CS227539B1 - Method of chemical plastisol reinforcement - Google Patents

Method of chemical plastisol reinforcement Download PDF

Info

Publication number
CS227539B1
CS227539B1 CS642082A CS642082A CS227539B1 CS 227539 B1 CS227539 B1 CS 227539B1 CS 642082 A CS642082 A CS 642082A CS 642082 A CS642082 A CS 642082A CS 227539 B1 CS227539 B1 CS 227539B1
Authority
CS
Czechoslovakia
Prior art keywords
plastisol
anhydride
weight
component
components
Prior art date
Application number
CS642082A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Miroslav Kriz
Original Assignee
Miroslav Kriz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miroslav Kriz filed Critical Miroslav Kriz
Priority to CS642082A priority Critical patent/CS227539B1/en
Publication of CS227539B1 publication Critical patent/CS227539B1/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

Želatináty, vyrobené želatináciou plastisolov na báze homopolymórov alebo kopolymórov vinylchloridu, v mnohých aplikáclach nedosáhujú potřebné vlastnosti· Ide najma o tvrdost’, odolnost’ proti odieraniu, pevnost’ v tlaku, adhézia k podkladu a ďalšio. Tieto vlastnosti možno podl’a známých spósobov zlepšit’ přidáním látok miešatemých s plastisolmi a schopných účinkom teploty, radikácie alebo iniciátora, vytvořit’ polymér. Najčastejšie sá to estery kyseliny akrylovéj alebo metakrylovej, nenasýtené polyestery, epoxidové živice, allylové estery dikarboxylových kyselin, triallylkyanurát, kyselina kyanurová, diizokyanáty a polyizokyanáty, modifikované fenolické živice, polyaminoamidy, polysiloxany a ňalšie. Váčšina z týchto systémov pri normálněj teplote nereaguje, alebo reaguje zanedbatePnou rýchlosťou, a až po překročení prahovéj teploty, spravidla nad 100 °C, prebieha polymerizácia potřebnou rýchlosťou. Nevýhodou všetkých systémov, založených na radikálovej polymerizácii nenasýtených zlúčenin, iniciovanej najčastejšie organickými peroxidmi, je nutnost’ prehriatia celého obje mu plastisolu na teplotu, pri ktorej je polčas rozpadu peroxidu dostatočne krátký a volné radikáty dostatočne energeticky bohaté.Gelatin, made by gelatinizing plastisols based on homopolymers or copolymers of vinyl chloride, does not achieve the required properties in many applications. These include hardness, abrasion resistance, compressive strength, adhesion to the substrate and others. These properties can be improved according to known methods by forming a polymer by adding substances mixed with plastisols and capable of acting as a temperature, radical or initiator. Most commonly, they are acrylic or methacrylic acid esters, unsaturated polyesters, epoxy resins, allylic dicarboxylic acid esters, triallyl cyanurate, cyanuric acid, diisocyanates and polyisocyanates, modified phenolic resins, polyaminoamides, polysiloxanes and others. Most of these systems do not react at a normal temperature or react at a negligible rate, and only when the threshold temperature, typically above 100 ° C, is exceeded, polymerization proceeds at the required rate. A disadvantage of all systems based on the free radical polymerization of unsaturated compounds, most often initiated by organic peroxides, is the necessity to overheat the entire volume of plastisol to a temperature at which the half-life of peroxide is sufficiently short and free radicals are sufficiently energy rich.

Diizokyanáty a polyizokyanáty sú sice schopné reagovat’ i pri normálněj teplote, ale vzhTadom k tomu, že přednostně reagujú so zbytkovými alkoholmi a vodou, ktoré sú takmer vždy přítomné v běžných zmakčovadlách esterového typu, je ich použitie viazané na špeciálne typy zmákčovadiel. Modifikované fenolické živice a polyamínoamidy reagujú spravidla až pri podstatné vyšších teplotách než 100 °C a ich použitie je len výnimočné, Epoxidové živice sú schopné reakcie i pri normálněj teplote a reakčnú rýchlosť možno výhodné regulovat’ teplotou. Pre ich sieťovanie sa však najčastější používájú alifatické polyamíny, ktoré sú zdravotně závadné,a ich adukty s epoxidmi alebo iné typy sieťovadiel, například anhydridyWhile the diisocyanates and polyisocyanates are capable of reacting at normal temperature, however, since they preferentially react with residual alcohols and water, which are almost always present in conventional ester type plasticizers, their use is tied to special types of plasticizers. Modified phenolic resins and polyamine amides generally react only at substantially higher temperatures than 100 ° C and their use is exceptional, the epoxy resins are capable of reacting even at normal temperature and the reaction rate can be advantageously controlled by temperature. However, aliphatic polyamines, which are harmful to health, and their adducts with epoxides or other types of crosslinkers, for example anhydrides, are most commonly used for their cross-linking.

- 2 227 539 organických kyselin, reagujú až pri vyšších teplotách. SpoloČná nevýhoda všetkých známých systémov je, že po nanesení plastisolu a jeho zohrievaní sa znižuje jeho viskozita, prechádza minimom v oblasti 50 až 70 °C a až pri áalšom zohrievaní opáť stúpa. Polymerizačná reakcia u známých systémov naštartuje až nad uvedenou teplotou. V tejto oblasti teplót plastisol stéká, najma po vertikálnych plochách, a ani prídavkom tixotropných látok tomu nie je možné zabránit’·- 2,227,539 organic acids react only at higher temperatures. A common disadvantage of all known systems is that after application and heating of plastisol, its viscosity decreases, passes through a minimum in the range of 50 to 70 ° C, and only increases again after further heating. The polymerization reaction of the known systems starts only above this temperature. In this temperature range, plastisol flows down, especially on vertical surfaces, and this cannot be prevented by the addition of thixotropic substances.

Podstatou spósobu vystuženia plastisolov podl’a vynálezu je reakcia medzi anhydridom dikarbonovej kyseliny, rozpuštěným v plastisole, a diamínom alebo polyamínom, ktorý tvoří druhů zložku, alebo je v nej rozpuštěný. Zmiešaním oboch zložiek pri normálně j teplote dójde okamžité k reakcii diamínu alebo polyamínu s anhydridom. Vytvořený polyamid tvoří v plastisole heterogennú fázu a účinkuje ako armujúca sieť. Viskozita plastisolu účinkom vzniká júceho polyamidu výrazné stúpne a tým sa zamedzí stěkánie naneseného plastisolu. Pri zohrievaní plastisolu dochádza k dokončeniu reakcie medzi zvyškami anhydridů a diamínu, preto viskozita v dósledku zohrievania neklesá a leží v podstatné vyššej oblasti, ako u nevyštuženého plastisolu. Zoželatinováním plastisolu sa priestorovo zafixujú polyamidové reťazce v želatináte a tým spósobujú výrazné zlepšenie jeho mechanických vlastností. Pretože polyamid vzniká před začatím želatinácie, zráža sa i na podklad, na ktorý je plastisol nanášaný a vytvára tak adhezívnu vrstvu, ktorá spros treškuje spojenie medzi podkladom a želatinátom.The process for reinforcing plastisols according to the invention is based on the reaction between the dicarboxylic acid anhydride dissolved in plastisol and the diamine or polyamine which forms the second component or is dissolved therein. Mixing the two components at normal temperature immediately results in the reaction of the diamine or polyamine with the anhydride. The polyamide formed in the plastisol forms a heterogeneous phase and acts as a reinforcing network. The viscosity of the plastisol produced by the resulting polyamide increases markedly, thereby avoiding deposition of the applied plastisol. The heating of plastisol completes the reaction between the anhydride and the diamine residues, and therefore the viscosity does not decrease as a result of the heating and lies in a substantially higher range than that of the non-reinforced plastisol. By gelatinizing plastisol, the polyamide chains are spatially fixed in the gelatinate and thereby significantly improve its mechanical properties. Since the polyamide is formed before gelation begins, it also precipitates on the substrate to which plastisol is applied, thus forming an adhesive layer that sprays the connection between the substrate and the gelatin.

Oproti známým riešeniam dává spdsob vystuženia podl’a vynálezu rovnakó zvýšenie tvrdosti želatinátu pri podstatné nižších dávkách stužujúcej zložky. Okrem toho spdsob podl’a vynálezu umožňuje okamžité zvýšenie viskozity plastisolu po zmiešaní zložiek, ktoré však je zčásti vratné a možno ho vložením střihového napátia znížiť. Intenzívnym premiešaním plastisolu po zmiešaní zložiek sa čiastočne polyamidová Struktúra rozruší, takže je možné plastisol naniesť. Pri želatinácii sa opat’ vytvoří sieť z polyamidu a výsledná tvrdost’ želatinátu je rovnaká, ako keby k rozrušeniu polyamidových reťazcov nedošlo.In contrast to known solutions, the method of reinforcement according to the invention gives the same increase in hardness of gelatin at substantially lower doses of the reinforcing component. In addition, the method according to the invention allows an immediate increase in the viscosity of plastisol after mixing the components, which, however, is partially reversible and can be reduced by applying shear stress. By intensively mixing the plastisol after mixing the components, the polyamide structure is partially destroyed so that the plastisol can be applied. When gelatinizing, the polyamide network is formed and the resulting gelatin hardness is the same as if the polyamide chains had not been broken.

- 3 227 539- 3 227 539

Spósob podl’a vynálezu je možné s výhodou kombinovat’ so známými spósobmi, najma založenými na použití epoxidových živíc· Anhydridy, diamíny a polyamíny i vznikajúci polyamid pdsobia vytvrdenie epoxidových živíc, čím sa ešte zvýši účinok systému podl’a vynálezu· Okrem toho sa adíciou na epoxidová živicu odstránia zo systému nezreagovanó aminy, pričom ich adukty sú neprchavé a netoxické látky· Tým sa odstráni hygienické riziko, spojené najma s diaminmi a polyamínmi v prípadoch, kedy nie je amin s anhydridom v stechiométrickom pomere·Anhydrides, diamines and polyamines, as well as the resulting polyamide, will cure the epoxy resins, thereby further enhancing the effect of the system of the invention. Epoxy resin removes unreacted amines from the system and their adducts are nonvolatile and non-toxic · This eliminates the hygienic risk associated, in particular, with diamines and polyamines in cases where the amine and anhydride are not in stoichiometric ratio ·

Příklad 1Example 1

Jednu zložku představuje plastisoí, tvořený 52,8 hmotovými percentami kopolyméru vinylchloridu s vinylacetátom, ktorý má prie mernú velkost’ zrna v rozmedzí 0,1 až 40 mikrometrov, K - hodnota 70 a obsah vinylacetátu 5 hmotových per cent, Sálej 10 hmotovými percentami mikromletého vápenca, Sálej 30 hmotovými percentami zme si ftalových esterov až Cg, Sálej 3 hmotovými percentami oktylstearátu, Sálej 3 hmotovými percentami epoxidovéj živice s epoxidovým číslom 0,5, Sálej 0,2 hmotovými percentami dibutylcínmerkaptidu, Sálej 1 hmotovým percentora metylhexahydroftalanhydridu. Druhá zložka je tvořená 32 hmotovými percentami - 3,5,5 - trimetylcyklohexylaminu a 68 hmotovými percentami dibutylftalátu. Obidve zložky sa zmiešajú v pomere 100 : 4,5 v zmiešavacej hlavě počas nalievania do formy, Potom sa plastisoí želatinuje pri 150 °C 12 minut vo vrstvě hruběj 3 mm.One component is a plastisia, composed of 52.8% by weight of a vinyl chloride-vinyl acetate copolymer having an average grain size in the range of 0.1 to 40 microns, a K value of 70 and a vinyl acetate content of 5% by weight, 10% by weight of micronized limestone. 30% by weight of phthalic esters to Cg, 3% by weight of octyl stearate, 3% by weight of epoxy resin having an epoxy number of 0.5, and 0.2% by weight of dibutyltin mercaptide, and 1% by weight of methylhexahydrophthalic anhydride. The second component consists of 32% by weight of 3,5,5-trimethylcyclohexylamine and 68% by weight of dibutyl phthalate. The two components are mixed at a ratio of 100: 4.5 in the mixing head during pouring into the mold. The plastisel is then gelatinized at 150 ° C for 12 minutes in a 3 mm thick layer.

Příklad 2Example 2

Jednu zložku představuje plastisoí, tvořený 28 hmotovými percentami emulzného pastotvorného polyvinylchloridu s K - hodnotou 68, dalej 20 hmotovými percentami suspenzného polyvinylchloridu s velkosťou zrna pod 100 mikrometrov a K - hodnotou 62 až 68, Sálej 28 hmotovými percentami di-2-etylhexylftalátu, Sálej l4 hmotovými percentami di-2-etylhexyladipátu, Sálej 1 hmotovým percentom dibutylcinmaleinátu, Sálej 5 hmotovými percentami metylhexahydroftalan hydridu, Sálej 4 hmotovými percentami epoxidovéj živice s epoxidovým číslom 0,5· Druhá zložka je tvořená aduktom, připraveným zmie- 4 227 539 šaním 10 hmotových percent dietyléntriamínu, Sálej 20 hmotových percent 3 - amínometyl - 3,5,5 - trimetyloyklohexylamínu, Sálej 20 hmotových percent epoxldovej živice dlaňového typu s epoxidovým číslom 0,5 až 0,55, Sálej 20 hmotových peroent di-2-etylhexylftalátu, Sálej 30 hmotových percent dibutylftalátu· Obidve zložky sa zmiešajú pri nanášaní v striekacej pištoli y pomere 100 : 20 a vrstva o hrúbke 1 mm sa želatinuje 5 minút pri teplote 180 °C.One component is a plastisia, consisting of 28% by weight of an emulsion paste-forming polyvinyl chloride having a K-value of 68, a further 20% by weight of a suspension polyvinyl chloride having a grain size below 100 micrometers and a K-value of 62-68. % by weight of di-2-ethylhexyl adipate, 1% by weight of dibutylcinmaleinate, 5% by weight of methylhexahydrophthalate hydride, 4% by weight of epoxy resin having an epoxy number of 0.5. diethylenetriamine, 20% by weight of 3-aminomethyl-3,5,5-trimethyloyclohexylamine, 20% by weight of palm-type epoxy resin having an epoxy number of 0.5 to 0.55, 20% by weight of di-2-ethylhexyl phthalate, 30% by weight. % dibutyl phthalate · Both components are mixed at applied in a 100:20 spray gun and a 1 mm thick layer was gelatinized at 180 ° C for 5 minutes.

Přiklad 3Example 3

Plastisol, tvořený 30 hmotovými percentami kopolyméru vinylchloridu s vinylacetátom o K - hodnotě 70 a s obsahom 5 hmotových peroent vinylacetátu, Sálej 25 hmotovými percentami emulzného pastotvorného polyvinylchloridu o K - hodnotě 68, ďalej 5 hmotovými percentami povrchovo upraveného mikromletého vápenca, Sálej 35 hmotovými percentami di-2-etylhexylftalátu, Sálej 0,9 hmotového percenta dibutylcinmaleinátu, Sálej 2 hmotovými percentami oktoátu zinoSňatého, Sálej 0,8 hmotového percenta 3 - amínometyl - 3,5,Plastisol, consisting of 30% by weight of a vinyl chloride / vinyl acetate copolymer having a K-value of 70 and containing 5% by weight of vinyl acetate perchlorate, 25% by weight of an emulsion paste-forming polyvinyl chloride of K-value of 68, 5% by weight of micronised limestone. 2 wt.% 2-ethylhexyl phthalate, 1 wt.% Dibutylcinmaleinate, 2 wt.% Zinc octoate, 0.8 wt.% 3-aminomethyl-3,5,

- trimetyloyklohexylamínu, dalej 1,3 hmotového percenta n-dodecenylsukcínanhydridu, sa premieša, pričom jeho viskožita stúpne v dósledku reakcie anhydridu s diamínom· Takýto plastisol sa používá ako jednozložkový tak, že před nanášaním sa premieša na rýchlobežnom miešadle typu dissolver, čím sa dočasné jeho viskozita zníži. Káleje sa do forlem a želatinuje sa 10 minút pri 170 °C vo vrstvě hruběj 3 mm·- trimethyloyclohexylamine, a further 1.3% by weight of n-dodecenyl succinic anhydride, is mixed, increasing its viscosity due to the reaction of the anhydride with the diamine. Such plastisol is used as a single component by mixing it on a dissolver high speed stirrer prior to application. viscosity decreases. It is poured into molds and gelatinised for 10 minutes at 170 ° C in a 3 mm thick layer.

Spósob chemického vystuženia plastisolov podl’a vynálezu je výhodný najma v prípadoch, kedy je plastisol ako oohranný povlak nanášaný na plošné alebo priestorové útvary, najmá kovové· Ďalej je vhodný pre objemné výplně v dutinách, u ktorých nie je možné celý objem dostatočne prehriať. Ďalej je vhodný pri zvyšovaní adhézie želatinátu k podkladu, kedy vznikajúci polyamid slúži ako adhézna zložka. V porovnaní s najrozšírenejšími spósobmi vystuženia plastisolov pomocou akrylátov je spósob podTa vynálezu výrazné účinejší. Pre zvýšeni© tvrdosti želatinátu zo 65 na 75 ShA je použitá podTa známého spósobu dávka 2 hmotových percent 1,4 - butanodioldimetakrylátu a 0,04 hmotového percenta benzoylperoxidu. Pre rovnaké zvýšenie tvrdosti rovnakého plastisólu stačí dáv- 5 227 539 ka 0,4 hmotového percenta metylhexahydroftalánhydridu a 0,4 hmotového percenta 3 - amínometyl - 3t5,5 - trimetylcyklohexylamínu, to znamená len 40 percent z dávky akrylátu·The method of chemical reinforcement of plastisols according to the invention is advantageous especially when the plastisol as a protective coating is applied to flat or spatial formations, in particular metal. It is also suitable for bulky fillings in cavities where the entire volume cannot be sufficiently overheated. It is further suitable for increasing the adhesion of gelatin to the substrate, whereby the resulting polyamide serves as an adhesive component. Compared with the most widely used methods of reinforcing plastisols with acrylates, the method of the invention is significantly more effective. To increase the hardness of the gelatin from 65 to 75 ShA, a dose of 2 weight percent 1,4-butanediol dimethacrylate and 0.04 weight percent benzoyl peroxide is used according to the known method. For the same increase in the hardness of the same plastisol, a dose of 5,227,539 to 0.4 wt.% Of methylhexahydrophthalic anhydride and 0.4 wt.% Of 3-aminomethyl-3,5 t.

Claims (3)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION 227 539227 539 1. Sposob chemického vystuženia plastisolov na báze homopolymérov alebo kopolymérov vinylchloridu, vyznačený tým, že pri normálnej teplote sa zmiešajú dve zložky, z ktorých jedna je tvořená anhydridom dikarboxylovej kyseliny a druhá je tvořená diaminom alebo polyamínom alebo ich aduktom s epoxidovou živicou, pri-, čom najmenej jedna z týchto zložiek je rozpuštěná v plastisole tak, že súčet dávok anhydridovej a amínovej zložky představuje 0,2 až 20 hmotových percent vzhl’adom na plastisol a molárny poměr anhydridovej zložky k amínovej zložke je v rozmedzí 0,1 : 1 až 2,5 : 1, a po zmiešaní obidvoch zložiek sa plastisol zohreje na želatinačnú teplotu·Process for the chemical reinforcement of plastisols based on vinyl chloride homopolymers or copolymers, characterized in that two components are mixed at normal temperature, one of which is dicarboxylic anhydride and the other of which is a diamine or polyamine or an adduct thereof with an epoxy resin, wherein at least one of these components is dissolved in plastisol such that the sum of the doses of anhydride and amine component is 0.2 to 20 weight percent based on plastisol and the molar ratio of anhydride component to amine component is in the range 0.1: 1 to 2 , 5: 1, and after mixing the two components, the plastisol is heated to the gelatinization temperature · 2. Spósob podl’a bodu 1, vyznačený tým, že anhydridovú zložku tvoří metylhexahydroftalanhydrid alebo nonenylsukcínanhydrid alebo n-dodecenylsukcínanhydrid alebo ich zmes·2. The method of claim 1, wherein the anhydride component is methylhexahydrophthalic anhydride or nonenylsuccinic anhydride or n-dodecenylsuccinic anhydride or a mixture thereof. 3· Spósob podl’a bodu 1, vyznačený tým, že aminová zložku tvoří dietyléntriamin alebo trietyléntetraamín alebo 3-aminometyl - 3,5,5 - trimetylcyklohexylamin alebo dipropyléntriamín álebo ich zmes alebo produkt adície najmenej jednoho z uvedených aminov a epoxidovéj živice dlaňového typu s epoxidovým číslom 0,5 až 0,55, v ktorom hmotový poměr aminu k epoxidovéj živice je v rozmedzí 3 i 1 až 0,8 : 1.3. A process according to claim 1, wherein the amine component is diethylenetriamine or triethylenetetraamine or 3-aminomethyl-3,5,5-trimethylcyclohexylamine or dipropylenetriamine or a mixture thereof or an addition product of at least one of said amines and a palm-type epoxy resin with epoxy number 0.5 to 0.55, wherein the weight ratio of amine to epoxy resin is in the range of 3 to 1 to 0.8: 1.
CS642082A 1982-09-03 1982-09-03 Method of chemical plastisol reinforcement CS227539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS642082A CS227539B1 (en) 1982-09-03 1982-09-03 Method of chemical plastisol reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS642082A CS227539B1 (en) 1982-09-03 1982-09-03 Method of chemical plastisol reinforcement

Publications (1)

Publication Number Publication Date
CS227539B1 true CS227539B1 (en) 1984-04-16

Family

ID=5411187

Family Applications (1)

Application Number Title Priority Date Filing Date
CS642082A CS227539B1 (en) 1982-09-03 1982-09-03 Method of chemical plastisol reinforcement

Country Status (1)

Country Link
CS (1) CS227539B1 (en)

Similar Documents

Publication Publication Date Title
US4071653A (en) Powdery copolymer comprising methyl methacrylate and monomer having a basic nitrogen atom
JP4439664B2 (en) Copolymers for the production of plastisols and their use
HU212710B (en) Plastisol composition
US3008914A (en) Composition comprising an acrylic acid polymer and a polyglycidyl ether and products thereof
JPS582983B2 (en) Sunmusubutsu kakiyozai o fukum funtaitosososebutsu
JPH09511264A (en) Moisture-Curable Modified Acrylic Polymer Sealant Composition
US4340532A (en) Adhesive compositions containing alkoxy alkyl acrylates or methacrylates
CZ283900B6 (en) Plastisol preparation process for preparing and use thereof
JP2801312B2 (en) Amine-based hardener microcapsules
CS227539B1 (en) Method of chemical plastisol reinforcement
JP3919391B2 (en) Primer composition
US3794694A (en) Room temperature vulcanizable graft copolymers on silicone containing backbone
GB1255527A (en) Heat vulcanisable acrylate copolymers
JP3380059B2 (en) Acrylic emulsion containing alkoxysilyl group
US5492940A (en) Acrylic/lactam resin compositions and method of producing same
HU215239B (en) Plastisol composition, process for producing thereof and uses thereof
US3804814A (en) Vinyl chloride copolymers suitable for crosslinking
JP3896597B2 (en) Vinyl chloride plastisol composition for bonding wood
EP0227385A2 (en) Core-shell polymer emulsion with PVDC and acrylic resins as heat-sealable barrier film coatings
JP2534642B2 (en) Epoxy resin composition for optical semiconductor encapsulation
EP0169846B1 (en) Epoxide resin compositions
JPH05194913A (en) Adhesive composition
US2996486A (en) Vinyl chloride copolymers
JPH0328250A (en) Vinyl chloride resin composition
JP2720084B2 (en) Epoxy resin composition and method for producing the same