CS239600B1 - Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising - Google Patents
Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising Download PDFInfo
- Publication number
- CS239600B1 CS239600B1 CS841694A CS169484A CS239600B1 CS 239600 B1 CS239600 B1 CS 239600B1 CS 841694 A CS841694 A CS 841694A CS 169484 A CS169484 A CS 169484A CS 239600 B1 CS239600 B1 CS 239600B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- reactor
- acetylene
- mercury
- hydration
- catalyst
- Prior art date
Links
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 title claims description 35
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 17
- 238000006703 hydration reaction Methods 0.000 title claims description 15
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims description 15
- 230000036571 hydration Effects 0.000 title claims description 13
- 229910052753 mercury Inorganic materials 0.000 title claims description 13
- 230000003197 catalytic effect Effects 0.000 title description 3
- 239000003054 catalyst Substances 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 5
- 239000010865 sewage Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000000887 hydrating effect Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
Vynález rieši sposob zahusťovania ortirCnatých katalyzátorov používaných k výrobě acetaldehydu hydratáciou acetylénu a zariadenie na uskutočnenie tohoto sposobu.SUMMARY OF THE INVENTION The present invention provides a process for concentrating the ortho-catalysts used to produce acetaldehyde by hydrating acetylene and an apparatus for carrying out this process.
V súčasnosti sa v priemyselnom meradle uskutočňuje hydratácia acetylénu na acetaldehyd v kontaktnom roztoku, ktorým js vodný roztok síranu ortuťnatého, síranu železnatého a železitého v zriedenej kyselině sírovej v zariadení, ktorého hlavným článkem je reaktor naplněný týmto roztokom, do ktorého sa privádza pri teplotách 95 až 105 °C acetylén. Z reaktora vystúpujúca panoplynná zmes obsahujúca acetaldehyd, vodu, vedíajšie produkty reakcie, ortuť a nezreagovaný acetylén sa čiastočne cchladzuje najčastejšie v troch po sebe nasledujúcich aparátech, za. účelom kondenzácie pár ortute, ktorá sa. neustále vracia spolu s. častou kondenzátu do· vetvy čerstvého regenerovaného katalyzátoru a s ňou opat na vstup do reaktora v jeho spodnej časti. Takto spracovaná zmes sa potom ďalej vedie na skrápáme vodou, kde sa oddělí acetaldehyd a tento sa spracuje známými postupmi na hotový produkt. Nezreagovaný acetylén sa vedie ďalej na regeneráciu známými postupmi a je použitý znova do procesu, Pre zahezpečenie trvalej aktivity katalytického roztoku v reaktore sa jeho časť odoberá a po rege2 nerácii bežne používanými sposobmi sa vracia spať na vstup do reaktora, spolu s prúdmi v· uvedenej parciálnej kondenzácie vystupujúcej reakčnej zmesi. Teplotu v prvom výmenniku tepla je nevyhnutné regulovat' v určitom obmeďzenom rozsahu, pri ktorom dochádza v prevažnej miere ku kondenzácii časti pár ortute, vody a vyššievrúcich podielov.At present, on an industrial scale, the hydration of acetylene to acetaldehyde in a contact solution is an aqueous solution of mercury sulphate, ferrous sulphate and ferric sulphate in dilute sulfuric acid in a plant whose main cell is a reactor filled with this solution, fed at temperatures of 95 to 105 ° C acetylene. The emerging pan gas mixture containing acetaldehyde, water, reaction by-products, mercury and unreacted acetylene exiting the reactor is partially cooled most often in three consecutive apparatuses. the purpose of condensation of the mercury vapor is that. keeps coming back with. often with condensate into the fresh regenerated catalyst branch and with it to enter the reactor at its bottom. The mixture thus treated is then further treated with water, where the acetaldehyde is separated off and this is worked up by known methods into the finished product. Unreacted acetylene is further reclaimed by known methods and is reused in the process. To ensure sustained activity of the catalytic solution in the reactor, a portion of it is withdrawn and returned to the reactor inlet, along with the streams in the above partial process after recovery. condensation of the exiting reaction mixture. It is necessary to control the temperature in the first heat exchanger within a limited range, in which the condensation of some of the mercury vapor, water and the higher-boiling fractions is predominant.
Intenzívnejšie chladenie je nevhodné, pretože by dochádzaio aj ku kondenzácii produktu a tento by prenikal spolu s prúdom regenerovaného katalyzátora opat na vstup do reaktora, čo· je nevhodné. Výskům vedúci k objavu hydratačnej reakcie započal Ku.čerov v roku 1875 a prvé práce v tejto oblasti publikoval o šest rokov neskór. Priemyselnému uplatneniu dlho však zabraňovala tvorba smol a rýchla dezaktivácia katalyzátora. Až princip používania .přebytku acetylénu podta Grunsteina (nem. pat. č. 250 356, USA pat. 1 044 169 a 1 107 019, fr. pat. 455 370) umožnil plné priemyselne využitie hydratácie acetylénu na základe Kučerové) reakcie. Ďalšie zlepšeme v priemyselne j aplikácii zaviedla firma IG Farben kontinuálnou regeneráciou katalyzátora solární trojmocného železa, ktorá dosiahla svojho vrcholu v tridsiatich rokoch a je používaná v praxi dones. Princip hydratácie je nasledovný. Do reaktora, vstupuje 2 800 m3/hi acetylénu, ku ktorému. sa přidává 1,5 m3/h páry. Zmes vstupuje do spodnej časti reaktora a barbotuje cez roztok katalyzátore. Roztok katalyzátora obsahuje 4 gramy Fe2(CO4]3 na 1 liter a 180 g SO4+2, vrátane volnej H2SO4. Okrem toho roztok katalyzátora obsahuje vel'ké množstvo kovověj Hg suspendovanej v roztoku. Neskór sa výroba acetaldehydu orientovala na iné suroviny ako acetylén. Vychádza sa z petrochemických surovin, ktoré sú ekonomicky výhodnejšie a k procesu nie je potřebné používat drahej a toxickej ortute.More intensive cooling is unsuitable, since product condensation would also occur and this would, together with the regenerated catalyst stream, penetrate into the reactor inlet, which is inappropriate. The research leading to the discovery of the hydration reaction was initiated by Ku.čerov in 1875 and he published his first works in this field six years later. However, industrial use has long been prevented by pitch formation and rapid catalyst deactivation. Only the principle of using an excess of acetylene according to Grunstein (German Pat. Nos. 250,356, U.S. Pat. Nos. 1,044,169 and 1,107,019, Fr. Pat. 455,370) enabled the full industrial utilization of acetylene hydration based on Kučerová's reaction. Further improvements in industrial applications have been introduced by IG Farben by the continuous regeneration of the trivalent iron catalyst, which reached its peak in thirty years and is used in practice to date. The principle of hydration is as follows. The reactor, enters 2800 m3 / h and acetylene, to which. is added 1.5 m 3 / h of steam. The mixture enters the bottom of the reactor and barbots through the catalyst solution. The catalyst solution contains 4 grams of Fe2 (CO4) 3 per liter and 180 g of SO4 +2 , including free H2SO4, and the catalyst solution contains a large amount of metallic Hg suspended in the solution, and later the acetaldehyde production was directed to raw materials other than acetylene. It is based on petrochemical raw materials, which are more economical if the process does not need to use expensive and toxic mercury.
Pretože mechanizmus hydratačnej reakcie acetylénu nio je do súčasnosti spolahlivo objasněný, vo výrobniach používajúcich acetylén na báze zemného plynu často dochádza z doposial’ roznych, presne neidentifikovaných a analyticky nepostřehnutelných příčin k poklesu aktivity katalytického roztoku s následným poklesom tvorby produktu a teda aj vznikajúceho reakčného tepla, v dósledku čoho poklesne teplota v reaktore i konverzia acetylénu a katalyzátor sa započne zriedovať. Zriedený katalyzátor má pochopitelné nižšiu aktivitu a celý proces má progresivně klesajúci výkon, až je nutné výrobu přerušit a zabezpečit přípravu vhodného kontaktu.Because the mechanism of the hydration reaction of acetylene nio is now reliably elucidated, in natural gas-based acetylene plants, the catalytic solution activity decreases, resulting in a decrease in product formation and consequently reduced reaction heat, due to various, precisely unidentified and analytically imperceptible causes. as a result, the reactor temperature and acetylene conversion dropped and the catalyst began to be diluted. The diluted catalyst has, of course, a lower activity and the whole process has a progressively declining performance until production has to be interrupted and a suitable contact is prepared.
Uvedené nedostatky odstraňuje spósob zahusťovania ortuťnatých katalyzátorov hydratácie acetylénu podta vynálezu, pri ktorom sa do hydratačného reaktora spolu so vstupujúcim acetylénom privádza aj vodná para v množstvách od 0,3 do 3 m3 páry na 1 m3 acetylénu.The aforementioned drawbacks are overcome by the method of thickening the mercury catalysts of acetylene hydration according to the invention, in which water vapor in amounts of 0.3 to 3 m 3 of steam per m 3 of acetylene is also fed to the hydration reactor together with the acetylene entering.
Kondenzát získaný čiastočným ochladením z reaktora vystupujúcej paroplynnej zmesi sa vedie priamo spát do reaktora spolu s regenerovaným katalyzátorem, alebo cez odlučovač ortute do kanalizácie, připadne súčasne do reaktora i kanalizácie. Zariadenie 11a uskutočňovanie sposobu, ktoré pozostáva z valcovitej nádoby s kónickým dnom 1 napojenej hornou častou na spodný otvor 2 výmenníka tepla 3, pričom nádoba 1 je opatřená vostavbou 4 a svojím kónickým dnom je potrubím 5 cez ventil 6 napojená na přívodně potrubie regenerovaného katalyzátora 7. Potrubie 7 je ďalej napojené na spodnú časť hydratačného reaktora 8 nad přívodně potrubie acetylénu S, do ktorého je napojená potrubím 10 vodná para a horná časť reaktora 8 je napojená cez potrubie 11 na spodnú časť 2 výmenníka tepla 3, pričom medzirúrkový priestor 12 nádoby s kónickým dnom 1 je svojou vrchnou častou napojený potrubím 13 s ventilom 14 do odlučovača ortute 15, ktorý je potrubím 16 napojený do kanalizácie. Použitím zvýšeného množstva páry, bez následného zrieďovania katalyzátora, sa významné zlepšia poměry v barbotážnom reaktore pri nižších množstvách zreagovaného acetylénu s prímesou nečistot.The condensate obtained by partial cooling from the exiting steam-gas mixture reactor is led directly back to the reactor together with the regenerated catalyst, or via a mercury separator to the sewage, or simultaneously to both the reactor and the sewage. An apparatus 11a for carrying out the process, comprising a cylindrical vessel with a conical bottom 1 connected by an upper part to the lower opening 2 of the heat exchanger 3, the vessel 1 being fitted with an assembly 4 and its conical bottom being via a valve 5 connected to the inlet pipe of the regenerated catalyst 7. The conduit 7 is further connected to the lower part of the hydration reactor 8 above the acetylene S supply conduit to which water vapor is connected through the conduit 10 and the upper part of the reactor 8 is connected via conduit 11 to the lower part 2 of the heat exchanger 3. the bottom part is connected with its upper part via a line 13 with a valve 14 to a mercury separator 15, which is connected via a line 16 to the sewer. By using an increased amount of steam, without subsequent dilution of the catalyst, the conditions in the barbotage reactor are significantly improved at lower amounts of reacted acetylene with impurity admixture.
Výhody navrhovaného sposobu spočívajú predovšetkým v tom, že umožňuje dodržiavanie predpísanej hustoty a zloženie katalyzátora aj pri kolísavom obsahu nečistot v spracovávanom acetyléne, a to v dósledku zmien zloženia spracovávaného zemného plynu, porúch v systéme výroby acetylénu či vypieracej časti. Nerovnoměrná kvalita acetylénu sa taktiež vyskytuje pri nábehoch výroby. V dósledku použitia vyššieho množstva páry do hydratačného reaktora bez následného zriedenia katalyzátora sá z reakčného prostredia odstránia nečistoty prichádzajúce vstupným acetylénom ale aj vznikajúce v samotnom procese. Medzi výhody nesporné patří aj jednoduchost z htadiska obsluhy zariadenia a investičná nenáročnost. Sposob a zariadenie boli s úspechom overené na výrobní acetaldehydu ako je uvedené v nasledujúcich príkladoch.The advantages of the proposed method are, in particular, that it allows the prescribed density and catalyst composition to be maintained even with fluctuating impurities in the treated acetylene due to changes in the composition of the treated natural gas, disturbances in the acetylene production system or scrubbing section. Uneven quality of acetylene also occurs during start-ups. As a result of the use of a higher amount of steam in the hydration reactor without subsequent dilution of the catalyst, the impurities coming in from the acetylene feedstock but also in the process itself are removed from the reaction medium. The advantages undoubtedly include simplicity in terms of operation of the equipment and low investment. The process and apparatus have been successfully verified on acetaldehyde production as shown in the following examples.
PřikladlEXAMPLE
Vo výrobnom procese po vykonaných úpravách zariadenia podta vynálezu sa pracovalo s katalyzátorom o hustotě 1120 kg/ /m3. V priebehu 24 hodin hydratácie s prídavkom 2 m3/h vodnej páry na 1 m3 vstupujuceho acetylénu a striedavým odvádzaním kondenzátu cez odlučovač ortute do kanalizácie i do reaktora, vzrástla hustota katalyzátora na hodnoty 1210 kg/m3 a zloženie katalyzátora málo predpisané hodnoty.A catalyst with a density of 1120 kg / m 3 was used in the manufacturing process after modifications of the apparatus according to the invention. In the course of 24 hours of hydration with the addition of 2 m 3 / h of water vapor per 1 m 3 of acetylene entering and alternating drainage of the condensate through the mercury separator both into the sewer and the reactor, the catalyst density increased to 1210 kg / m 3 .
Příklad 2Example 2
Pri ustálenom chodě hydratácie a hustotě katalyzátora 1 241 kg/m3 sa do reaktora dávkoval acetylén a vodná para v pomere 0,635 m3 páry na meter kubický acetyléuu. V priebehu 2 hodin vzrástol objem nezreagovaného acetylénu za reaktorom na dvojnásobek počiatočnej hodnoty a hustota katalyzátora, ktorá sa meria v hodinových intervaloch, poklesla na hodnotu 1 206 kg/m3. Na základe týchto údajov sa upravilo množstvo pridávanej páry na 1 m3 na m3 acetylénu a v priebehu nasledujúcich troch hodin sa kondenzát získaný v prvom kondenzátore za reaktorom pri teplote 85 °C odvádzal rovnakým dielom spát do reaktora ako aj cez odlučovač ortute do kanalizácie. Po tejto době mala hustota katalyzátora hodnotu 1 250 kg/m3 a množstvo nezreagovaného acetylénu za reaktorom pokleslo na póvodnú hodnotu, vstupná zmes acetylénu a vodnej páry sa znova upravila na hodnotu 0,635 m3 páry na m3 acetylénu a výroba pokračovala ďalej na původnýcb priaznivých parametrech kontaktného roztoku.At a steady state of hydration and a catalyst density of 1241 kg / m 3 , the reactor was charged with acetylene and water vapor at a rate of 0.635 m 3 of steam per meter of cubic acetylene. Within 2 hours the volume of unreacted acetylene downstream of the reactor increased to twice the initial value, and the catalyst density, measured at hourly intervals, decreased to 1,206 kg / m 3 . Based on these data, the amount of steam added was adjusted to 1 m 3 per m 3 of acetylene and over the next three hours the condensate obtained in the first condenser downstream of the reactor at 85 ° C was discharged equally back to the reactor and through the mercury separator to the sewer. After this time, the catalyst density was 1,250 kg / m 3 and the amount of unreacted acetylene downstream of the reactor dropped to its original value, the acetylene / water vapor feed mixture was again adjusted to 0.635 m 3 vapor per m 3 acetylene, and production continued at the favorable parameters of the contact solution.
P r i k 1 a d 3Example 1 and d 3
V priebehu 3 mesiacov overovacieho chodu výroby s využitím spósobu a zariadenia podl'a vynálezu sa trvale udržiavala hustota. kontaktného' roztoku v rozmedzí 1 200 až '239600During the 3-month production run using the method and apparatus of the invention, the density was consistently maintained. of a contact solution in the range of 1200 to 239600
230 kg/m3, keď před používáním uvedeného zapojenia bola hustota cca 1 050 kg/m3, pričom bolo přidávané do reaktora podfa potřeby 0,4 až 2,9 m3 páry ňa m3 vstupujúceho acetylénu.230 kg / m 3, as against the use of said wiring density was about 1050 kg / m 3, which was added to the reactor according to the needs of from 0.4 to 2.9 m 3 per m 3 of steam entering the acetylene.
Využitie vynálezu spadá do oblasti výroby acetaldehydu hydratáciou acetylénu za použitia ortutnatých katalyzátorov.The application of the invention falls within the field of acetaldehyde production by hydrating acetylene using mercury catalysts.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS841694A CS239600B1 (en) | 1984-03-09 | 1984-03-09 | Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS841694A CS239600B1 (en) | 1984-03-09 | 1984-03-09 | Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising |
Publications (2)
Publication Number | Publication Date |
---|---|
CS169484A1 CS169484A1 (en) | 1985-06-13 |
CS239600B1 true CS239600B1 (en) | 1986-01-16 |
Family
ID=5351960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS841694A CS239600B1 (en) | 1984-03-09 | 1984-03-09 | Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS239600B1 (en) |
-
1984
- 1984-03-09 CS CS841694A patent/CS239600B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS169484A1 (en) | 1985-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109134231B (en) | Device and process for continuously producing chloroacetic acid by differential circulation | |
JP2002193857A (en) | Process | |
AU2007327788A1 (en) | Integrated process and apparatus for preparing esters of methacrylic acid from acetone and hydrocyanic acid | |
AU2007331690B2 (en) | Production by distillation of acetone cyanhydrin and method for producing methacrylic ester and subsequent products | |
CN106748785B (en) | Wastewater treatment process and system in process of preparing ethylene glycol from synthesis gas | |
CN104829494A (en) | Energy-saving urea production system and production process thereof | |
CN113800486A (en) | Production process of bis (chlorosulfonyl) imide | |
CN102050548B (en) | Treatment and reuse method of waste water in methanol-to-olefin process | |
CN105026365B (en) | Urea synthesis method and equipment | |
CN105439789A (en) | HMT continuous synthesis apparatus and method | |
Mortensen et al. | A two-stage cyclic fluidized bed process for converting hydrogen chloride to chlorine | |
Inoue et al. | Kinetics of m ethan ati on of carbon monoxide and carbon dioxide | |
EP3233792A1 (en) | Process for urea production | |
CN108530254A (en) | A method of mixing carbon four prepares normal butane | |
US7141700B1 (en) | Decomposition of cumene hydroperoxide | |
CN115722147A (en) | Low-energy-consumption chloromethane synthesis system | |
CN106986400A (en) | COD, the processing system of ammonia nitrogen in a kind of removal steam | |
CS239600B1 (en) | Concentration method of mercury catalytic solutions by acetylene hydration and apparatus for its realising | |
US4464228A (en) | Energy conservation within the Kellogg ammonia process | |
CN109052334A (en) | A kind of ammonium sulfate prepares the process of ammonium hydroxide and sulfuric acid | |
CN217568762U (en) | Tower-type gas-liquid-phase chloroethylene production device | |
CA2896706C (en) | Urea plant revamping method | |
CN115490356B (en) | Wet oxidation treatment system and oxidation treatment method for glyphosate mother liquor | |
CN113121303B (en) | Chloroethylene production process and special device thereof | |
CN110143571A (en) | The apparatus and method of the hydrogen manufacturing of environment-friendly type hydrogen sulfide and insoluble sulfur |