CS225409B1 - Measuring of the diffusing permeability of gases through membranes - Google Patents
Measuring of the diffusing permeability of gases through membranes Download PDFInfo
- Publication number
- CS225409B1 CS225409B1 CS110482A CS110482A CS225409B1 CS 225409 B1 CS225409 B1 CS 225409B1 CS 110482 A CS110482 A CS 110482A CS 110482 A CS110482 A CS 110482A CS 225409 B1 CS225409 B1 CS 225409B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- gas
- permeability
- measuring
- diffusion
- membranes
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims description 37
- 239000012528 membrane Substances 0.000 title claims description 22
- 230000035699 permeability Effects 0.000 title claims description 16
- 238000009792 diffusion process Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 3
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
Description
Vynález sa týká spósobu merania difúznej priepustnosti plynov cez membrány.The invention relates to a method for measuring the diffusion permeability of gases across membranes.
Koeficient priepustnosti membrány je dóležitá fyzikálnochemická veličina, uplatňovaná v zdravotnictvo, najma v pulmonálnej diagnostike. Přitom sa vyžaduje kvantitativné určovat’ priepustnosť membrány pre binárně kombinaci©: kyslík -♦ vzduch, kysličník uhličitý —> vzduch, kysličník dusný -> vzduch a pod.The membrane permeability coefficient is an important physicochemical variable used in health care, especially in pulmonary diagnostics. It is necessary to quantitatively determine the membrane permeability for the binary combination ©: oxygen - ♦ air, carbon dioxide -> air, nitrous oxide -> air and the like.
Doteraz sa uplatňujú pri meraní priepustnosti plynov cez membrány manoraetrické metody, váženie plynov, koncentračně metody a pod. Nevýhodou týchto spósobov merania priepustnosti plynov je, že vyžadujú speciálně přístroje zahraníčnej výroby, ktoré sú často ťažko dostupné.Up to now, manoretric methods, gas weighing, concentration methods and the like have been used to measure gas permeability across membranes. The disadvantage of these methods of measuring gas permeability is that they specifically require foreign production devices that are often difficult to access.
Uvedené nedostatky odstraňuje spósob merania difúznej priepustnosti plynov cez membrány podlá vynálezu, ktorého podstata spočívá v tom, že sa do rozvodného systému vstriekne injekčnou striekačkou cez dávkovacie teleso určené objemové množstvo plynu.v dósledku čoho sa zvýši hladina antidifúznej kvapaliny v nádobě, ktorej výška sa zaznamená na stupnici, pričom sa čas potřebný na difúziu cez membránu zistí podlá trvania poklesu hladiny antidifúznej kvapaliny na póvodnú výšku v nádobě.The above-mentioned drawbacks are eliminated by the method of measuring the diffusion permeability of gases across membranes according to the invention, which consists in injecting a volume of gas into the distribution system via a syringe through a dosing body, thereby increasing the level of anti-diffusion liquid in the vessel. on a scale, the time required for diffusion through the membrane is determined by the duration of the decrease in the level of the anti-diffusion fluid to the original height in the vessel.
Vynález spósobu merania difúznej priepustnosti plynov cez membrány umožňuje dostatočne presne merať priepustnosť plynov pomocou jednoduchých a dostupných prostriedkov a pornocok.The invention of a method for measuring the diffusion permeability of gases across membranes makes it possible to measure the permeability of gases sufficiently accurately by means of simple and accessible means and pornococci.
225 409225 409
Zostave zariadenia na meranie difuznej priepustnosti plynov cez membrány je schématicky znázorněná na pripojenom výkrese.The apparatus for measuring the diffusion permeability of gases across membranes is shown schematically in the attached drawing.
Na pripojenom výkrese je znázorněný zásobník plynu 1 s hlavným uzáverom 2 spojený cez tlakový manometer 3 a regulačný prietokomer 4 pomocou rozvodného systému 5 š elastickým vakom 6. Rozvodný systém 5 je pospájaný spojkami 7, kohútikmi 8 a 9 a vložená je zavzdušňovacia rúrka 10 a kohút 11. Nádoby 12 a 13 sú spojené hadicou 14 a napojené na rozvodný systém 5 pomocou odbočky 15, utěsněnou tesniacim krúžkom 16. Nádoby 12 a 13 sú naplněné antidifúznou kvapalinou 17, pričom na nádobě 13 je stupnica 18 a priezor 19. Ďalej je napojené dávkovacie a odběrové teleso 20 s tesniačou zátkou 21, injekčnou striekačkou 22 a spojené odbočkou 23 s kontrolnou nádobou 24. Membránové teleso 25 s odvzdušňovacou skrutkou 26, gumenným těsněním 27, membránou 28 a komorou 29 je spojené pomocou kábla 31 s indukčnou cievkou 30 a elektrickým indikačným prístrojom 32 so stupnicou 33 a registračným zariadením 34. Z plynového zásobníka 1 sa plyn /kyslík, kysličník uhličitý, kysličník dusný a pod./ vpúšťa do skleněného rozvodného potrubia 5 pomocou hlavného uzávěru 2 cez kontrolný tlakový manometer 3 a regulačný prietokomer 4.The attached drawing shows a gas reservoir 1 with a main closure 2 connected via a pressure gauge 3 and a control flowmeter 4 by means of a distribution system 5 with an elastic bag 6. The distribution system 5 is connected by couplings 7, taps 8 and 9 and an aeration tube 10 and tap The containers 12 and 13 are connected by a hose 14 and connected to the distribution system 5 by means of a branch 15 sealed by a sealing ring 16. The containers 12 and 13 are filled with an anti-diffusion liquid 17, the container 13 having a scale 18 and a visor 19. and a collection body 20 with a sealing plug 21, a syringe 22 and connected by a branch 23 to a control vessel 24. The diaphragm body 25 with a breather screw 26, a rubber seal 27, a membrane 28 and a chamber 29 is connected by cable 31 to an induction coil 30 and an electrical indicator an instrument 32 with a scale 33 and a recording device 34. From the gas container 1 gas / oxygen, carbon dioxide, nitrous oxide and the like / are introduced into the glass manifold 5 by means of the main shutter 2 via a pressure gauge 3 and a control flowmeter 4.
Vzhladom na to, že sa plyn pri vypúšťaní zo zásobníka 1 expanziou ochladzuje, privádza sa do plynotesného elastického vaku 6 v ktorom sa teplota plynu vyrovnává s teplotou okolitého prostredia. Tým sa zabezpečí, že v celom meracom systéme je teplota plynu v priebehu merania konštantná /T = konšt./. Ďalej sa plyn pomocou odbočky 15 privádza cez tesniaci krúžok 16 do nádoby 12, naplnenej antidifúznou kvapalinou 17 /dibutylftalát/. V nádobě 12 sa kinetická energia plynu změní na tlak, ktorý sa prejaví zvýšením hladiny v nádobě 13.. Výška zvýšenia hladiny 4h sa odčítá na stupnici 18 cez priezor 19. Nádoby 12 a 13 sú spojené gumenou hadicou 14. Z hfadiska přesného merania je dóležité,Since the gas is cooled by expansion as it is discharged from the container 1, it is fed to a gas-tight elastic bag 6 in which the gas temperature equals the ambient temperature. This ensures that the gas temperature is constant (T = constant) throughout the measurement system. Further, the gas is supplied via a branch 15 via a sealing ring 16 to a container 12 filled with an anti-diffusion liquid 17 (dibutyl phthalate). In the vessel 12, the kinetic energy of the gas is changed to a pressure which is manifested by an increase in the level in the vessel 13. The height of the level increase 4h is read on a scale 18 through the viewing window 19. The vessels 12 and 13 are connected by a rubber hose 14. .
229 409 aby změna barometrického tlaku nemalavplyv na merané výsledky. Z tohoto dovedu je vzdušný priestor nádoby 13 volné spojený s atmosférou. Do rozvodného systému 5 je sériovo zapojené dávkovacie a odběrové teleso 20 s tesniacou zátkou 21, ktorá umožxiuje napichnúť injekčnústriekačku 22 určenú pre odběr vzoríek plynu alebo pre zisťovanie konstanty prístroja, připadne chromotografický rozbor. Odbočka 23 zasahuje svojim koncom do kontrolnej nádoby 24 naplnenej vodou, ktorej úlohou je opticky indikovat’ prúdiaci plyn vo formě rovnoměrného prebublávania plynu. Plyn vniká do lávej komory 35 membránového telesa 25 s odvzdušňovacou skrutkou 26 a gumeným těsněním 27« Pravá membránová komora 36 tvořená spolu so skúšobnou membránou 28 á vyměnitelnou, vzduchotěsně zasúvatelnou komorou 29. Zníženie tlaku yjp sa prejaví změnou priehybu membrány 28, ktorý možno merať pomocou indukonej cievky 3.0 spojenej káblom 31 s elektrickým indikačným prístrojom 32, so stupnicou 33 priehybu membrány a registračným zariadením 34. Pomocou spojok 7 vyhotovených z TYGONU sa pospájajú jednotlivé časti prístroja do vzduchotechnického celku. Kohútiky 8, 9 a 11 umožňujú manipuláciu pri plnění a vypúšťaní plynu z meřacieho systému.229 409 that the change in barometric pressure does not affect the measured results. From this skill, the airspace of the container 13 is loosely associated with the atmosphere. The metering and sampling body 20 with a sealing plug 21 is connected in series to the distribution system 5, which makes it possible to inject a syringe 22 intended for taking gas samples or for detecting the constant of the device, or a chromographic analysis. The branch 23 extends at its end into a control vessel 24 filled with water, the purpose of which is to visually indicate the flowing gas in the form of a uniform gas bubbling. The gas enters the lava chamber 35 of the diaphragm body 25 with the vent screw 26 and the rubber seal 27. The right diaphragm chamber 36, together with the test diaphragm 28 and the replaceable, airtightly retractable chamber 29. The reduction in pressure yjp is manifested of the induction coil 3.0 connected by a cable 31 to an electrical indicating device 32, a diaphragm deflection scale 33 and a recording device 34. By means of couplings 7 made of TYGON, the individual parts of the device are connected into an air handling unit. Taps 8, 9 and 11 allow handling when filling and discharging gas from the metering system.
Pri meraní sa pootočením hlavného uzávěru 2, pri uzavretom dvojcestnom kohúte 8 naplní plynotesný elastický vak 6 na tlak p > p a nechá sa temperovat’ na teplotu okolitého priestoru. Po vytemperovaní plynu sa otvorí dv.ojcestný kohút 8, trojcestný kohút 9 a dvojcestný kohút 11. Tým sa umožní, aby plyn naplnil merací systém. Plnenie plynom sa kontroluje pomocou rovnoměrného prebublávania plynu v kontrolnej nádobě 24. Ďalej sa uvolní odvzdušňovacia skrutka 26, čím sa umožni, aby plyn naplnil membránová komoru. Po arčitom čase plyn naplní komoru 35 a aj celý mera* - ~ cí přístroj. Odvzdušňovacia skrutka 26 sa zaskrutkuje a postupné sa uzavrú dvojcestnó kohútiky 8 a 11. Celý merací systém je naplněný plynom s pretlakom p p . Hodnota 4P sa určí jednak na stupnici 18 zvýšením hladiny o hodnotlMh aFor the measurement, by turning the main closure 2, with the two-way valve 8 closed, the gas-tight elastic bag 6 is filled to a pressure p> p and allowed to temper to ambient temperature. After the gas has warmed up, the two-way valve 8, the three-way valve 9 and the two-way valve 11 are opened. This allows the gas to fill the metering system. The gas filling is controlled by uniformly bubbling gas in the inspection vessel 24. Next, the vent screw 26 is released to allow gas to fill the membrane chamber. After an arc time, the gas fills the chamber 35 and the entire metering device. The vent screw 26 is screwed in and the two-way taps 8 and 11 are gradually closed. The entire metering system is filled with a gas with an overpressure p p. The value of 4P is determined on the one hand on a scale of 18 by increasing the level by 1 µh and
225_W okrem toho aj na stupnici 33 elektrického indikačnóho prístroja 32. Potom sa zapne registračně zariadenie 34, čím sa merací proces zautomatizuje. V dósledku zníženia přetlaku, spósobenóho priepustnosťou membrány v meracom systéme začne výška hladiny A h antidifúznej kvapaliny 17 v nádobě 13 klesat’, pričom priehyb meranej membrány 28 sa přiblíží k nulovej hodnotě. Tento proces sa kontroluje na stupnici 33 elektrického indikátora 32. Celý priebeh zníženia tlaku4P v závislosti na čase sa zaznamená na registračný papier registračného zariadenia 34. Po ukončení pokusu sa celý systém opáť ódvzdušní odskriitkovaním odvzdušňovacej skrutky 26 a otvorením trojcestnóho kohútika 9 v zavzdušňovacej rúrke 10. Koeficient priepustnosti membrány P& sa určí podlá vztahu225_W also on the scale 33 of the electrical indicating device 32. Then, the recording device 34 is switched on, thereby automating the measurement process. Due to the reduction of the overpressure caused by the permeability of the membrane in the measuring system, the level A h of the anti-diffusion liquid 17 in the vessel 13 begins to decrease, with the deflection of the measured membrane 28 approaching zero. This process is checked on the scale 33 of the electrical indicator 32. The entire pressure drop over time 4P is recorded on the registration paper of the recording apparatus 34. After the experiment is complete, the entire system is again vented by unscrewing the vent screw 26 and opening the three-way tap 9 in the vent tube 10. The membrane permeability coefficient P '
kde Q je prete^čené objemové množstvo plynu za časovú jednotku v m3 * owhere Q is the flow volume of gas per unit time in m 3 * 0
S - plocha membrány v m ,S - membrane area in m,
- hrubka membrány v m,- diaphragm thickness in m,
Cj - Cg = Ac - koncentračný spád plynu po oboch stranách membrány.Cj - Cg = Ac - gas concentration gradient on both sides of the membrane.
Pro určenie difúznej priepustnosti je rozhodujúcim faktorem určenie okamžitého prietoku Q, ktorého hodnota bývá velmi malá /řádové 0,1 ram . s /. Hodnoty S, 1, C sú pre určitú membránu konstantně.For determining the diffusion permeability, the decisive factor is the determination of the instantaneous flow Q, whose value is very small / of the order of 0.1 ram. with /. The values of S, 1, C are constant for a particular membrane.
Pri výpočte prístrojovej konštanty sa injekčnou striekačkou 22 vstriekne do meracieho systému cez tesniacu zátku 21 určené množstvo plynu aV, v dósledku čoho sa zvýši tlak o Ap. Tým sa zvýši aj hladina v nádobě 13 o Ah = 8*. AP· Měrná hmotnost? dibutylftalátu t* = 1039,1 kg · m*3. Pri difúzii plynu eez membránu, sa po přetečení množstva AV, zníži tlak na póvodnú hodnotu , t.j. atmosferický tlak a v merac* com systéme prebieha izotermický jav. Například pri AV «To calculate the instrumentation constant, a specified amount of gas aV is injected into the measuring system via a syringe plug 22 as a result of which the pressure is increased by Aβ. This also increases the level in the vessel 13 by Ah = 8 *. AP · Specific gravity? dibutyl phthalate t * = 1039.1 kg · m * 3 . In the gas diffusion across the membrane, after the amount of AV is overflowed, the pressure is reduced to its original value, ie atmospheric pressure, and an isothermal phenomenon occurs in the measurement system. For example, in AV «
225 409 q225,409 q
9.10 m sa zvýši tlak v meracom systéme na 96 Pa a přístrojová konštanta sa vypočítá podlá vzťahu9.10 m the pressure in the measuring system is increased to 96 Pa and the instrument constant is calculated according to the relation
K - .. ίο”6 = 0,09375 - ΙΟ-θπΑΡβ“1.K - .. ίο ” 6 = 0.09375 - ΙΟ-θπΑΡβ“ 1 .
Δρ . 96Δρ. 96
Je to množstvo přetečeného vzduchu pri tlakovom spáde 1 Pa. Pre výpočet priepustnosti cez membránu třeba vypočítat’ ešte okamžité přetečené množstvo Q, ktoré sa vypočítá podlá vztahu q - --dV_ / m3 .· s ”1/ dTThis is the amount of overflow air at a pressure drop of 1 Pa. To calculate the membrane permeability, the instantaneous overflow quantity Q must be calculated, which is calculated according to the relation q - - dV_ / m 3. · S ” 1 / dT
Sposob merania difúznej priepustnosti plynov cez membrány možno využit’ v zdravotnictvo v pulmonálnej diagnostiko, v chemicko-fyzikálnych laboratořiach a skúšobniach.The method of measuring the diffusion permeability of gases across membranes can be used in the healthcare industry in pulmonary diagnostics, in chemico-physical laboratories and test rooms.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS110482A CS225409B1 (en) | 1982-02-18 | 1982-02-18 | Measuring of the diffusing permeability of gases through membranes |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS110482A CS225409B1 (en) | 1982-02-18 | 1982-02-18 | Measuring of the diffusing permeability of gases through membranes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS225409B1 true CS225409B1 (en) | 1984-02-13 |
Family
ID=5344543
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS110482A CS225409B1 (en) | 1982-02-18 | 1982-02-18 | Measuring of the diffusing permeability of gases through membranes |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS225409B1 (en) |
-
1982
- 1982-02-18 CS CS110482A patent/CS225409B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5509294A (en) | Apparatus for determining amount of gases dissolved in liquids | |
| US6857307B2 (en) | Method and device for the determination of the gas permeability of a container | |
| CN106153522B (en) | Core porosity measuring device and measuring method | |
| US3520657A (en) | Method and apparatus for the analysis of off-gases in a refining process | |
| Washburn et al. | Porosity: VI. Determination of porosity by the method of gas expansion | |
| GB833913A (en) | Improvements in gas flow calibrator | |
| US5110214A (en) | Apparatus and method for evaluating the propensity of polymers for smoking during processing | |
| CS225409B1 (en) | Measuring of the diffusing permeability of gases through membranes | |
| US4016743A (en) | Variable leak gas source | |
| US2736190A (en) | Gauge | |
| RU174038U1 (en) | LABORATORY INSTALLATION FOR MEASURING THE BIOGAS VOLUME FORMED BY DECOMPOSITION OF ORGANIC MATERIALS UNDER ANAEROBIC CONDITIONS | |
| US3783697A (en) | Method of determining small surface areas | |
| RU2162596C2 (en) | Method measuring density | |
| US3431772A (en) | Method and apparatus for determining the permeability of a material | |
| RU196401U1 (en) | Laboratory apparatus for determining the mass fraction of the main substance in alkali metal hydrides and carbides | |
| US3420094A (en) | Apparatus for measuring permeability | |
| CN206557046U (en) | A kind of Ubbelohde viscometer of improvement | |
| RU216571U1 (en) | DENSITY ANALYZER FOR PRECISION DENSITY MEASUREMENTS OF LIQUIDS | |
| US3182487A (en) | Testing for volume of soluble gases | |
| US3299713A (en) | Method and apparatus for determining the surface area of finely divided substances bygas adsorption | |
| CN207570961U (en) | A liquid density measuring device | |
| Fries | Gas flow measurements by the total-count method | |
| RU2247964C2 (en) | Method of measuring density | |
| CZ36119U1 (en) | Equipment for determining the transport properties of non-porous polymeric materials for gases | |
| RU2176078C2 (en) | Procedure measuring density |