CS242324B1 - A method for removing heavy metal ions from their aqueous solutions - Google Patents
A method for removing heavy metal ions from their aqueous solutions Download PDFInfo
- Publication number
- CS242324B1 CS242324B1 CS85564A CS56485A CS242324B1 CS 242324 B1 CS242324 B1 CS 242324B1 CS 85564 A CS85564 A CS 85564A CS 56485 A CS56485 A CS 56485A CS 242324 B1 CS242324 B1 CS 242324B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- metal ions
- aqueous solutions
- heavy metal
- sorbent
- removing heavy
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/005—Preparation involving liquid-liquid extraction, absorption or ion-exchange
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Vynález sa týká sposobu odstraňovania iónov ťažkých kovov, ako Hg2+, Pb2+, Cdz+, UO22+ z ich vodných roztokov o koncentrá cii 1 až 500 mg . I-1 pomocou sorbentu. Podstata sposobu podl'a vynálezu spočívá v tom, že ako sorbent sa použije rozdrvené ihličie, výhodné smrekové o velkosti častíc 0,2 až 0,5 mm, v množstve 0,5 až 2,5 % hmot., pričom sorpcia prebieha za miešania pri teplote 10 až 30 °C počas 30 až 120 minút pri pH rovnom 3 až 8. Uvedený spósob možno využiť na zachytáváme iónov ťažkých kovov z vodných roztokov odpadajúcich pri niektorých chemických a metalurgických výrobách.The invention relates to a method for removing heavy metal ions, such as Hg2+, Pb2+, Cdz+, UO22+ from their aqueous solutions with a concentration of 1 to 500 mg. I-1 using a sorbent. The essence of the method according to the invention lies in the fact that crushed needles, preferably spruce needles with a particle size of 0.2 to 0.5 mm, are used as a sorbent in an amount of 0.5 to 2.5 wt. %, while the sorption takes place with stirring at a temperature of 10 to 30 °C for 30 to 120 minutes at a pH of 3 to 8. The method can be used to capture heavy metal ions from aqueous solutions waste from some chemical and metallurgical production.
Description
242324242324
Vynález sa týká sposobu odstráňovaniaiónov ťažkých kovov, ako Hg2+, Pb2+, Cd2+,a UO22+ z ich vodných roztokov.The invention relates to a process for removing heavy metal ions such as Hg2 +, Pb2 +, Cd2 +, and UO22 + from their aqueous solutions.
Ihličie rozneho druhu odpadá v značnommnožstve pri ťažbe dřeva a ostává nevyuži-té. Robili sa pokusy využit túto masu akoprídavok do krmivá pre zvieratá, avšak presvoju nízku nutričnú hodnotu a vysoký ob-sah toxických látok výsledky neboli úspěš-né.Different species of needles do not need to be used in logging and remain unused. Attempts have been made to utilize this mass and additive to animal feed, but the results have not been successful with a low nutritional value and high levels of toxic substances.
Je známe, že rastliny prijímajú zo vzdu-chu, ale najma z vodných roztokov lištami,koreňami ale aj inými časťami rózne živi-ny, medzi nimi tiež ťažké kovy vo formě zlú-čenín. Rožne druhy zeleniny bioakumulova-li například kadmium, zinok, nikel, olovoi arzén (Rentschler L·., Gesunde Pfl. 30, 253,1978; Galvánkové E., Poláčková Š., Suk V.,Čsl. Hyg. 24, 131, 1979; Mitchel G. A., Bing-ham F. T., Page A. L., J. Environ. Qual. 1,165, 1978). V ihličnanoch sa hromadilo kad-mium, zinok, meď a olovo v závislosti naobsahu týchto prvkov v exhalátech (Nishi-moto T. et al., Bull. Gov. For. Exp. Stát. 298,1, 1977; Szczbialka Z., Zesp. Probl. Post.Nauk. Roln. 179, 351, 1976). Obsah olova vý-razné vzrástol v listoch malin, rastúcich vblízkosti cesty (Paukert J., Martiš M., OperaConcortica 14, 155, 1977).It is known that plants are taken from the air, but especially from aqueous solutions by strips, roots and other parts of the rosin, among them heavy metals in the form of compounds. Barbecue vegetables bioaccumulate, for example, cadmium, zinc, nickel, lead arsenic (Rentschler L ·., Gesunde Pfl. 30, 253, 1978; Galvánkové E., Poláčková Š., Suk V., Čsl. Hyg. 24, 131, 1979; Mitchel GA, Bingham FT, Page AL, J. Environ Qual. Cadmium, zinc, copper and lead accumulated in the conifers depending on the content of these elements in the exhales (Nishi-moto T. et al., Bull. Gov. For. Exp. State. 298,1, 1977; Szczbialka Z., Zesp, Probl., Post, Nauk, Roln, 179, 351, 1976). The lead content increased significantly in the leaves of raspberries growing near the pathway (Paukert J., Martis M., OperaConcortica 14, 155, 1977).
Vysoká schopnost akumulácie niektorýchkovov (olova, kadmia i uránu) a ich zlúče-nín bola tiež zistená u mikroorganizmov(Macaskie L. E., Dean A. C. R., Environ.Tech. Lett. 3, 49, 1981; Aickin R. M. et al.,Microbios Lett. 5, 129, 1977; Horikoshi T.,Nakajima A., Sakaguchi T., Eur. J. Appl. Mic-ro biol. Biotechnol. 12, 90, 1981). Kovy súviazané na funkčně skupiny bielkovín, amí-nocukrov, přítomných v buňkových membrá-nách i na nukleové kyseliny v natívnej i de-naturovanej formě. V dosledku akumulácie ťažkých kovov vrastlinných organizmoch dochádza k zne-hodnocovaná biotopov nižších i vyšších ži-vočichův a v konečnom dosledku aj člově-ka.The high accumulation capacity of some metals (lead, cadmium and uranium) and their compounds has also been found in microorganisms (Macaskie LE, Dean ACR, Environ.Tech. Lett. 3, 49, 1981; Aickin RM et al., Microbios Lett. 5 , 129, 1977. Horikoshi, T., Nakajima, A., Sakaguchi, T., Eur., J. Appl., Microl., Biotechnol., 12, 90, 1981). Metals linked to functionally functional groups of proteins, amino acids present in both cell membranes and nucleic acids in both native and de-natured form. As a result of the accumulation of heavy metals in inorganic organisms, habitats of lower and higher animal habitats and, ultimately, man are discarded.
Na odstraňovanie iónov ťažkých kovov zvodného prostredia je známých vefa sposo-bov, například sorpcia kovov na aktívnomuhlí, iónomeničové sposoby, selektívne zrá-žanie a flokulácia atď. Nevýhodou týchtospósobov je, že sú ekonomicky náročné.For the removal of heavy metal ions from the aquatic environment, a large number of metals are known, for example, metal adsorption to active carbon, ion exchange methods, selective precipitation and flocculation, etc. The disadvantage of these methods is that they are costly.
Uvedenú nevýhodu v podstatnej miere od-straňuje spósob podlá vynálezu pomocousorbentu, ktorého podstata spočívá v tom,že ako sorbent sa použije rozdrvené ihličie,výhodné smrekové o velkosti častíc 0,2 až0,5 mm v množstve 0,5 až 2,5 % hmot., pri-čom sorpcia prebieha za miešania pri tep-lotě 10 až 30 °C počas 30 až 120 minút pripH rovnom 3 až 8.This disadvantage is substantially obviated by the method according to the invention by means of a sorbent, which consists in using as a sorbent crushed needles, preferably spruce having a particle size of 0.2-0.5 mm in an amount of 0.5-2.5% by weight. wherein the sorption takes place with stirring at a temperature of 10 to 30 ° C for 30 to 120 minutes, for example 3 to 8.
Absorpcia je závislá na hodnotě pH a načase, nezávislá na druhu použitej zlúčeni-ny. Sorpcia prebieha rýchlo, rovnováha saustaluje už v prvých 30 minútach, v nasle-dujúcich 3 hodinách sa prakticky už nemě-ní. Sorbent sa osvědčil v širokom rozmedzí koncentrácií od 1 do 500 mg . Γ1. Jeho schop-nost sorbovať například ortut z odpadnýchvód priemyselných bola ovplyvnená přítom-nostem solí. Přítomnost chloridu sodného vkoncentrácií 0,01 až 0,1 mg. 1_1 znižovalasorpčnú schopnost o 10 až 20 °/o.Absorption is pH dependent and independent of the type of compound used. The sorption proceeds rapidly, the equilibrium is already established in the first 30 minutes, and is virtually unchanged in the next 3 hours. The sorbent has proved to be in a wide range of concentrations from 1 to 500 mg. Γ1. Its ability to sorb, for example, mercury from industrial waste streams was affected by the presence of salts. The presence of sodium chloride in a concentration of 0.01 to 0.1 mg. 11 to reduce the absorption ability by 10 to 20 ° / o.
Absorpčně schopnost smrekového a boro-vicového ihličia bola overená u roznych zlú-čenín ortuti, olova, kadmia a uránu v kon-centrácii 1 až 500 mg. I-1. Bližšie podrob-nosti sposobu podlá vynálezu sú zřejmé zpríkladov. PřikladlThe absorption ability of spruce and boron needle was verified in various mercury, lead, cadmium and uranium compounds at a concentration of 1 to 500 mg. I-1. The details of the method of the invention are evident from the examples. Přikladl
Do 100 ml Erlenmayerovej banky sa na-plní 20 ml roztoku chloridu ortuťnatého,hodnota pH 4,5, ktorý obsahuje 200 mg Hg2+.l“1. K roztoku sa přidá 1 % smrekovéhoihličia upraveného tak, aby velkost častícbola v rozmedzí 0,2 až 0,4 mm. Sorpcia pre-bieha za neustálého miešania na recipro-kej trepačke s počtom kyvov 120 za min.,pri laboratórnej teplote. Po 60 minútachsorpcie sa sorbent oddělí a v rozteku saspektrofotometricky stanoví obsah ortuti.Priemerná zvyšková koncentrácia z trochpokusov bola 4,1 mg . 1_1. Příklad 2Add 20 ml of mercuric chloride solution, pH 4.5, containing 200 mg of Hg2 + .1 'to a 100 ml Erlenmeyer flask. To the solution is added 1% of spruce cone adjusted to a particle size in the range of 0.2 to 0.4 mm. The sorption is continued with stirring on a reciprocating shaker with a swirl rate of 120 rpm at room temperature. After adsorption for 60 minutes, the sorbent was separated and the mercury content was determined spectrophotometrically by a spectrophotometer. The average residual concentration from the three experiments was 4.1 mg. 1_1. Example 2
Postupom prevedenia ako v příklade 1,avšak koncentrácia ortuti v sorbovanom roz-toku bola 1 mg. I-1. Roztok po sorpcii ob-sahoval 0,3 mg . 1_1 ortuti. Příklad 3As in Example 1, however, the mercury concentration in the sorbent solution was 1 mg. I-1. The sorption solution contained 0.3 mg. 1_1 mercury. Example 3
Postup prevedenia ako v příklade 1, a-však na sorpciu sa použilo upravené ihli-čie borovice v množstve 1 %. Počiatočnákoncentrácia ortuti v roztoku bola, 100 mg.. I-1, výsledná koncentrácia po sorpcii bola 15 mg. 1_1. Příklad 4The procedure as in Example 1, but for the sorption, was adjusted to 1% pine needles. The initial concentration of mercury in the solution was 100 mg / l, the final concentration after sorption was 15 mg. 1_1. Example 4
Do 100 ml Erlenmayerovej banky sa napl-ní 20 ml roztoku chloridu olovnatého, ktorýobsahuje 100 mg . 1_1 olova. Hodnota pH roz-toku sa upraví na 5,5 a mieša sa s 1 % smre-kového ihličia 60 minút ako v příklade 1.Výsledná koncentrácia olova po sorpcii vroztoku bola 11 mg . I"1. Příklad 5To a 100 ml Erlenmeyer flask was charged 20 ml of lead chloride solution containing 100 mg. 1_1 lead. The pH of the solution was adjusted to 5.5 and stirred with 1% spruce needles for 60 minutes as in Example 1. The resulting lead concentration after sorption in the solution was 11 mg. I "1. Example 5
Postup prevedenia ako v příklade 4, aleolovo sa použije vo formě tetraetylolova vkoncentrácií 100 mg.l-1 Pb. Výsledná kon-centrácia olova v roztoku po sorpcii bola 16 mg. I-1. Příklad 6The procedure as in Example 4 was used in the form of tetraethylol in a concentration of 100 mg.l -1 Pb. The resulting concentration of lead in solution after sorption was 16 mg. I-1. Example 6
Do 100 ml Erlenmayerovej banky sa na-The 100 ml Erlenmeyer flask was
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS85564A CS242324B1 (en) | 1985-01-28 | 1985-01-28 | A method for removing heavy metal ions from their aqueous solutions |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS85564A CS242324B1 (en) | 1985-01-28 | 1985-01-28 | A method for removing heavy metal ions from their aqueous solutions |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS56485A1 CS56485A1 (en) | 1985-08-15 |
| CS242324B1 true CS242324B1 (en) | 1986-04-17 |
Family
ID=5337926
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS85564A CS242324B1 (en) | 1985-01-28 | 1985-01-28 | A method for removing heavy metal ions from their aqueous solutions |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS242324B1 (en) |
-
1985
- 1985-01-28 CS CS85564A patent/CS242324B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS56485A1 (en) | 1985-08-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Greene et al. | Interaction of gold (I) and gold (III) complexes with algal biomass | |
| Khanna et al. | Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils | |
| Al Rmalli et al. | A biomaterial based approach for arsenic removal from water | |
| Phung et al. | Trace elements in fly ash and their release in water and treated soils | |
| Bræk et al. | Heavy metal tolerance of marine phytoplankton. IV. Combined effect of zinc and cadmium on growth and uptake in some marine diatoms | |
| EP0333218A2 (en) | Process for the removal of metal ions from aqueous systems | |
| Huckabee | Mosses: Sensitive indicators of airborne mercury pollution | |
| Lunde | Water soluble arseno-organic compounds in marine fishes | |
| US4969995A (en) | Removal of metal ions from aqueous solution | |
| CA2174713C (en) | Removal of trace metal and metalloid species from brine | |
| CA1036575A (en) | Nitrohumic acid-containing adsorbents and process for producing same | |
| CS242324B1 (en) | A method for removing heavy metal ions from their aqueous solutions | |
| JPH06189778A (en) | Biomass reaction product | |
| US8888891B2 (en) | Metal recovery method using protonemata of moss plants | |
| Ahuja et al. | Oscillatoria anguistissima: a promising Cu2+ biosorbent | |
| Samiee Beyragh et al. | Kinetic and Adsorption Isotherms Study of Cyanide Removal from Gold Processing Wastewater Using Natural and Impregnated Zeolites | |
| Solé et al. | Removal of Zn from aqueous solutions by low-rank coal | |
| Hoffmann et al. | Determination of metals in biological and environmental samples | |
| Desai et al. | Interaction of trace elements with the organic constituents in the marine environment | |
| Hubicki et al. | Studies on sorption of copper (II) complexes with IDA and NTA acids on strongly and weakly basic anion exchangers | |
| Thakur et al. | Management of Thiocyanate Pollution Using a Novel Low Cost Natural Waste Biomass. | |
| Naveen et al. | Studies of kinetic and equilibrium isotherm models for the sorption of cyanide ion on to almond shell | |
| Mahamadia et al. | A comparative study of the kinetics of nickel biosorption by river green alga obtained from different environments; mine effluent drainage stream and natural river system | |
| Kumaraswamy et al. | Removal of zinc from aqueous solution using coffee industry waste | |
| HELIOS-RYBICKA | Zn, Cd and Mn sorption on some clay minerals |