CS245541B1 - Method of triphenylphosphanoxide preparation - Google Patents

Method of triphenylphosphanoxide preparation Download PDF

Info

Publication number
CS245541B1
CS245541B1 CS99685A CS99685A CS245541B1 CS 245541 B1 CS245541 B1 CS 245541B1 CS 99685 A CS99685 A CS 99685A CS 99685 A CS99685 A CS 99685A CS 245541 B1 CS245541 B1 CS 245541B1
Authority
CS
Czechoslovakia
Prior art keywords
triphenylphosphane
oxidation
oxide
acetonitrile
oxygen
Prior art date
Application number
CS99685A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Iveta Ondrejkovicova
Gregor Ondrejkovic
Original Assignee
Iveta Ondrejkovicova
Gregor Ondrejkovic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iveta Ondrejkovicova, Gregor Ondrejkovic filed Critical Iveta Ondrejkovicova
Priority to CS99685A priority Critical patent/CS245541B1/en
Publication of CS245541B1 publication Critical patent/CS245541B1/en

Links

Landscapes

  • Catalysts (AREA)

Abstract

Riešenie sa týká sposobu přípravy trifenylfosfánoxidu vzorca Ph3PO, kde Ph značí fenyl. Podstata sposobu spočívá v tom, že trifenylfosfán sa oxiduje kyslíkom na trifenylfosfánoxid v acetonitrile pri teplotách 290 až 350 K za katalytického účinku bis(trijodiduj tetra (trifenylfosfánoxidu) železnatého vzorca Fe(Ph3PO)4(l3)2, kde Ph značí fenyl. Získaný trifenylfosfánoxid móže nájsť uplatnenie ako komplexotvorné činidlo, pri extrakcii kovov (například Cr, Zn, Fe, Co, Cu, Zn, U), pri výrobě plastifikátorov, ohňovzdorných přísad a biologicky aktívnych látok.The present invention relates to a process for preparing triphenylphosphane oxide of formula Ph 3 PO where Ph is phenyl. The nature of the process is that triphenylphosphane is oxidized with oxygen to triphenylphosphine oxide in acetonitrile at 290 to 200 ° C 350 K for bis (triiodide) catalytic effect ferrous tetra (triphenylphosphane oxide) of formula Fe (Ph 3 PO) 4 (13) 2, wherein Ph is phenyl. The triphenylphosphine oxide obtained can be found as a complexing agent metal extraction (for example, Cr, Zn, Fe, Co, Cu, Zn, U), in the production of plasticizers, fireproof additives and biologically active substances.

Description

Vynález sa týká spůsobu přípravy trifenylfosfánoxídu oxidáciou trifenylfosfánu kyslíkom.The invention relates to a process for the preparation of triphenylphosphane oxide by oxidation of triphenylphosphane with oxygen.

Trifenylfosfán je zlúčeninou poměrně stálou voči oxidácii a na jeho oxidáciu je nutné použiť silnejšie oxidovadlá. Například triřenylfosfánoxid PhsPO je možné připravit oxidáciou trifenylfosfánu brómom Brz vo vodnom prostředí (Handbuch der práparativen Chemie, Stuttgard 1937). Nevýhodou tejto oxidačně] metody je neselektivita reakcie a silné korozívny účinok brómu na aparaturu. Selektívna oxidácia trifenylfosfánu sa do-, sáhuje predovšetkým použitím niektorých komplexov přechodných prvkov (například Pd, Pt, Ru, Zr, Ni, Mo, Co) ako katalyzátorov. Katalytická oxidácia PhsP kyslíkom prebieho tiež v přítomnosti komplexoch železa. Komplexy [(CaHsjíNjz, [Fe(mnt)3] a [(C2H5)4N), [Fe(mnt)2] (mnt = cis-l,2-dikyanoetylén-l,2-ditiolit j působia ako katalyzátory v acetonitrilovom roztoku (T = = 298 K), pričom 1 mólom katalyzátora [Fe(mnt)s)2- sa zoxiduje 15 mólov PI13P a [Fe(mnt)2]_ 10 mólov Ph3P (J. Amer. Chem. Soc. 95, 4 847, 1973). V přítomnosti porfirínového komplexu TPPFe (II) (TPP = mezi-tetrafenyl-porfirínový anión) oxidácia prebieha v toluénovom roztoku pri T ·= 298 K. V přítomnosti 1 molu TPPFe (II) sa zoxiduje minimálně 27 mólov PhsP (J. Amer. Chem. Soc. 102, 5 945, 1980). Účinnějšími katalyzátormi sú trifenylfosfánoxidové komplexy železa (III) typu FeX3(Ph3)2, kde X je Cl, Br, NCS, ako aj zlúčeniny typu FeXs, kde X je Cl, Br, NCS a I v acetonitrilovom roztoku pri mierne zvýšenej teplote čs. AO č. 205 483). Nevýhodou uvedených katalytických oxidácii je použitie menej účinných katalyzátorov ako· je novo připravená zlúčenina Fe(Ph3PO )4(13)2. Například pri použití Fe(Ph3PO)á(l3)2 ako katalyzátora s koncentráciou Cíe = 3,8.10~3 mol dm-3 pri teplote 338 K je možné zoxidovaf 1 mólom katalyzátora až 270 mólov PI13P, kým například v přítomnosti 1 molu katalyzátora Fe(NCS)3(Ph3PO)2 100 mólov PhsP. Na jeho· vysokú katalytickú aktivitu poukazuje i tá skutočnosť, že oxidácia PhsP katalyzovaná Fe(Ph3PO)4(Í3)2 trvala 50 hodin, kým v přítomnosti Fe(NCS)3(Ph3PO)2 trvala 100 hodin.Triphenylphosphane is a relatively stable oxidation compound and stronger oxidants are required to oxidize it. For example, triphenylphosphine oxide PhsPO can be prepared by oxidizing triphenylphosphane with bromine Brz in an aqueous medium (Handbuch der Praparativen Chemie, Stuttgard 1937). The disadvantages of this oxidation method are the non-selectivity of the reaction and the strong corrosive effect of bromine on the apparatus. The selective oxidation of triphenylphosphane is achieved primarily by using some transition element complexes (e.g. Pd, Pt, Ru, Zr, Ni, Mo, Co) as catalysts. Catalytic oxidation of PhsP with oxygen also occurs in the presence of iron complexes. The complexes of [(CaH5) Nj2, [Fe (mnt) 3] and [(C2H5) 4N), [Fe (mnt) 2] (mnt = cis-1,2-dicyanoethylene-1,2-dithiolite) act as catalysts in acetonitrile solution (T = 298 K), whereby 15 moles of PI13P and [Fe (mnt) 2] - 10 moles of Ph3P are oxidized with 1 mole of [Fe (mnt) s] 2- catalyst (J. Amer. Chem. Soc. 95, 4). 847, 1973). In the presence of TPPFe (II) porphyrin complex (TPP = inter-tetrafenyl-porphyrin anion), oxidation takes place in a toluene solution at T = 298 K. In the presence of 1 mole of TPPFe (II) at least 27 moles of PhsP are oxidized (J. Amer. Chem. Soc., 102, 5,945 (1980). More efficient catalysts are iron (III) triphenylphosphine oxide complexes of FeX3 (Ph3) 2 type, where X is Cl, Br, NCS, as well as FeXs type compounds, wherein X is Cl, Br, NCS and I in acetonitrile solution at a slightly elevated Cs. AO č. 205 483). A disadvantage of the above mentioned catalytic oxidations is the use of less efficient catalysts than the newly prepared compound Fe (Ph3PO) 4 (13) 2. For example, using Fe (Ph 3 P) s (L 3) 2 as catalyst in a concentration of n s = 3,8.10 -3 mol dm-3 at 338 K can be zoxidovaf 1 mol of the catalyst to 270 mol PI13P while e.g. in the presence of 1 mole of catalyst Fe (NCS) 3 (Ph 3 PO) 2100 moles PhsP. Its high catalytic activity is also indicated by the fact that the oxidation of PhsP catalyzed by Fe (Ph 3 PO) 4 (13) 2 lasted 50 hours while in the presence of Fe (NCS) 3 (Ph 3 PO) 2 it lasted 100 hours.

Uvedené nedostatky sú odstránené spůsobom přípravy trifenylfosfánoxidu reakciou trifenylfosfánu s kyslíkom podl'a vynálezu, ktorého podstata spočívá v tom, že oxidácia trifenylfosfánu prebieha za katalytického účinku komplexu Fe(ΡΪ13ΡΟ )4(I3)2, kde Ph značí fenyl, v acetonitrile pri teplotách T = 290 až 350 K. Vyšší účinok spůsobu podfa vynálezu spočívá v použití ovefa účinnejšieho katalyzátora Fe(Ph3PO)4(l3)2, čo sa prejavuje kratšou reakčnou dobou, použitím menších koncentrácií katalyzátora a váčším počtom katalytických cyklov.The above drawbacks are eliminated by the preparation of triphenylphosphane oxide by reacting triphenylphosphane with oxygen according to the invention, which consists in the oxidation of triphenylphosphane under the catalytic action of the Fe (Fe13ΡΟ) 4 (I3) 2 complex, where Ph is phenyl, in acetonitrile at T = 290 to 350 K. The higher effect of the process of the invention is the use of a much more efficient Fe (Ph 3 PO) 4 (13) 2 catalyst, which results in shorter reaction times, lower catalyst concentrations and more catalytic cycles.

Predmet vynálezu je popísaný v nasledujúcich príkladoch riešenia.The invention is described in the following examples.

Příklad 1Example 1

Do temperovanej reakčnej nádobky (T = = 323 K) vypláchnutéj kyslíkom sa vloží 1,9.10-4 mólov Fe(Ph3PO)j(l3)2, trioftrijodidu) tetra(trifenylfosfánoxid) železnatého, 2 . ΙΟ’3 mólov PhsP, trifenylfosfánu a po jej připojení k aparatuře na meranie spotřeby kyslíka pri konštrukčnom atmosférickom tlaku sa nadávkuje 10 cm3 acetonitrilu. Sledováním závislosti spotřeby O2 od času sa zistilo, že oxidácia trifenylfosfánu na trifenylfosfánoxid trvala 80 minút, pričom 95% konverzia sa dosiahla po 55 minútach.Oxygen purged reaction vessel (T = 323 K) was charged with 1.9 x 10 -4 moles of Fe (Ph 3 PO) 3 (13) 2, tri-tri-iodide) ferrous tetra (triphenylphosphenoxide), 2. ΙΟ '3 moles PHSP, triphenylphosphine, and the connection to the apparatus for measuring the consumption of oxygen at the design ambient pressure was charged with 10 cm 3 of acetonitrile. By monitoring the dependence of O2 consumption over time, it was found that the oxidation of triphenylphosphane to triphenylphosphane oxide took 80 minutes, with 95% conversion being achieved after 55 minutes.

P r i k 1 a d 2Example 1 and d 2

Příklad 1 sa zopakoval s tým rozdielom, že reakčná banka obsahovala váčšie množstvo· trifenylfosfánu, teda 1,9.1O-4 mólov Fe(Ph3PO)4( 13)2, 5.10~3 mólov PhsP a 10 cm3 acetonitrilu. Meraním spotřeby· O2 od času sa zistilo, že oxidácia trifenylfosfánu trvala 5,5 hodiny, pričom 95% konverzia sa dosiahla po 200 minútach.Example 1 was repeated except that the reaction flask contained a larger amount of triphenylphosphane, i.e., 1.9-10 -4 moles Fe (Ph 3 PO) 4 (13) 2, 5.10 -3 moles PhsP and 10 cm 3 acetonitrile. Measurement of · O2 consumption from time to time revealed that oxidation of triphenylphosphane took 5.5 hours, with 95% conversion being achieved after 200 minutes.

Příklad 3Example 3

Příklad 1 sa zopakoval s 12,5-krát váčším množstvom trifenylfosfánu, t. j. reakčná banka obsahovala 2,5.10~2 mólov trifenylfosfánu, PhsP, 1,9.10~4 mólov komplexu Fe(Ph3PO)4(l3)2 a 10 cm3 acetonitrilu. Meraním spotřeby kyslíka od času sa zistilo, že oxidácia PhsP prebiehala 45 hodin, pričom 80% konverzia sa dosiahla za 30 hodin.Example 1 was repeated with 12.5 times the amount of triphenylphosphane, i.e. the reaction flask contained 2.5 x 10 -2 moles of triphenylphosphane, PhsP, 1.9 x 10 -4 moles of Fe (Ph 3 PO) 4 (13) 2 complex and 10 cm 3 of acetonitrile. By measuring oxygen uptake from time to time, it was found that the oxidation of PhsP was 45 hours, with 80% conversion being achieved in 30 hours.

Příklad 4Example 4

Celý pokus sa uskutečnil v temperovanej reakčnej nádobke (T = 338 K) vypláchnutej kyslíkom, ktorá obsahovala 5,1.10-3 mólov trifenylfosfánu, 1,9.10_5 mólov Fe(Ph3PO)4(l3)2 ako katalyzátora a 5 cm3 acetonitrilu. Meraním spotřeby kyslíka a elektronových spektier sa zistilo, že oxidácia trvala 4,5 dňa, pričom 95% konverzia sa dosiahla za 3,5 dňa.The whole experiment was carried out in a temperature-controlled reaction vessel (T = 338 K) purged with oxygen containing 5,1.10 -3 mmol of triphenylphosphane, 1,9.10 _5 mole of Fe (Ph 3 P) 4 (L 3) 2 as catalyst and 5 cm 3 of acetonitrile. Measurement of oxygen consumption and electron spectra revealed oxidation to take 4.5 days, with 95% conversion being achieved in 3.5 days.

Příklad 5Example 5

Příklad 1 sa zopakoval pri nižšej teplote (T = 298,5 K) s váčším množstvom komplexu (Fe(Ph3PO)4(13)2 (5 .10-4 mol), pričom množstvo trifenylfosfánu a acetonitrilu ostalo nezmenené (2.10-3 mol, 10 cm3). Mera245541 ním spotřeby O2 sa zistilo, že oxidácia trvala 7 hodin, 95% konverzia sa dosiahla zaExample 1 was repeated at a lower temperature (T = 298.5 K) with a larger amount of (Fe (Ph 3 PO) 4 (13) 2 (5.10 -4 mol) complex, leaving the amount of triphenylphosphane and acetonitrile unchanged (2.10 -3 mol). 10 cm 3 ), and by measuring O2 consumption, it was found that oxidation lasted 7 hours, 95% conversion was achieved in

5,5_ hodiny.5,5_ hours.

Čistý trifenylfosfánoxid sa zíslkal z reakčnej zmesi zrážaním vodou za přídavku aktívneho uhlia.Pure triphenylphosphine oxide was recovered from the reaction mixture by precipitation with water with the addition of activated carbon.

Čistota PhsPO sa kontrolovala teplotou topenia (T t. = 429 K), elementárnou analýzou a infračerveným spektrom v miole (J. Chem. Sov. 1960, 2 199).The purity of PhsPO was controlled by melting point (T m = 429 K), elemental analysis and infrared spectrum in mole (J. Chem. Sov. 1960, 2199).

Výsledky analýz pre CieHisPO (M = 278,29) vypočítané:Analysis results for C 18 H 18 PO (M = 278.29) calculated:

77,68 % C, 5,43 % H, nájdené:% C, 77.68;% H, 5.43;

77,84 % C, 5,30 % H.% C, 77.84;% H, 5.30.

Výfažok bol 85 %.The yield was 85%.

Claims (1)

PREDMETSUBJECT Sposob přípravy trifenylfosfánoxidu reakciou trifenylfosfánu s kyslíkom sa vyznačuje tým, že oxidácia trifenylfosfánu prebieha pri teplotách 290 až 350 K za katalyVYNÁLEZU tického účinku bis (trijodidu)tetra.( trifenylfosfánoxid) železnatého vzorca Fe(Ph3PO)4(Í3)2, kde Ph značí fenyl, v acetonitrile.The process for the preparation of triphenylphosphine oxide by reacting triphenylphosphane with oxygen is characterized in that the oxidation of triphenylphosphane is carried out at temperatures of 290 to 350 K under the catalytic effect of ferric bis (triiodide) tetra (triphenylphosphine oxide) of formula Fe (Ph3PO) 4 (13) 2. , in acetonitrile.
CS99685A 1985-02-13 1985-02-13 Method of triphenylphosphanoxide preparation CS245541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Method of triphenylphosphanoxide preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Method of triphenylphosphanoxide preparation

Publications (1)

Publication Number Publication Date
CS245541B1 true CS245541B1 (en) 1986-10-16

Family

ID=5343198

Family Applications (1)

Application Number Title Priority Date Filing Date
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Method of triphenylphosphanoxide preparation

Country Status (1)

Country Link
CS (1) CS245541B1 (en)

Similar Documents

Publication Publication Date Title
Collin et al. Electrocatalytic properties of (tetraazacyclotetradecane) nickel (2+) and Ni2 (biscyclam) 4+ with respect to carbon dioxide and water reduction
Fukuzumi et al. Efficient reduction of dioxygen with ferrocene derivatives, catalyzed by metalloporphyrins in the presence of perchloric acid
Sawyer et al. How super is superoxide?
US4853159A (en) Process for producing N-phosphonomethylglycine
Harmalker et al. Electrochemical and spectroscopic studies of 3, 5-di-tert-butylcatecholato and 3, 5-di-tert-butyl-o-semiquinonato complexes of copper (II)
Müller et al. Ru‐Catalyzed Oxidation of Acetylenes to α‐Diketones with Iodosylbenzene
JPS6411010B2 (en)
Tsuruya et al. Cobalt (II) chelate catalyzed oxidation of 3, 5-di-tert-butylcatechol
Ballistreri et al. Oxidation of alkynes catalyzed by molybdenum (VI) and tungsten (VI) polyoxometalates
US4497737A (en) Metal cage complexes and production thereof
WO1991010634A1 (en) Nitrogen-containing aromatic heterocyclic ligand-metal complexes and their use for the activation of hydrogen peroxide and dioxygen in the reaction of organic compounds
Giannoccaro Reactivity of mono-and di-methoxycarbonyl complexes of PdII towards amines and copper amine complexes: role of copper in the catalyzed palladium-copper oxidative carbonylation of amines
US5783737A (en) Process for the preparation of 3-carboxy-4-hydroxybenzaldehides and derivatives thereof
Wang et al. Metallotetraphenylporphyrin-catalyzed oxidation of 2, 6-di-tert-butylphenol
Maurya Development of the coordination chemistry of vanadium through bis (acetylacetonato) oxovanadium (IV): synthesis, reactivity and structural aspects
Mennenga et al. Oxidative coupling of alkylbenzenes to diaryls catalyzed by the palladium (II)-heteropolyacid system
Süss‐Fink et al. Catalytic functionalization of methane
GB2055829A (en) Preparation of carboxylic acids from aldehydes
Neves et al. Kinetics and mechanism of the outer-sphere electron-transfer-induced formation of cis-dioxovanadium (V) species from vanadyl (IV) complexes. Crystal structures of [VO (TCDA)]. cntdot. H2O and [VO2 (TCDAH)]. cntdot. 2H2O (TCDA= 1, 4, 7-triazacyclononane-N, N'-diacetate)
CS245541B1 (en) Method of triphenylphosphanoxide preparation
EP0076721B1 (en) Process for the carbonylation of secondary benzyl halides
Vijayasri et al. Ruthenium (III)-catalysed oxidation of secondary alcohols by N-methylmorpholine N-oxide (NMO)
Horwitz et al. Reactivity of dioxygen with manganese Schiff-base complexes: a chemical and electrochemical investigation
Dailey et al. Synthesis, spectroscopic characterization, and electrochemical properties of bis [1, 2-bis (5-chlorosalicylideneamino) ethanato (. mu.-oxo) manganese (IV)]
Bhaduri et al. Transition metal nitrosyl compounds. Part XIV (1). The oxidation of carbon monoxide by nitric oxide using [M (NO) 2 (PPh 3) 2] n+ (M= Fe, Ru or Os; n= 0. M= Co, Rh or Ir; n= 1)