti širenia sposobom, umožňujúcim automatizáciu merania. Podstata vynálezu je v meraní dlžky vlny pri postupnej zmene frenvencie a stálej polohe dvoch snimačov s rovnakými fázovofrekvenčnými charakteristikami. Vynález može byt využitý pri nedeštruktivnom skůšaní elementov a konštrukcii metódou fázových rychlosti, pri zjišťování charakteristik pružnosti materiálu, hrůbky, tuhosti a priehybu vozovkových konštrukcii, pri skůšani vlastností pčdložia, násypových telies, dosák a stien. Jeho využitie je možné aj v iných oblastiach techniky pri št&diu vlastnosti prostredia s vlnovbu disperziou.The invention solves the problem of determining the wavelength during the propagation of harmonic stress waves in an environment with wave dispersion using a fixed position of two sensors. It relates to the field of dynamic diagnostics, dynamic non-destructive testing methods and quality control, based on the graphical representation of the phase velocities of stress waves. It solves the problem of determining the wavelength and phase velocity of propagation by a method that allows for automation of measurement. The essence of the invention is to measure the wavelength during a gradual change in frequency and a fixed position of two sensors with the same phase-frequency characteristics. The invention can be used in non-destructive testing of elements and structures by the phase velocity method, in determining the characteristics of material elasticity, thickness, stiffness and deflection of road structures, in testing the properties of the subgrade, embankments, slabs and walls. Its use is also possible in other areas of technology when studying the properties of environments with wave dispersion.

Description

248 851248 851

Vynález sa týká sposobu na meranie dížky vlny a zariadeniana vykonávanie tohto spdsobu v prostředí s vlnovou disperziou pristálej polohe dvoch snímačov. V dynamickej diagnostike prvkov a konštrukcií sa používámetoda merania fázových rýchlostí šírenia vín napátia. Slúžik stanoveniu charakteristik pružnosti materiálu, tuhosti prvkova konštrukcií a ku kontrole kvality. Vo fázometrii všeobecná súpoužitelné dve metody. Metoda premennej bázy pri stálej frekven-ci! a metoda premennej frekvencie pri stálej báze. V obidvochprípadoch je princípom meranie dížky vlny pri šíření harmonickýchvín napátia skúmaným prostředím. Kečlže metoda premennej frekvenciepri stálej báze je v doterajších riešeniach viazaná na podmienkukonštantnej fázovéj rýchlosti nezávislej od frekvencie, používása doteraz výlučné metoda premennej bázy pri stálej frekvenci!,którá je použitelná aj na prostredie s vlnovou disperziou. Spočí-vá v meraní fázového rozdieiu medzi kmitáním v mieste budiča a kmi-táním V mieste snímače pri stálej frekvenci!, avšak pri roznychvzdialenostiach snímače od budiča. Nevýhodou takéhoto riešenia jevelká náročnost na obsluhu, zdíhavost merania a obťažná, praktic-ky neuskutoČnitelná automatizácia meraní.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the wave length and the apparatus of performing this method in a wave dispersion environment of a two position sensor. In the dynamic diagnostics of elements and constructions, the method of measuring the phase velocity of the wine propagation is used. Serves to determine the characteristics of material elasticity, element rigidity and quality control. Two methods are applicable in general phasometry. Variable base method at constant frequency! and a variable frequency method at a stable base. In both cases, the principle of measuring the length of a wave in the propagation of harmonics is stressed by the examined environment. Since the variable-frequency method of a fixed base is bound in the prior art to a frequency-independent constant phase velocity, it uses the exclusive variable base method at constant frequency, which is also applicable to a wave-dispersion environment. It consists in measuring the phase difference between the excitation vibration and the oscillation at the sensor at steady frequency, but at different sensor distances from the exciter. The disadvantage of such a solution is the great demands on the operation, the measuring accuracy and the difficult, practically impossible realization of the measurements.

Uvedené nevýhody v podstatnéj miere odstraňuje sposob na me-ranie dížky vlny a zariadenie na vykonávanie tohto sposobu podlávynálezu, ktorého podstata spočívá v tom, že pri postupnej zmenefrekvencie vín napátia od najnižšej frekvencie pri ktorej vlnovádížka je váčšia ako vzdialenosť medzi snímačmi sa meria fázovýrozdiel kmitania v miestach oboch snímačov. Oba snímače s rovna-kými fázovofrekvenčnými charakteristikami sú spojené s objektomvo vzájomnej vzdialenosti menšej ako dížka vlny prislúchajúca naj-nižšej frekvenci!, pričom generátor harmonicky premennej sily jeumiestnený na spoločnej priamke so snímačmi mimo meraný úsek. 2 248 BS1The above disadvantages are substantially eliminated by the method for measuring the length of the wave and the apparatus for carrying out this method of the invention, the principle of which is that the phase difference of the vibration in the wavelength is measured when the wavelength is greater than the distance between the sensors. locations of both sensors. Both sensors with the same phase-frequency characteristics are connected to the object of a distance less than the length of the wave belonging to the lowest frequency, whereby the generator of the harmonic variable force is placed on a common line with the sensors outside the measured section. 2,248 BS1

Uvedený postup odstraňuje zdíhavé a pracné merania vo viace-rýoh polohách snímača pre každú volenú frekvenciu, šetří jednupracovnú silu, potrebnú na přenos snímača do jednotlivých poloh,zlepšuje přesnost meraní a ich reprodukovatelnost a najma tvořívýhodná bázu pre automatizáciu meraní.This process eliminates the tedious and laborious measurements in the multi-position sensor for each selected frequency, saving the single work force required to transmit the sensor to individual positions, improving measurement accuracy and reproducibility, and especially providing a favorable basis for measurement automation.

Na připojenom výkrese a to na obr. 1 je znázorněné uspořia-danie snímačov vzhladom ku generátoru a na obr. 2 je znázorněnázávislost fázového rozdielu Aý od frekvenci® f , ktorá umož-ňuje pre lubovolnú frekvenciu f v intervale ( /y, -fn ) na zákla-de zmeranej hodnoty Aij) * k 27£ stanovit dížku vlny ΛFIG. 1 shows the arrangement of the sensors with respect to the generator, and FIG. 2 shows the dependence of the phase difference ýi from the frequency f f, which allows for any frequency f in the interval (/ y, -fn) to the basis of the measured value of Aij) * to 27 £ to determine the wave length Λ

Zariadenie na realizáciu uvedeného postupu určenia dížky vl-ny pozostáva z dvoch snímačov 1. a 2 s rovnakými fďzovafi*ekvenčnýmicharakteristikami, ktorýoh výstupy sú připojené na vstupy vyhod-nocovacieho zariadenia 2 » napr. fázomera a generátore 4 harmonic-ky premennej sily s volitelnou frekvenciou, ktorý vnáša napatiado skúmaného objektu.The apparatus for carrying out said wave length determination process comprises two sensors 1 and 2 having the same frequency characteristics, the outputs of which are connected to the inputs of the evaluation device 2, e.g., a phase transducer and a variable frequency harmonic generator 4 with selectable frequency , which introduces napatiado object.

Pri šíření harmonických vín napStia v prostředí s vlnovoudisperziou určuje sa dížka vlny Λ pri stálej polohe oboch sní-mačov 1 a 2, ktoré majú rovnaké fázovo-frekvenčné charakteristi-ky a ktoré sú spojené s prostředím vo vzájomnej vzdialenosti L.Zmeria sa fázový rozdiel Atfi kmitania snímačov pri postupnejzmene frekvenci® vín napátia f , šíriacich sa prostředím v roz-sahu frekvencií /J až . Vzájomná vzdialenosť L snímačov 2 a 2 je daná podmienkou ; L - , pričom /17 je dížka vlny prislúchajúca najnižšej frekvenci! .In the propagation of harmonic wines of stress in a wave-dispersion environment, the wave length Λ is determined at the fixed position of both sensors 1 and 2 having the same phase-frequency characteristics and which are connected to the environment at a distance of one another. transducer oscillations at a frequency change of the wines of the strain f, propagating through the environment at a frequency range of J to. The distance L of the sensors 2 and 2 is determined by the condition; L -, wherein / 17 is the length of the wave corresponding to the lowest frequency! .

Změnou frekvenci® / sa mění fázový rozdiel Á tp . Fázo-vý rozdiel A^~ 2JT odpovedá frekvenci!, pri ktorej dížka vlny Aje právě rovná vzdialenosti Z. . Fázový rozdiel A(f>= k 2JI3pričom k je lubovolné reálne číslo, vznikne pri frekvencii , priktorej vlnová dížka Λ je určená vztahom Λ = k - 3 - 248 6S1Changing the frequency ® / changes the phase difference tpp. The phase difference A ^ 2JT corresponds to the frequency I at which the wave length A is just equal to the distance Z. Phase difference A (f> = k 2JI3 across k is an arbitrary real number, arises at a frequency where the wavelength Λ is determined by the relation Λ = k - 3 - 248 6S1

Postupná změna frekvencie v rozsahu až /¾ umožňuje zistithodnotu / lubovolnú frekvenciu /* . Fázová rýchlosť ší~ renia vín napatia £ Ρ*θ danú frekvenciu sa určí zo vztahu e = /λ .Gradual change of frequency in the range up to / ¾ allows to determine the value / any frequency / *. The phase velocity of the spreading of the voltage atia enia * θ of a given frequency is determined from the relation e = / λ.

Využitie vynálezu prichádza do úvahy pri nedeStruktívnomskúšaní prvkov a konštrukcií metodou fázových rychlostí, napří-klad pri zisťovaní charakteristik pružnosti materiálu podložia,násypových telies, pri stanovení charakteristik pružnosti a tu-hosti vozovkových konštrukcií a iných plošných sústav ako sú doš-ky, steny. Jeho využitie je možné aj v iných oblastiach technikypri štúdiu vlastností prostredia s vlnovou disperziou, napříkladpri zistovaní kritickej frekvencie a koincidenčných frekvenciíako charkateristík nepriezvučnosti stěnových alebo doškových prv-kov, pri experimentálnom skúmaní vážkopružných vlastností materiálov.The use of the invention is possible in the case of non-structural testing of the elements and structures by the phase velocity method, for example in determining the elasticity characteristics of the subsoil material, the embankments, in determining the elasticity and rigidity characteristics of road constructions and other surface systems such as thatch, walls. It is also possible to use it in other areas of the study to study the properties of the environment with a wave dispersion, for example in determining the critical frequency and coincidence frequencies as the sound insulation of wall or thatch elements, in the experimental investigation of the coherent properties of materials.

Claims (2)

p R B D Μ B T VYNÁLEZU 248 831 1· Sposob na meranie dížky vlny v prostředí s vlnovou dis-perziuu pri stálej polohe dvoch snímačov, vyznačujúci sa tým, žeprl postupnéj zmene frekvenci© vín nap&tia od najnižSej frekven-cie, pri ktorej vlnová dížka je váčšia ako vzdialenosť snímačov/1 , 2/meria sa fázový rozdiel kmitania v miestaoh obooh snímačov/1 , 2/. 1P RBD-BT INVENTION 248 831 1 · A method for measuring the wavelength in a wave dispersion environment at a fixed position of two sensors, characterized in that it gradually changes the frequency of the wattages from the lowest frequency at which the wavelength is greater than the distance between the sensors (1, 2). 1 2. Zariadenie na vykonávanie spósobu podlá bodu 1, vyznaču-júoe sa tým* že snímače/1 ( 2/b rovnakými fázovofrekvenčnými cha-rakteristikami, spojená s objektom sů vo vzájomnej vzdialenosť i/2.)menšej ako je dížka vlny prislúohajúoa najnižšoj frekvenoii, pri**čom generátor/4/harmonicky proměnněj sily je umiestnenv na spo-ločnej priamke so snímačmi/1 ( 2/ mimo merand vzdialenosť fL). 1 výkres2. Apparatus according to claim 1, characterized in that the transducers / 1 (2 / b by the same phase-frequency characteristics associated with the object of the s at a distance of 1/2) smaller than the wavelength are associated with the lowest frequency. wherein the harmonic variable force generator (4) is located on a common line with the sensors (1 (2) outside the merand distance fL). 1 drawing
CS359883A 1983-05-20 1983-05-20 A method for measuring the wavelength and a device for carrying out this method CS248651B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 A method for measuring the wavelength and a device for carrying out this method
BG6561484A BG45346A1 (en) 1983-05-20 1984-05-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 A method for measuring the wavelength and a device for carrying out this method

Publications (1)

Publication Number Publication Date
CS248651B1 true CS248651B1 (en) 1987-02-12

Family

ID=5376523

Family Applications (1)

Application Number Title Priority Date Filing Date
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 A method for measuring the wavelength and a device for carrying out this method

Country Status (2)

Country Link
BG (1) BG45346A1 (en)
CS (1) CS248651B1 (en)

Also Published As

Publication number Publication date
BG45346A1 (en) 1989-05-15

Similar Documents

Publication Publication Date Title
US6354147B1 (en) Fluid parameter measurement in pipes using acoustic pressures
Duffour et al. A study of the vibro-acoustic modulation technique for the detection of cracks in metals
Blewett et al. Phase and amplitude responses associated with the measurement of shear-wave velocity in sand by bender elements
EP1090274B1 (en) Fluid parameter measurement in pipes using acoustic pressures
US6360609B1 (en) Method and system for interpreting and utilizing multimode dispersive acoustic guided waves
US4305294A (en) Ultrasonic apparatus and method for measuring wall thickness
Diligent et al. Reflection of the s lamb mode from a flat bottom circular hole
D'Emilia et al. Calibration of tri-axial MEMS accelerometers in the low-frequency range–Part 1: comparison among methods
Khalil et al. Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer
Masserey et al. Analysis of the near-field ultrasonic scattering at a surface crack
Caracciolo et al. An experimental technique for complete dynamic characterization of a viscoelastic material
Dilena et al. Identification of crack location in vibrating beams from changes in node positions
CA1257920A (en) Measurement of wave propagation power flow in structures
Mandal et al. Vibration power flow: A critical review
Park et al. Measurement of viscoelastic properties from the vibration of a compliantly supported beam
Mandal et al. Experimental investigation of vibration power flow in thin technical orthotropic plates by the method of vibration intensity
US4492117A (en) Ultrasonic nondestructive test apparatus
Fujii Pendulum for precision force measurement
Wang et al. Optical viscosity sensor using forward light scattering
CS248651B1 (en) A method for measuring the wavelength and a device for carrying out this method
Tallavó et al. New methodology for source characterization in pulse velocity testing
Bérengier et al. A state-of-the-art of in situ measurement of the sound absorption coefficient of road pavements
Arroyo et al. Phase and amplitude responses associated with the measurement of shear-wave velocity in sand by bender elements: Discussion
Xu et al. Measurement, analysis and modeling of the dynamic properties of materials
Chen et al. Study of cement mortar uniformity testing methods