CS245541B1 - Process for preparing triphenylphosphane oxide - Google Patents

Process for preparing triphenylphosphane oxide Download PDF

Info

Publication number
CS245541B1
CS245541B1 CS99685A CS99685A CS245541B1 CS 245541 B1 CS245541 B1 CS 245541B1 CS 99685 A CS99685 A CS 99685A CS 99685 A CS99685 A CS 99685A CS 245541 B1 CS245541 B1 CS 245541B1
Authority
CS
Czechoslovakia
Prior art keywords
triphenylphosphane
oxide
ph3po
oxidation
oxygen
Prior art date
Application number
CS99685A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Iveta Ondrejkovicova
Gregor Ondrejkovic
Original Assignee
Iveta Ondrejkovicova
Gregor Ondrejkovic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iveta Ondrejkovicova, Gregor Ondrejkovic filed Critical Iveta Ondrejkovicova
Priority to CS99685A priority Critical patent/CS245541B1/en
Publication of CS245541B1 publication Critical patent/CS245541B1/en

Links

Landscapes

  • Catalysts (AREA)

Abstract

Riešenie sa týká sposobu přípravy trifenylfosfánoxidu vzorca Ph3PO, kde Ph značí fenyl. Podstata sposobu spočívá v tom, že trifenylfosfán sa oxiduje kyslíkom na trifenylfosfánoxid v acetonitrile pri teplotách 290 až 350 K za katalytického účinku bis(trijodiduj tetra (trifenylfosfánoxidu) železnatého vzorca Fe(Ph3PO)4(l3)2, kde Ph značí fenyl. Získaný trifenylfosfánoxid móže nájsť uplatnenie ako komplexotvorné činidlo, pri extrakcii kovov (například Cr, Zn, Fe, Co, Cu, Zn, U), pri výrobě plastifikátorov, ohňovzdorných přísad a biologicky aktívnych látok.The solution relates to a method for preparing triphenylphosphane oxide of the formula Ph3PO, where Ph denotes phenyl. The essence of the method lies in the fact that triphenylphosphane is oxidized with oxygen to triphenylphosphane oxide in acetonitrile at temperatures of 290 to 350 K under the catalytic effect of bis(triiodide tetra (triphenylphosphane oxide) of the iron (II) formula Fe(Ph3PO)4(l3)2, where Ph denotes phenyl. The obtained triphenylphosphane oxide can find application as a complexing agent, in the extraction of metals (for example Cr, Zn, Fe, Co, Cu, Zn, U), in the production of plasticizers, fire-resistant additives and biologically active substances.

Description

245541245541

Vynález sa týká spósobu přípravy trifenyl-fosfánoxídu oxidáciou trlfenylfosfánu kyslí-kom.The invention relates to a process for the preparation of triphenylphosphine oxide by oxidation of triphenylphosphane with oxygen.

Trifenylfosfán je zlúčeninou poměrně stá-lou voči oxidácii a na jeho oxidáciu je nutnépoužit silnejšie oxidovadlá. Například triře-nylfosfánoxid PhsPO je možné připravit oxi-dáciou trifenylfosfánu brómom Brz vo vod-nom prostředí (Handbuch der prSparativenChemie, Stuttgard 1937). Nevýhodou tejtooxidačně] metody je neselektivita reakcie asilné korozívny účinok brómu na aparaturu.Selektívna oxidácia trifenylfosfánu sa do-,sáhuje predovšetkým použitím niektorýchkomplexov přechodných prvkov (napříkladPd, Pt, Ru, Zr, Ni, Mo, Co) ako katalyzáto-rov. Katalytická oxidácia PhsP kyslíkom pre-bieho tiež v přítomnosti komplexoch žele-za. Komplexy [(CzHsjíNjz, [Fe(mnt)3] a[(C2H5)4N], [Fe(mnt)2] (mnt = cis-l,2-di-kyanoetylén-l,2-ditiolit j pQsobia ako ka-talyzátory v acetonitrilovom roztoku (T == 298 K), pričom 1 mólom katalyzátora[Fe(mnt)3j2_ sa zoxiduje 15 mólov PI13P a[Fe(mnt)2]_ 10 mólov Ph3P (J. Amer. Chem.Soc. 95, 4 847, 1973). V přítomnosti porfirí-nového komplexu TPPFe (II) (TPP = mezi--tetrafenyl-porfirínový anión) oxidácia pre-bieha v toluénovom roztoku pri T = 298 K.V přítomnosti 1 molu TPPFe (II) sa zoxidujeminimálně 27 mólov PhsP (J. Amer. Chem.Soc. 102, 5 945, 1980). Účinnějšími kataly-zátormi sú trifenylfosfánoxidové komplexyželeza (III) typu FeXs(Ph3)2, kde X je Cl,Br, NCS, ako aj zlúčeniny typu FeXs, kde Xje Cl, Br, NCS a I v acetonitrilovom roztokupri mierne zvýšenej teplote čs. AO č.205 483). Nevýhodou uvedených katalytic-kých oxidácii je použitie menej účinnýchkatalyzátorov ako je novo připravená zlú-čenina Fe(Ph3PO )4(13)2. Například pri po-užití Fe(Ph3PO)á(l3)2 ako katalyzátora skoncentráciou Cíe = 3,8.10~3 mol dm-3 priteplote 338 K je možné zoxidovať 1 mólomkatalyzátora až 270 mólov PI13P, kým napří-klad v přítomnosti 1 molu katalyzátoraFe(NCS)3(Ph3PO)2 100 mólov PI13P. Na jeho·vysokú katalytická aktivitu poukazuje i táskutočnosť, že oxidácia PhsP katalyzovanáFe(Ph3PO)4(Í3)2 trvala 50 hodin, kým v pří-tomnosti Fe(NCS)3(Ph3PO)2 trvala 100 ho-din.Triphenylphosphane is a relatively stable oxidation compound and stronger oxidants are required to oxidize it. For example, PhsPO trinephosphine oxide can be prepared by oxidation of triphenylphosphane with bromine Br 2 in an aqueous medium (Handbuch der prparparenChemie, Stuttgard 1937). The disadvantage of this oxidation method is the non-selectivity of the reaction and the strong corrosive effect of bromine on the apparatus. The selective oxidation of triphenylphosphane is mainly achieved by the use of some complex transition elements (e.g., Pd, Pt, Ru, Zr, Ni, Mo, Co) as catalysts. Catalytic oxidation of PhsP with oxygen also occurs in the presence of iron complexes. The complexes [(C 2 H 5 N 2 Z 2, [Fe (mnt) 3] and [(C 2 H 5) 4 N], [Fe (mnt) 2] (mnt = cis-1,2-cyanoethylene-1,2-dithiolite act as catalysts in an acetonitrile solution (T = 298 K), with 15 moles of PI13P and [Fe (mnt) 2] 10 moles of Ph3P being oxidized with 1 mole of catalyst [Fe (mnt) 3-2] (J. Amer. Chem. Soc. 95, No. 4,847, 1973. In the presence of the porphyrin complex TPPFe (II) (TPP = inter-tetrafenyl porphirine anion) the oxidation proceeds in toluene solution at T = 298 KV in the presence of 1 mole of TPPFe (II) at least 27 moles PhsP (J. Amer. Chem. Soc. 102, 5, 945, 1980) More effective catalysts are the triphenylphosphine oxide iron (III) complexes of FeXs (Ph3) 2, wherein X is Cl, Br, NCS, as well as FeXs, wherein X is Cl, Br, NCS and I in an acetonitrile solution at a slightly elevated temperature of No. 205. 483) The disadvantage of said catalytic oxidations is the use of less potent catalysts such as the newly prepared Fe (Ph3PO) 4 (13) 2 compound. For example, when used Fe (Ph 3 PO 3) 3 (13) 2 as a catalyst by concentration of C 1 = 3.8.10 - 3 mol dm-3 priteplote 338 K it is possible to oxidize 1 molcalycalyst to 270 mol PI13P, for example in the presence of 1 mole of catalyst Fe (NCS) 3 ( Ph3PO) 2,100 moles of PI13P. Its high catalytic activity is also indicated by the fact that oxidation of PhsP catalyzed by Fe (Ph3PO) 4 (13) 2 lasted for 50 hours, while in the presence of Fe (NCS) 3 (Ph3PO) 2 it lasted 100 hours.

Uvedené nedostatky sú odstránené spó-sobom přípravy trifenylfosfánoxidu reak-ciou trifenylfosfánu s kyslíkom podl'a vy-nálezu, ktorého podstata spočívá v tom, žeoxidácia trifenylfosfánu prebieha za kataly-tického účinku komplexu Fe(Ph3PO )4( 13)2,kde Ph značí fenyl, v acetonitrile pri teplo-tách T = 290 až 350 K. Vyšší účinok sposo-bu podlá vynálezu spočívá v použití ovelaúčinnejšieho katalyzátora Fe(Ph3PO)4(l3)2,čo sa prejavuje kratšou reakčnou dobou, použitím menších koncentrácií katalyzátoraa váčším počtom katalytických cyklov.These shortcomings are eliminated by the process of preparing triphenylphosphane oxide by reacting triphenylphosphane with oxygen according to the invention, wherein the oxidation of triphenylphosphane occurs under the catalytic action of the Fe (Ph3PO) 4 (13) 2 complex, where Ph stands for phenyl, in acetonitrile at T = 290-350 K. The higher effect of the present invention is to use a more efficient Fe (Ph 3 PO) 4 (13) 2 catalyst, resulting in a shorter reaction time, using smaller catalyst concentrations and more catalytic cycles.

Predmet vynálezu je popísaný v nasledu-júcich príkladoch riešenia. Příklad 1The invention is described in the following examples. Example 1

Do temperovanej reakčnej nádobky (T == 323 K) vypláchnutéj kyslíkom sa vloží1,9.10-4 mólov Fe(Ph3PO)j(l3)2, trioftrijo-didu) tetra(trifenylfosfánoxid) železnatého,2 . ΙΟ’3 mólov PhsP, trifenylfosfánu a po jejpřipojení k aparatuře na meranie spotřebykyslíka pri konštrukčnom atmosférickomtlaku sa nadávkuje 10 cm3 acetonitrilu. Sle-dováním závislosti spotřeby O2 od času sazistilo, že oxidácia trifenylfosfánu na trife-nylfosfánoxid trvala 80 minut, pričom 95%konverzia sa dosiahla po 55 minútach. P r í k 1 a d 2 Příklad 1 sa zopakoval s tým rozdielom, žereakčná banka obsahovala váčšie množstvo'trifenylfosfánu, teda 1,9.1O-4 mólovFe(Ph3PO)4( 13)2, 5.10~3 mólov PhsP a 10 cm3acetonitrilu. Meraním spotřeby O2 od časusa zistilo, že oxidácia trifenylfosfánu trva-la 5,5 hodiny, pričom 95% konverzia sa do-siahla po 200 minútach. Příklad 3 Příklad 1 sa zopakoval s 12,5-krát váčšímmnožstvom trifenylfosfánu, t. j. reakčnábanka obsahovala 2,5.10~2 mólov trifenyl-fosfánu, PhsP, 1,9.10~4 mólov komplexuFe(Ph3PO)4(l3)2 a 10 cm3 acetonitrilu. Me-raním spotřeby kyslíka od času sa zistilo,že oxidácia PhsP prebiehala 45 hodin, pri-čom 80% konverzia sa dosiahla za 30 ho-din. Příklad 4Into a tempered reaction vessel (T = 323 K) purged with oxygen was charged with 1.9 x 10 -4 moles of Fe (Ph 3 PO 3) 3 (13) 2, tri-tri-iodide, tetra (triphenylphosphonate) ferrous, 2. 10 cm @ 3 of acetonitrile are metered in after addition of lov'3 moles of PhsP, triphenylphosphane and, after being connected to an oxygen meter for atmospheric design pressure. By monitoring the dependence of O2 consumption over time, it ensured that the oxidation of triphenylphosphane to triphenylphosphane oxide lasted for 80 minutes, with 95% conversion after 55 minutes. EXAMPLE 2 Example 1 was repeated except that the reaction flask contained a larger amount of triphenylphosphane, i.e. 1.9.10-4 moles of Phe (Ph3PO) 4 (13) 2, 5.10-3 moles of PhsP and 10 cm3 of acetonitrile. By measuring O2 consumption over time, it was found that the triphenylphosphane oxidation lasted for 5.5 hours, with 95% conversion reaching after 200 minutes. EXAMPLE 3 Example 1 was repeated with 12.5 times the higher amount of triphenylphosphane, i.e. the reaction vessel contained 2.5 * 10 < -2 > moles of triphenylphosphane, PhsP, 1.9 * 10 < -4 > moles of complex Fe (Ph3PO) 4 (13) 2 and 10 cm3 of acetonitrile. By measuring the oxygen consumption from time to time, it was found that the PhsP oxidation was carried out for 45 hours, with 80% conversion being achieved in 30 hours. Example 4

Celý pokus sa uskutočnil v temperovanejreakčnej nádobke (T = 338 K) vypláchnutejkyslíkom, ktorá obsahovala 5,1.10-3 mólovtrifenylfosfánu, 1,9.10_5 mólovFe(Ph3PO)4(l3)2 ako katalyzátora a 5 cm3acetonitrilu. Meraním spotřeby kyslíka aelektronových spektier sa zistilo, že oxidá-cia trvala 4,5 dňa, pričom 95% konverziasa dosiahla za 3,5 dňa. Příklad 5 Příklad 1 sa zopakoval pri nižšej teplote(T = 298,5 K) s váčším množstvom komple-xu (Fe(PI13PO)4(I3)21 (5 .10-4 mol), pričommnožstvo trifenylfosfánu a acetonitrilu osta-lo nezmenené (2.10-3 mol, 10 cm3). Mera-The whole experiment was carried out in a tempered reaction vessel (T = 338 K) rinsed with oxygen containing 5.1.times.10@-3 molar triphenylphosphane, 1.9.times.10@5 molar Fe (Ph3 PO) 4 (13) 2 as catalyst and 5 cm @ 3 acetonitrile. By measuring the oxygen demand and the electron spectra, it was found that the oxidation lasted for 4.5 days, with 95% conversion in 3.5 days. Example 5 Example 1 was repeated at a lower temperature (T = 298.5 K) with more complex (Fe (PI 13 PO) 4 (I 3) 21 (5.10 -4 mol), the amount of triphenylphosphane and acetonitrile remained unchanged. (2.10-3 mol, 10 cm3).

Claims (1)

245541 ním spotřeby O2 sa zistilo, že oxidácia tr-vala 7 hodin, 95% konverzia sa dosiahla za 5,5_ hodiny. Čistý trifenylfosfánoxid sa získal z reakč-nej zmesi zrážaním vodou za přídavku ak-tívneho uhlia. Čistota PI13PO sa kontrolovala teplotoutopenia (T t. = 429 K), elementárnou ana-lýzou a infračerveným spektrom v miole(J. Chem. Sov. 1960, 2 199). 6 Výsledky analýz pre CieHisPO [M = 278,29)vypočítané: 77,68 % C, 5,43 % H, nájdené: 77,84 % C, 5,30 % H. Výfažok bol 85 %. PREDMET Sposob přípravy trifenylfosfánoxidu re-akciou trifenylfosfánu s kyslíkom sa vyzna-čuje tým, že oxidácia trifenylfosfánu pre-bíeha pri teplotách 290 až 350 K za kataly- VYNÁLEZU tického účinku bis (trijodidu)tetra( trifenyl-fosfánoxid) železnatého vzorcaFe(Ph3PO)4(l3)2, kde Ph značí fenyl, v ace-tonitrile.O2 consumption of 245541 was found to oxidize for 7 hours, 95% conversion was achieved in 5.5 hours. Pure triphenylphosphine oxide was recovered from the reaction mixture by precipitation with activated charcoal. The purity of PI13PO was controlled by temperature sinking (T t = 429 K), elemental analysis and infrared spectra in the light (J. Chem. Sov. 1960, 2 199). 6 Analysis results for C 11 H 10 PO [M = 278.29] calculated: 77.68% C, 5.43% H, found: 77.84% C, 5.30% H. The yield was 85%. OBJECTIVE The preparation of triphenylphosphane oxide by the reaction of triphenylphosphane with oxygen is characterized in that the oxidation of triphenylphosphane is carried out at temperatures of 290-350 K under the catalytic effect of the bis (triiodide) iron (III) Fe (Ph3PO) 4 (13) 2, wherein Ph is phenyl, in acetone.
CS99685A 1985-02-13 1985-02-13 Process for preparing triphenylphosphane oxide CS245541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Process for preparing triphenylphosphane oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Process for preparing triphenylphosphane oxide

Publications (1)

Publication Number Publication Date
CS245541B1 true CS245541B1 (en) 1986-10-16

Family

ID=5343198

Family Applications (1)

Application Number Title Priority Date Filing Date
CS99685A CS245541B1 (en) 1985-02-13 1985-02-13 Process for preparing triphenylphosphane oxide

Country Status (1)

Country Link
CS (1) CS245541B1 (en)

Similar Documents

Publication Publication Date Title
Collin et al. Electrocatalytic properties of (tetraazacyclotetradecane) nickel (2+) and Ni2 (biscyclam) 4+ with respect to carbon dioxide and water reduction
Kitajima et al. Fixation of atmospheric carbon dioxide by a series of hydroxo complexes of divalent metal ions and the implication for the catalytic role of metal ion in carbonic anhydrase. Synthesis, characterization, and molecular structure of [LM (OH)] n (n= 1 or 2) and LM (. mu.-CO3) ML (M (II)= Mn, Fe, Co, Ni, Cu, Zn; L= HB (3, 5-iso-Pr2pz) 3)
Hurst et al. Pathways for water oxidation catalyzed by the (. mu.-oxo) bis [aquabis (bipyridine) ruthenium](4+) ion
Heck et al. Allylcobalt Carbonyls
US4347232A (en) Preparation of hydrogen peroxide from its elements
Godwin et al. Nitrosyl-nitrite interconversion in ruthenium complexes
Tsuruya et al. Cobalt (II) chelate catalyzed oxidation of 3, 5-di-tert-butylcatechol
US4497737A (en) Metal cage complexes and production thereof
US5149880A (en) Nitrogen-containing aromatic heterocyclic ligand-metal complexes and their use for the activation of hydrogen peroxide and dioxygen in the reaction of organic compounds
Elizarova et al. Homogeneous catalysts for dioxygen evolution from water. Oxidation of water by trisbipyridylruthenium (III) in the presence of metallophthalocyanines
Ungváry et al. The effect of Co2 (CO) 8 on the decomposition of CoH (CO) 4
GB2055829A (en) Preparation of carboxylic acids from aldehydes
US5225592A (en) Procedure for obtaining derivatives from acetic acid
CN1050537C (en) Catalyst for synthesizing catechol and hydroquinone by hydroxylation of phenol
Süss‐Fink et al. Catalytic functionalization of methane
EP0076721B1 (en) Process for the carbonylation of secondary benzyl halides
CS245541B1 (en) Process for preparing triphenylphosphane oxide
Pregaglia et al. Catalysis by cobalto-cyano complexes in non-aqueous solvents
EP0466341B1 (en) Tetranuclear manganese complexes
EP1713720B1 (en) Process for the removal of hydrogen sulfide, by means of its oxidation in the presence of hetero polyacids
GB1498784A (en) Process for producing terephthalic acid
JPS63156739A (en) Manufacture of carbonyl compound
Araki et al. Catalytic action of iron and manganese ions in the photochemically-induced oxidation of D-fructose with atmospheric oxygen
Bhaduri et al. Transition metal nitrosyl compounds. Part XIV (1). The oxidation of carbon monoxide by nitric oxide using [M (NO) 2 (PPh3) 2] n+ (M= Fe, Ru or Os; n= 0. M= Co, Rh or Ir; n= 1)
Li et al. Extension of the Preparation of New Osmium Species to the cis-Tetraammine Moiety