CS248651B1 - Wave length measuring method and device for application of this method - Google Patents

Wave length measuring method and device for application of this method Download PDF

Info

Publication number
CS248651B1
CS248651B1 CS359883A CS359883A CS248651B1 CS 248651 B1 CS248651 B1 CS 248651B1 CS 359883 A CS359883 A CS 359883A CS 359883 A CS359883 A CS 359883A CS 248651 B1 CS248651 B1 CS 248651B1
Authority
CS
Czechoslovakia
Prior art keywords
wavelength
sensors
phase
frequency
testing
Prior art date
Application number
CS359883A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Gustav Martincek
Milan Pokorny
Original Assignee
Gustav Martincek
Milan Pokorny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gustav Martincek, Milan Pokorny filed Critical Gustav Martincek
Priority to CS359883A priority Critical patent/CS248651B1/en
Priority to BG6561484A priority patent/BG45346A1/xx
Publication of CS248651B1 publication Critical patent/CS248651B1/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Vynález rieši stanovénie vlnovéj dlžky pri šireni harmoniských vln napatia v prostředí s vlnovou disperziou použitím stálej polohy dvobh snimačov. Týká sa oboru dynamickéj diagnostiky, dynamických nedeštruktívnych metod skúšania a kontroly kvality, založených na griamom tneranií fázových rychlostí vln napatia. Rieši problém určenia vlnovéj dlžky a fázovéj rýchlosti širenia sposobom, umožňujúcim automatizáciu merania. Podstata vynálezu je v meraní dlžky vlny pri postupnej zmene frenvencie a stálej polohe dvoch snimačov s rovnakými fázovofrekvenčnými charakteristikami. Vynález može byt využitý pri nedeštruktivnom skůšaní elementov a konštrukcii metódou fázových rychlosti, pri zjišťování charakteristik pružnosti materiálu, hrůbky, tuhosti a priehybu vozovkových konštrukcii, pri skůšani vlastností pčdložia, násypových telies, dosák a stien. Jeho využitie je možné aj v iných oblastiach techniky pri št&diu vlastnosti prostredia s vlnovbu disperziou.The invention solves wavelength determination in the propagation of harmonic voltage waves in the environment with a wave dispersion using a permanent dispersion two-position sensors. It concerns the field of dynamic diagnostics, dynamic non-destructive testing methods and quality control based on griamom tneranii of phase velocities of voltage waves. It solves the problem of determining wavelength and phase speed of propagation in a manner allowing measurement automation. nature of the invention is in measuring the wavelength at successive change of frenence and permanent position two sensors with the same phase frequency characteristics. The invention may be used in a non-destructive manner testing of elements and construction by the phase velocity method, in the detection material elasticity characteristics, depth, stiffness and deflection of roadways construction, when testing the properties of soil, embankments, slabs and walls. Its use is also possible in other areas techniques to study environmental properties with waveguide dispersion.

Description

(54)(54)

MARTINČBK GUSTAV ing. DrSc., POKORNÝ MILAN ing., BRATISLAVAMARTINČBK GUSTAV ing. DrSc., POKORNY MILAN ing., BRATISLAVA

Sposob na meranie dlžky vlny a zariadenie na vykonávanie tohto sposobuA method for measuring the wavelength and a device for performing this method

Vynález rieši stanovénie vlnovéj dlžky pri šireni harmoniských vln napatia v prostředí s vlnovou disperziou použitím stále j polohy dvobh snimačov.SUMMARY OF THE INVENTION The present invention solves wavelength determination in the propagation of harmonic voltage waves in a wave dispersion environment by using a fixed position of two-way sensors.

Týká sa oboru dynamickéj diagnostiky, dynamických nedeštruktívnych metod skúšania a kontroly kvality, založených na griamom tneranií fázových rychlostí vln napatia. Rieši problém určenia vlnovéj dlžky a fázové j rýchlosti širenia sposobom, umožňuj úcim automatizáciu merania. Podstata vynálezu je v meraní dlžky vlny pri postupnej zmene frenvencie a stálej polohe dvoch snimačov s rovnakými fázovofrekvenčnými charakteristikami.It concerns the field of dynamic diagnostics, dynamic non-destructive methods of testing and quality control, based on the grating of the phase velocities of the voltage waves. It solves the problem of determining wavelength and phase j propagation in a manner allowing automation of measurement. SUMMARY OF THE INVENTION The present invention is based on the measurement of the wavelength with a gradual change in the frenzency and the fixed position of two sensors with the same phase-frequency characteristics.

Vynález može byt využitý pri nedeštruktivnom skůšaní elementov a konštrukcii metódou fázových rychlosti, pri zjišťování charakteristik pružnosti materiálu, hrůbky, tuhosti a priehybu vozovkových konštrukcii, pri skůšani vlastností pčdložia, násypových telies, dosák a stien. Jeho využitie je možné aj v iných oblastiach techniky pri št&diu vlastnosti prostredia s vlnovbu disperziou.The invention can be used in non-destructive testing of elements and structures by the phase velocity method, in determining the elasticity characteristics of material, depth, stiffness and deflection of road structures, in testing the properties of subsoil, embankment bodies, slabs and walls. Its use is also possible in other fields of technology to study the properties of waveguide dispersion media.

248 651 (248 651 (

248 851248 851

Vynález sa týká sposobu na meranie dížky vlny a zariadenia na vykonávanie tohto spčsobu v prostředí s vlnovou disperziou pri stálej polohe dvoch snímačov.The present invention relates to a method for measuring the wavelength and a device for performing this method in a wave dispersion environment at a fixed position of two sensors.

V dynamickej diagnostike prvkov a konštrukcii sa používá metoda merania fázových rýchlosti šírenia vín napátia. Slúži k stanoveniu charakteristik pružnosti materiálu, tuhosti prvkov a konštrukcii a ku kontrole kvality. Vo fázometrii všeobecne sú použitelné dve metody. Metoda premennej bázy pri stálej frekvenci! a metoda premennej frekvencie pri stálej báze. V obidvooh prípadoch je princípom meranie dížky vlny pri šíření harmonických vín napátia skúmaným prostředím. Keňže metoda premennej frekvencie pri stálej báze je v doterajších riešeniach viazaná na podmienku konštantnej fázovéj rýchlosti nezávislej od frekvencie, používá sa doteraz výlučné metoda premennej bázy pri stálej frekvenci!, ktorá je použitelná aj na prostredie s vlnovou disperziou. Spočívá v meraní fázového rozdieiu medzi kmitáním v mieste budiča a kmitáním V mieste snímače pri stálej frekvenci!, avšak pri roznych vzdialenostiach snímače od budiča. Nevýhodou takéhoto riešenia je velká náročnost na obsluhu, zdíhavost merania a obťažná, prakticky neuskutoČnitelná automatizácia meraní.In the dynamic diagnostics of elements and design, the method of measuring the phase velocities of the propagation of vines is used. It serves to determine the elasticity characteristics of the material, the stiffness of the elements and the construction, and quality control. In general, two methods are applicable in phasometry. Variable base method at constant frequency! and a fixed frequency variable frequency method. In both cases, the principle of measuring the wavelength of the propagation of harmonic wines by the examined environment is the principle. Since the fixed frequency variable frequency method in the prior art is tied to a frequency independent constant phase rate condition, the exclusive fixed frequency variable base method, which is also applicable to the wave dispersion environment, has been used hitherto. It consists in measuring the phase difference between oscillation at the exciter location and oscillation at the transducer location at a constant frequency, but at different distances of the transducer from the exciter. The disadvantage of such a solution is the high demands on operation, measurement reluctance and difficult, practically impossible feasibility of measurement automation.

Uvedené nevýhody v podstatnéj miere odstraňuje sposob na meranie dížky vlny a zariadenie na vykonávanie tohto sposobu podlá vynálezu, ktorého podstata spočívá v tom, že pri postupnej zmene frekvencie vín napátia od na.inižšej frekvencie pri ktorej vlnová dížka je váčšia ako vzdialenosť medzi snímačmi sa meria fázový rozdiel kmitania v miestach oboch snímačov. Oba snímače s rovnakými fázovofrekvenčnými charakteristikami sú spojené s objektom vo vzájomnej vzdialenosti menšej ako dížka vlny prislúchajúca najnižsej frekvenci!, pričom generátor harmonicky premennej sily je umiestnený na spoločnej priamke so snímačmi mimo meraný úsek.The above-mentioned disadvantages are substantially eliminated by the method for measuring the wavelength and the apparatus according to the invention, which is characterized in that, as the frequency of the wavefront changes gradually from the lower frequency at which the wavelength is greater than the distance between the sensors the phase difference of the oscillations at the locations of both sensors. Both sensors with the same phase-frequency characteristics are connected to the object at a distance from each other smaller than the wave length corresponding to the lowest frequency, wherein the harmonic variable force generator is located on a common line with the sensors outside the measured section.

248 BS1248 BS1

Uvedený postup odstraňuje zdíhavé a pracné meranie vo viacerýoh polohách snímača pre každú volenú frekvenciu, šetří jednu pracovnú silu, potrebnú na přenos snímača do jednotlivých polóh, zlepšuje přesnost meraní a ich reprodukovatelnost a najma tvoří výhodná bázu pre automatizáciu meraní.This procedure eliminates tedious and laborious measurements at multiple sensor positions for each selected frequency, saves one workforce required to transmit the sensor to each position, improves measurement accuracy and reproducibility, and in particular provides a convenient base for automating measurements.

Na pripojenom výkrese a to na obr. 1 je znázorněné uspořiadanie snímačov vzhladom ku generátoru a na obr. 2 je znázorněná závislost fázového rozdielu Aý od frekvenci® f , ktorá umožňuje pre lubovolnú frekvenciu f v intervale ( /y, -fn ) na základe zmeranej hodnoty Δγ * k 270 stanovit dížku vlny ΛIn the attached drawing, FIG. 1 shows an arrangement of sensors relative to a generator, and FIG. 2 shows the dependence of the phase difference ýy on the frequency f f, which allows to determine the wavelength Λ for any frequency f in the interval (/ y, -f n ) based on the measured value Δγ * k 270

Zariadenie na realizáciu uvedeného postupu určenia dížky vlny pozostáva z dvoch snímačov 1. a 2 s rovnakými fďzovafi*ekvenčnými charakteristikami, ktorých výstupy sú připojené na vstupy vyhodnocovacieho zariadenia 2 , napr. fázomera a generátore 4 harmonicky premennej sily s volitelnou frekvenciou, ktorý vnáša napatia do skúmaného objektu.The device for carrying out said method of determining the wavelength consists of two sensors 1 and 2 with the same frequency response characteristics, the outputs of which are connected to the inputs of the evaluation device 2, e.g. a phase meter and a harmonic variable force generator 4 with a selectable frequency that brings voltage to the object under investigation.

Pri šíření harmonických vín napStia v prostředí s vlnovou disperziou určuje sa dížka vlny Λ pri stálej polohe oboch snímačov JL a 2, ktoré majú rovnaké fázovo-frekvenčné charakteristiky a ktoré sú spojené s prostředím vo vzájomnej vzdialenosti L. Zmeria sa fázový rozdiel kmitania snímačov pri postupnej zmene frekvenci® vín napátia f , šíriacich sa prostředím v rozsahu frekvencií /J až . Vzájomná vzdialenosť L snímačov a 2 je daná podmienkou ; L - , pričom /17 je dížka vlny prislúchajúca najnižšej frekvenci! .When propagating harmonic wines in a wave dispersion environment, the wavelength určuje is determined at the fixed position of the two sensors JL and 2, which have the same phase-frequency characteristics and which are connected to the environment at a distance L relative to each other. by varying the frequencies® of the voltage-fed wines f propagating through the environment in the frequency range / J to. The mutual distance L of the sensors a 2 is given by the condition ; L -, where / 1 7 is the wavelength of the lowest frequency! .

Změnou frekvenci® / sa mění fázový rozdiel Á tj) . Fázový rozdiel Δ^~ 27Γ odpovedá frekvenci!, pri ktorej dížka vlny A je právě rovná vzdialenosti Z. . Fázový rozdiel Ay>= k 2JI3pričom k je lubovolné reálne číslo, vznikne pri frekvencii , pri ktorej vlnová dížka Λ je určená vztahomBy changing the frequency ® /, the phase difference tj (ie) changes. The phase difference Δ ^ ~ 27Γ corresponds to the frequency! At which the length of wave A is just equal to the distance Z. The phase difference Ay> = k 2JI 3 where k is any real number, arises at the frequency at which the wavelength Λ is determined by

Λ = kΛ = k

- 3 248 6S1- 3,248 6S1

Postupná změna frekvencie v rozsahu až /¾ umožňuje zistiť hodnotu / lubovolnú frekvenciu /* . Fázová rýchlosť ší~ renia vín napatia £ Ρ*θ danú frekvenciu sa určí zo vzťahu e = /λ .Gradual change of frequency in range up to / ¾ allows to find value / arbitrary frequency / *. The phase velocity of the propagation of the waves at the voltage Ρ * θ is determined from the relation e = / λ.

Využitie vynálezu prichádza do úvahy pri nedeStruktívnom skúšaní prvkov a konštrukcií metodou, fázových rýchlostí, například pri zisťovaní charakteristik pružnosti materiálu podložia, násypových telies, pri stanovení charakteristik pružnosti a tuhosti vozovkových konštrukcií a iných plošných sústav ako sú došky, steny. Jeho využitie je možné aj v iných oblastiach techniky pri štúdiu vlastností prostredia s vlnovou disperziou, například pri zisťovaní kritickej frekvencie a koincidenčných frekvencií ako charkateristík nepriezvučnosti stěnových alebo doškových prvkov, pri experimentálnom skúmaní vážkopružných vlastností materiá lov.Use of the invention is contemplated for non-destructive testing of elements and structures by the method of phase speeds, for example, to determine the elasticity characteristics of the subsoil material, the embankments, to determine the elasticity and stiffness characteristics of road structures and other surface assemblies such as thatch, walls. It can also be used in other fields of technology to study the properties of a wave dispersion environment, for example to detect critical frequencies and coincidence frequencies as acoustics of wall or thatched elements, and to experimentally investigate the gravimetric properties of hunting materials.

Claims (2)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION 248 831248 831 1 · Sposob na msranie dížky vlny v prostředí s vlnovou disperziuu pri stálej polohe dvoch snímačov, vyznačujúci sa tým, že pri postupnéj zmene frekvenci© vín nap&tia od najnižžej frekvencie, pri ktorej vlnová dížka je vgčžia ako vzdialenost snímačov /1 , 2/meria sa fázový rozdiel kmitania v miestach oboch snímačov /1 , 2/. 1 1 · A method for milling the wavelength in a wave dispersion environment at a fixed position of two sensors, characterized in that, as the wavelengths are gradually changed from the lowest frequency at which the wavelength is greater than the distance of the sensors (1, 2) phase difference of vibration at the locations of both sensors (1, 2). 1 2. Zariadenie na vykonávanie spósobu podlá bodu 1, vyznačujúoe sa tým, že snímače/1 ( 2/s rovnakými fázovofrekvenčnými charakteristikami, spojené s objektom sůvo vzájomnej vzdialenost i (L) menžej ako je dížka vlny prislúohajúoa najnižžej frekvenoii, pričom generátor/4/harmonioky proměnněj sily js umiestnený na spoločnej priamke so snímačmi/1 , 2/ mimo merand vzdialenosťfL),2. Apparatus according to claim 1, characterized in that the sensors (1) ( 2) having the same phase-frequency characteristics associated with the object are at a distance relative to one another (L) of less than the wavelength at the lowest frequency. variable force harmonics are located on a common line with the sensors (1, 2) outside the merand distancefL),
CS359883A 1983-05-20 1983-05-20 Wave length measuring method and device for application of this method CS248651B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 Wave length measuring method and device for application of this method
BG6561484A BG45346A1 (en) 1983-05-20 1984-05-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 Wave length measuring method and device for application of this method

Publications (1)

Publication Number Publication Date
CS248651B1 true CS248651B1 (en) 1987-02-12

Family

ID=5376523

Family Applications (1)

Application Number Title Priority Date Filing Date
CS359883A CS248651B1 (en) 1983-05-20 1983-05-20 Wave length measuring method and device for application of this method

Country Status (2)

Country Link
BG (1) BG45346A1 (en)
CS (1) CS248651B1 (en)

Also Published As

Publication number Publication date
BG45346A1 (en) 1989-05-15

Similar Documents

Publication Publication Date Title
Seybert Two‐sensor methods for the measurement of sound intensity and acoustic properties in ducts
Hubbard et al. Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS)
Blewett et al. Phase and amplitude responses associated with the measurement of shear-wave velocity in sand by bender elements
Sriram et al. Of technology
CN102288122A (en) Online calibrating device and method for fiber Bragg grating (FBG) strain sensor
Dilena et al. Identification of crack location in vibrating beams from changes in node positions
Chen et al. Operational and defect parameters concerning the acoustic-laser vibrometry method for FRP-reinforced concrete
Qiu et al. Measurement of structural vibration by using optic-electronic sensor
CN105004662A (en) Method for testing contact rigidity of rock discontinuity structural plane, and apparatus thereof
Wang et al. Noise reduction for improvement of ultrasonic monitoring using coda wave interferometry on a real bridge
Fan et al. Inner dimension detection of open and buried crack in asphalt pavement based on Rayleigh wave method
Bore et al. Capacitive sensor for measuring the filled of post-tensioned ducts. experimental setup, modeling and signal processing
CA1257920A (en) Measurement of wave propagation power flow in structures
Li et al. Modal analysis on macro-strain measurements from distributed long-gage fiber optic sensors
Mandal et al. Vibration power flow: A critical review
Tofeldt et al. Lamb wave phase velocity imaging of concrete plates with 2D arrays
Bahrani et al. Pavement instrumentation for condition assessment using efficient sensing solutions
Deep et al. Simulating deflection of a jointed rigid pavement under rolling wheel deflectometer (RAPTOR) loading
CN112147627A (en) Building structure and surface abnormal change detection method based on micro-motion attribute laser detection
CS248651B1 (en) Wave length measuring method and device for application of this method
Yang et al. Measurement of structural damping using the random decrement technique
Castellini et al. Laser vibration measurements and data processing for structural diagnostic on composite material
Creëlle et al. Experimental investigation of free surface gradients in a 90 angled asymmetrical open channel confluence
Kwasniewski et al. Self-excited acoustical system for stress measurement in mass rocks
Ferreira et al. Primary calibration system for vibration transducers from 0.4 Hz to 160 Hz