CS244308B1 - Specific heat measuring device - Google Patents
Specific heat measuring device Download PDFInfo
- Publication number
- CS244308B1 CS244308B1 CS841770A CS177084A CS244308B1 CS 244308 B1 CS244308 B1 CS 244308B1 CS 841770 A CS841770 A CS 841770A CS 177084 A CS177084 A CS 177084A CS 244308 B1 CS244308 B1 CS 244308B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- temperature
- ceramic
- mold
- specific heat
- differential amplifier
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
Vynález sa týká zariadenjp pa .peranie měrného tepla látky, rfáfbiSVteířutsj zliati-; ny a odliatkov v tekutorti stave1 kóntinuáJ-; ne pri procese chladnutia.The present invention relates to a device for absorbing the specific heat of a substance, which is made of alloy. castings and castings in the fluid state of 1 containe; not during the cooling process.
V súčasnosti sa měrné teplo pri vysokých teplotách meria v kalorimetroch. Nevýhodou tohto sposobu merania Je, že na meranie je třeba z meracej látky pracné vyrobit vzorku a napriek tomu nie je možné merať měrné teplo odliatku po naplnění formy taveninou, teda priamo vo formě.At present, the specific heat at high temperatures is measured in calorimeters. The disadvantage of this method of measurement is that it is laborious to produce a sample from the measuring substance and nevertheless it is not possible to measure the specific heat of the casting after filling the mold with the melt, i.e. directly in the mold.
Tento nedostatok odstraňuje zariadenie podlá vynálezu, ktorého podstatou je, že pozostáva z keramického obalu, v ktorom sa nachádza keramická forma, z krištalizátora s přítokovým a odtokovým potrubím chladiacej kvapaliny, priliehajúceho zdola ku keramickej formě a z vyhrievacích telies, obklopujúcich keramický obal. Keramický obal, kryštalizátor aj vyhrievacie telesá sú umiestnené v evakuovanom recipiente. Zariadenie dalej pozostáva zo snímača teploty vonkajšieho povrchu keramickej formy, zo snímača teploty vnútorného povrchu keramického obalu, ktorého sú připojené cez diferenciálny zosilňovač na regulačný člen teploty vyhrievacích telies, zo snímača teploty vnútorného povrchu formy připojeného na derivačný člen, zo snímača teploty přítokového potrubia chladiacej kvapaliny a snímača teploty odtokového potrubia chladiacej kvapaliny, ktoré sú připojené na diferenciálny zosilňovač, ktorý je spolu s derivačným členom připojený cez násobiaci člen na znázorňovací člen. Výhodou toho zariadenia je, že je v ňom možné merať měrné teplo zliatin, tekutej kovověj hmoty odliatku ihned' po naplnění formy kovom, a to kontinuálně pri procese chladnutia. Nie je třeba přídavná manipulácia, zvlášť připravit’ vzorku materiálu na meranie.This drawback is overcome by the device according to the invention, which consists of a ceramic shell in which the ceramic mold is located, a crystallizer with a coolant inlet and outlet line adjacent to the ceramic mold and heating elements surrounding the ceramic shell. The ceramic casing, the crystallizer and the heating elements are placed in an evacuated recipient. The apparatus further comprises a temperature sensor of the outer surface of the ceramic mold, a temperature sensor of the inner surface of the ceramic shell to which they are connected via a differential amplifier to the heater temperature regulating member, a temperature sensor of the inner surface of the mold connected to the derivative member. and a coolant drain pipe temperature sensor connected to a differential amplifier which, together with the derivative member, is connected via a multiplier member to the display member. The advantage of this device is that it is possible to measure the specific heat of the alloys, the liquid metal of the casting immediately after the mold has been filled with the metal, continuously during the cooling process. There is no need for additional handling, especially to prepare a sample of the material to be measured.
Na pripojenom obrázku je znázorněný priečny rez zariadením podta vynálezu.The attached figure shows a cross-section of a device according to the invention.
Zariadenie podta obrázku pozostáva z keramickej formy 1, do ktorej sa naleje zliatina, kryštalizátora 2 s prívodom 3 a odvodom 4 chladiacej kvapaliny, keramického obalu 5 obklopujúceho formu 1 s vyhrievacími elektrickými telesami fi, 7, 8, umiestnenými v evakuovanom recipiente 13. Na vonkajšom povrchu formy 1 je napojený snímač 9 teploty, na vnútomom povrchu obalu 5 snímač teploty 10, snímače 9, 10 teplot sú připojené na diferenciálny zosilňovač 11 a regulačný člen 12. Na přívode 3 chladiacej kvapaliny je napojený snímač 14 teploty, na odvode 4 chladiacej kvapaliny snímač 15 teploty. Na vnútomom povrchu formy 1 je napojený snímač 16 teploty. Snímače 14, 15 teploty sú napojené na diferenciálny zosilňovač 17, snímač 16 teploty na derivačný člen 18. Derivačný člen 18 je napojený na násobiaci člen 19, ktorý je připojený na oscilograf alebo znázorňovací člen 20. Priestor, do ktorého je vložené celé zariadenie, je evakuovaný kvůli vylúčeniu tepelných strát konvekciou.The device according to the figure consists of a ceramic mold 1 into which an alloy is poured, a crystallizer 2 with an inlet 3 and a coolant outlet 4, a ceramic casing 5 surrounding the mold 1 with heating electric bodies fi, 7, 8 located in an evacuated recipient 13. the temperature sensor 10 is connected to the mold surface 1, the temperature sensor 10 is connected to the inside surface of the casing 5, the temperature sensors 9, 10 are connected to the differential amplifier 11 and the control member 12. A temperature sensor 14 is connected to the coolant inlet. temperature sensor 15. A temperature sensor 16 is connected to the inside surface of the mold 1. The temperature sensors 14, 15 are connected to a differential amplifier 17, the temperature sensor 16 to a derivative member 18. The derivative member 18 is connected to a multiplier member 19, which is connected to an oscillograph or a display member 20. The space in which the entire device is inserted is evacuated to avoid heat loss by convection.
,,,Mern%,teplo, sa meria tak,»že do keramic“kéj 'formy 1 šá nalije tavenina alebo iná - meraná látka. Potom přestup tepla Q z tekutej zliatiny smeruje iba do kryštalizátora 2 a do chladiacej vody. Z tepelnej bilancie za diferenciál času dt vychádza pre měrné teplo c tekutej alebo tuhej zliatiny nasledujúci vztah m dT dt kde v rovnici (1) znamená c — měrné teplo tekutej zliatiny (J°C-1 kg-1} qv — prietok chladiacej kvapaliny (m3 S“1) pv — měrná hmotnost chladiacej kvapaliny (kg m-3} cv — měrné teplo chladiacej kvapaliny (J^-1 kg-1]The heat% is measured by pouring a melt or other substance to be measured into the ceramic 1 of form 1. Then, the heat transfer Q from the liquid alloy is directed only to the crystallizer 2 and to the cooling water. From the heat balance over the time differential dt, the following relation m dT dt follows for specific heat c of liquid or solid alloy where in equation (1) c - specific heat of liquid alloy (J ° C -1 kg- 1 } q v - coolant flow (m 3 S “ 1 ) p v - specific weight of coolant (kg m -3 } c v - specific heat of coolant (J ^ - 1 kg- 1 )
Tv — teplota odtokovej chladiacej kvapa2 liny (°C)T v - Outlet cooling liquid temperature (° C)
Tv — teplota prítokovej chladiacej kvapa1 liny (°Cj m —· hmotnost tekutej zliatiny (kgj T — teplota tekutej zliatiny (°C) t — čas (sjT v - temperature of inlet coolant (° Cj m - · weight of liquid alloy (kgj T - temperature of liquid alloy (° C) t - time (sj)
Na vylúčenie tepelných strát radiáciou na vonkajšom povrchu keramickej formy 1 sú porovnávané teploty teplotnými snímačmi 9 na vonkajšom povrchu keramickej formy 1 a 10 na vnútomom povrchu obalu 5. Snímače teploty 9, 10 sú napojené cez diferenciálny zosilovač 11 na regulačný člen 12 regulujúci vyhrievacie teliesa 6, 7, 8 obalu 5 tak, aby teplota vonkajšieho povrchu keramickej formy 1 a vnútorného povrchu obalu 5 holi rovnaké.To eliminate heat loss by radiation on the outer surface of the ceramic mold 1, temperatures are compared by temperature sensors 9 on the outer surface of the ceramic mold 1 and 10 on the inner surface of the container 5. The temperature sensors 9, 10 are connected via differential amplifier 11 to a regulating member 12 regulating the heaters 6 7, 8 of the container 5 so that the temperature of the outer surface of the ceramic mold 1 and the inner surface of the container 5 is equal.
Snímač 14 meria teplotu Tv prítokovej iThe sensor 14 measures the temperature T at the inflow i
chladiacej kvapaliny, snímač 15 teplotu Tv odtokovej chladiacej kvapaliny. Snímače 14, 15 sú připojené na diferenciálny zosilovač 17, na výstupe ktorého je rozdiel teplót Tv — Tv. Snímačom 16 sa meria teplota T ta1 veniny a derivačný člen 18 vypočítává hodnotu derivácie --^—teploty T podl'a času t.the coolant temperature sensor 15 in the coolant drain. The sensors 14, 15 are connected to a differential amplifier 17 at the output of which there is a temperature difference T v -T v . The sensor T measures the temperature T of the sensor 16 and the derivative member 18 calculates the value of the derivative of the temperature T according to the time t.
dTdT
Násobiaci člen 19 invertuje hodnotu - derivácie teploty T podl'a času t na prevrátenú hodnotu - Ji dT dt a násobí ju veličinou Tv — Tv z diferenciál1 2 něho zosilňovača 17 a konstantou -v Pv mThe multiplier 19 inverts the value - derivative of temperature T by time t to the inverse of - Ji dT dt and multiplies it by the quantity T v - T v from the differential amplifier 17 and by the constant - in Pv m
Výsledná hodnota je rovná měrnému tep6 lu c tekutej zliatiny podl'a rovnice (1), a vedená na znázorňovací člen 20, ktorý zapíše alebo ukáže hodnotu měrného tepla c tekutej, respektive tuhej zliatiny kontinuálně v závislosti od teploty T.The resulting value is equal to the specific heat alloy temperature c of the liquid alloy according to equation (1), and directed to a display member 20 which writes or shows the specific heat value c of the liquid or solid alloy continuously as a function of temperature T.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS841770A CS244308B1 (en) | 1984-03-13 | 1984-03-13 | Specific heat measuring device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS841770A CS244308B1 (en) | 1984-03-13 | 1984-03-13 | Specific heat measuring device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS177084A1 CS177084A1 (en) | 1985-05-15 |
| CS244308B1 true CS244308B1 (en) | 1986-07-17 |
Family
ID=5352942
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS841770A CS244308B1 (en) | 1984-03-13 | 1984-03-13 | Specific heat measuring device |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS244308B1 (en) |
-
1984
- 1984-03-13 CS CS841770A patent/CS244308B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS177084A1 (en) | 1985-05-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Ong | A finite-difference method to evaluate the thermal performance of a solar water heater | |
| CN105424741B (en) | A kind of composite phase-change material latent heat measurement device and measuring method | |
| CN114636729B (en) | Device and method for testing temperature conduction and frost heave strain of concrete lined channels | |
| WO1996023206A1 (en) | A sampling device for thermal analysis | |
| CN102879130A (en) | Continuous-casting casting powder comprehensive heat transfer heat flow testing method | |
| CN102507639B (en) | Device and method for measuring solid-liquid phase engineering thermal conductivity of materials | |
| CN102192922A (en) | Heat conductivity coefficient measuring device for high temperature material | |
| US6471397B2 (en) | Casting using pyrometer apparatus and method | |
| CS244308B1 (en) | Specific heat measuring device | |
| JPS6126809A (en) | Method and instrument for detecting state of sticking body in fluid pipe | |
| US5171518A (en) | Method of determining differences or changes in the rate of heat transfer through tube walls | |
| JP3993099B2 (en) | Stick for measuring the height of molten metal liquid | |
| Zeng et al. | Numerical Simulation of Solidification for a Copper-Base Alloy Casting.(Retroactive Coverage) | |
| CN115808441A (en) | A test device and method for heat transfer performance of metallurgical mold slag | |
| SU1068740A1 (en) | Differential scanning microcalorimeter | |
| KR101431662B1 (en) | Measuring the temperature of a molten glass bath | |
| AU2007301495A1 (en) | An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal | |
| JPS5471679A (en) | Thermal resistance measuring device | |
| Masur et al. | Pressure Casting of Fiber‐Reinforced Metals | |
| Hao et al. | Heat transfer characteristics in convective melting of a solid particle in a fluid | |
| CN205941420U (en) | Membrane material thermal contraction capability test device | |
| CN107020358B (en) | A device for simulating the solidification structure and unsteady heat flow of the slab surface in the mold | |
| Szekely et al. | The role of natural convection in ladles as affecting tundish temperature control in continuous casting | |
| JP2629392B2 (en) | Melt temperature measuring device for induction heating furnace | |
| CN116930251A (en) | A new type of differential scanning calorimeter |