CS224834B1 - Method of surface hardening - Google Patents
Method of surface hardening Download PDFInfo
- Publication number
- CS224834B1 CS224834B1 CS278382A CS278382A CS224834B1 CS 224834 B1 CS224834 B1 CS 224834B1 CS 278382 A CS278382 A CS 278382A CS 278382 A CS278382 A CS 278382A CS 224834 B1 CS224834 B1 CS 224834B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- weight
- cast iron
- abrasion resistance
- graphite
- carbon
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 4
- 229910001018 Cast iron Inorganic materials 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 238000005299 abrasion Methods 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 229910001566 austenite Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims 1
- 210000002966 serum Anatomy 0.000 claims 1
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010451 perlite Substances 0.000 description 3
- 235000019362 perlite Nutrition 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001296 Malleable iron Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001141 Ductile iron Inorganic materials 0.000 description 1
- 229910001060 Gray iron Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- QMQXDJATSGGYDR-UHFFFAOYSA-N methylidyneiron Chemical compound [C].[Fe] QMQXDJATSGGYDR-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Description
Vynález sa týká spósobu povrchového kalenia grafitických liatin ná zvýšenie ich oteruvzdomosti.The invention relates to a method for surface hardening of graphitic cast iron and to increase their abrasion resistance.
Grafitické liatiny, teda eutektické, alebo eutektiekému zloženiu blízka, sú zliatiny železa a uhlíka s obsahom uhlíka věčším ako 2,14 %, ktoré obsahujú ďalšie prvky, ako například křemík, mangán, fosfor, síru a eventuálně prvky legujúcewčasť uhlíka majú vylúčenú v štruktúre ako grafit. V radě technických aplikácií sa tieto zliatiny uplatňujú ako materiály s dobrými klznými vlastnostami v podmienkach kvapalného'i polosuchého trenia. Dobré klzné vlastnosti sú podmienené prítomnosťou grafitu v ich štruktúre, ktorý jednak podporuje vznik súvislého filmu maziva, jednak ako měkká štruktúraa zložka je schopný pósobit ako mazivo v podmienkach polosuchého trenia» Túto schopnost má menovite sivá liatina, liatiny tvárné, temperované· Liatiny s červíkovým grafitom majú túto schopnost rozvinutú v menšej miere.Graphitic cast iron, i.e. eutectic or eutectic in composition, are iron-carbon alloys with a carbon content of more than 2.14% containing other elements such as silicon, manganese, phosphorus, sulfur and possibly alloying elements w- part of the carbon are excluded in structure like graphite. In many technical applications, these alloys are used as materials with good sliding properties under conditions of liquid and semi-dry friction. Good sliding properties are due to the presence of graphite in their structure, which both promotes the formation of a continuous lubricant film, as well as a soft structure and is capable of acting as a lubricant in semi-dry friction conditions »Gray iron, malleable cast iron, tempered they have this ability developed to a lesser extent.
ZFROM
Oteruvzdornost liatin závisí od kvality ich kovověj hmoZ Z ty, ktorá sa uvadza ako dósledok chemického zloženia liatiny, od podmienok chladnutia pri tuhnutí a eventuálně od tepelného spracovania. V odliatom stave obsahuje štruktúra grafitických liatin ferit a perlit v róznom pomere., V medzných prípadoch móžu byt teda liatiny výhradně perlitické, výhradně feritickéThe abrasion resistance of cast irons depends on the quality of their metallic castings, those mentioned as a result of the chemical composition of the cast iron, the cooling conditions at solidification and possibly the heat treatment. In the cast state, the structure of graphite cast iron contains ferrite and perlite in a different ratio. In marginal cases, the cast iron may therefore be exclusively pearlitic, exclusively ferritic
224 834 alebo můžu obsahovat perlit a ferit v róznom pomere. Oteruvzdornost liatin s obsahom feritu je horšia ako u čisto perlitických liatin. Oteruvzdernost závisí ďalej od kvality per% litu, od množstva, tvaru a rozloženia grafitu, rozloženia perlitu a od přítomnosti dalších štruktúrnych zložiek /eutek‘ tického cementitu, fosfidického eutektika a podobné/.224,834 or may contain perlite and ferrite in a different ratio. The wear resistance of ferrite-containing cast iron is worse than that of purely pearlitic cast iron. Abrasion resistance depends further on the quality of the% lite, the quantity, shape and distribution of the graphite, the distribution of the perlite and the presence of other structural components (eutectic cementite, phosphidic eutectic and the like).
Mierou oteruvzdornosti liatin je v technickej praxi tvrdost, ktorej praxou overené hodnoty nepripúštajú v liatinách výskyt vhčšieho množstva feritu. Výskyt feritu v ětruktúré liatin sa potlačuje riadeným chladením odliatkov, úpravou základného chemického zloženia liatiny, alebo legováním cínom, antimonom, méďou atď., v krajnom případe tepelným spracovaním. Ůvedené spdsoby zásahov do kryštalizácie liatin zvyšujú ich tvrdost, ale súčasně spdsobujú kvantitativné a kvalitativně změny vo vylučovaní grafitu, a to všeobecne s negativnými úěinkami na jeho schopnost udržiavat súvislý film mazadla a schopnost bránit zadieraniu. Okrem toho zvýšenie tvrdosti liatin nemusí bezvýhradné prinášat menšie opotrebovanie listinových súčiastok. Drobné grafitické útvary sa pri mechanickom obrábaní·, dokončujúcich operáciach i účinkom prevádzkových tlakov Xahko prekrývajú deformovaným okolitým materiálem a stracajú vyššie uvedené schopnosti, a to so všetkými ddsledkami pre opotrebenie, ktoré z tejto změny vyplývajú. Ferit málo odolává otěru, pretože je mSkký. Naviac v podmienkach polosuchého trenia obmedzuje pozitivny účinok grafitu ako maziva alebo rezervoáre maziva tým, že grafitové útvary překrývá alebo úplné zakrýva.The degree of abrasion resistance of cast iron is in technical practice the hardness, whose values verified by practice do not allow the presence of a higher amount of ferrite in cast iron. The occurrence of ferrite in the structure of cast iron is suppressed by controlled cooling of castings, modification of basic chemical composition of cast iron, or by alloying with tin, antimony, copper, etc., in extreme cases by heat treatment. These methods of cast iron crystallization increase their hardness, but at the same time cause quantitative and qualitative changes in graphite excretion, generally with negative effects on its ability to maintain a coherent lubricant film and the ability to prevent galling. In addition, increasing the hardness of cast iron does not necessarily entail less wear of the paper components. Tiny graphitic formations overlap with deformed surrounding material during mechanical machining, finishing operations and Xpress operating pressures and lose the abovementioned abilities, with all the consequences for wear resulting from this change. Ferrite does not resist abrasion because it is soft. In addition, in semi-dry friction conditions, it limits the positive effect of graphite as lubricants or lubricant reservoirs by covering or completely covering the graphite formations.
Uvedené nedostatky sa odstránia spdsobom povrchového kalenia^s rýchlym povrchovým ohrevóm na austenitizačnútepl-otu A následným vyvoláním rozpadu austenitu rýchlym ochladenímz grařitických liatinzs obsahom 2,8 až 4,0 % hmotnostných uhlíka, 1,8 až 3,3 % hmotnostných kremíka, 0,2 až 0,8 % hmotnostných mangánu, 0,06 až 0,12 % hmotnostných horčíka, 0,01 až 0,07 % hmotnostných síry a maximálně 0,2 % hmotnostných fosfoarThe above mentioned disadvantages are removed by the surface hardening ^ spdsobom the rapid heating of the surface austenitizačnútepl-ol and subsequent development of the austenite disintegration by rapid cooling of the cast iron grařitických containing 2.8 to 4.0% by weight of carbon, 1.8 to 3.3% by weight of silicon 0.2 to 0.8 wt% manganese, 0.06 to 0.12 wt% magnesium, 0.01 to 0.07 wt% sulfur, and a maximum of 0.2 wt% phosphoar
224 834 ru na zvýšenie ich oberu vzdornosti podTa vynalezu, ktorého podstata spočívá v tom, že grafiticka liatina sa povrchovo ohrieva zdrojom končentrovanej tepelnej energie, ako například laserovým lúčom;na teplotu v rozmedzí od 723 °C do 1 190 °C rýchlosťou ohřevu v rozmedzí od 30 °C.s“^ do 2 000 0C,s“^ a následné sa ochladí na voTnom vzduchu·224 834 to increase their abrasion resistance according to the invention, which is characterized in that the graphitic iron is surface-heated by a source of concentrated thermal energy, such as a laser beam ; to a temperature in the range of 723 ° C to 1 190 ° C at a heating rate in the range of 30 ° Cs "to 2 000 ° C, s" ^ and then cooled in the open air ·
Použitím tepelného spracovania podTa vynálezu vznikajú na ploché odliatku súvislé prúžky transformovaného austenitu, tvořeného martenzitom až jemným perlitom so zvýšenou oteruvzdornosťou· zároveň sa zachovává pozitivny účinok grafitu v Štruktúre, čím sa zábezpečia klzné vlastnosti pri zvýšenej celkovej odolnosti kovověj hmoty liatiny oproti opotrebeniu· Tento postup je použitelný u perlitických liatin, ako sú sivá, tvárná, temperovaná liatina a liatina s červíkovým grafitom· Výrazné zlepšenie óteruvzdornosti sa dosiahne aj u liatin obsahu júcich v štruktúre ferit·By using the heat treatment according to the invention, continuous strips of transformed austenite formed from martensite to fine pearlite with increased abrasion resistance are formed on the flat casting. applicable to pearlitic cast iron, such as gray, ductile, malleable cast iron and worm graphite cast iron · Significant improvement in wear resistance is also achieved in cast iron containing ferrite structure ·
Příklad 1Example 1
Ako východzí materiál bola použitá tvárná liatina s obsahom 3,41 % hmotnostných uhlíka, 2,5 % hmotnostných kremíka, 0,72 % hmotnostných mangánu, 0,10 % hmotnostných horčíka, 0,015 % hmotnostných síry, 0,0^2 % hmotnostných fosforu, so stopovým obsahom hlinika, chrómu a médi, s pevnosťou v ťahu 490 MPa, s ťažnosťou meranou na tehesku o dížke rovnej p&ťnásobku priemeru r Vzorky boli vystavené účinku postupujúceho laserového lúča o šírke 5 mm, čím sa povrchová vrstva ohriala nad austenitickú teplotu, ktorá v tomto případe bola 810 °G. Rozpad austenitu sa uskutočňoval voTným odvodom tepla do okolitého prostredia. V mieste pčsobenia laserového lúča bola kontrolovaná štruktúre povrchovej vrstvy, v ktorej bola zistená martenzitická štruktúra zvyšujúca oteruvzdornosť východiskového materiálu· Účinok laserového lúča možno nahradit účinkom iných zdrojov koněentrovanej energie, ako sú elektronový lúč a mikro plazma.Ductile iron with a content of 3.41% by weight of carbon, 2.5% by weight of silicon, 0.72% by weight of manganese, 0.10% by weight of magnesium, 0.015% by weight of sulfur, 0.0 ^ 2% by weight of phosphorus was used as starting material. , with a trace of aluminum, chromium and media, with a tensile strength of 490 MPa, with a ductility measured at a length equal to five times the diameter r The samples were exposed to an advancing laser beam of 5 mm width, thereby heating the surface layer above an austenitic temperature in this case it was 810 ° C. The decomposition of austenite was effected by free heat dissipation into the surrounding environment. At the laser beam site, the structure of the surface layer was checked, in which a martensitic structure was found to increase the abrasion resistance of the starting material. The effect of the laser beam can be replaced by the effects of other energy sources such as electron beam and micro plasma.
Příklad 2Example 2
224 834 ím φΐκΜί Mál τ me ρωε uoia použitá bítú lisi tíná s obsahom 3,41 % hmotnostných uhlíka% hmojtnbstných kremíka, 0,72 % hmotnostných mangáW?f^02I% hmotnostných síry, 0,038 % hmotnostných fosforu a stopovým obsahom hliníka, s pevnostou v tahu 420 MPa, s tažnostouzmeranou na teliesku o dížke rovnej pStnásobku priemeru, rovnou 10,2 % s kontrakciou 9,6 % a tvrdostou 160 HB. Vzorky boli vystavené účinku laserového lúča s parametrami rovnakými ako v prvom příklade. Rozpad austenitu sa takisto uskutočňoval volným odvodom tepla do okolitého prostredia a rovnako sa dosiahla v mieste pdsobenia laserového lúča martenzitická štruktúra zvyšujúca oteruvzdornosť východzieho materiálu. Účinok laserového lúča, podobné ako v příklade 1, možno nahradit účinkom iných zdrojov koncentrovanéj energie, ako sú elektronový lúč a mikroplazmao 224 834 m φ MκΜί Less than the white color used has a content of 3.41% by weight of carbon% by weight of silicon, 0.72% by weight of manganese? F ^ 02I% by weight of sulfur, 0.038% by weight of phosphorus and trace aluminum, with strength with a tensile strength of 420 MPa, with a ductility from measured on a body with a length equal to p times the diameter, equal to 10.2% with a contraction of 9.6% and a hardness of 160 HB. The samples were exposed to a laser beam with parameters identical to those of the first example. The decay of austenite was also effected by free heat dissipation into the surrounding environment, and a martensitic structure increasing the abrasion resistance of the starting material was also achieved at the laser beam exposure site. The effect of the laser beam, similar to that of Example 1, can be replaced by the effect of other concentrated energy sources, such as the electron beam and the microplasm .
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS278382A CS224834B1 (en) | 1982-04-19 | 1982-04-19 | Method of surface hardening |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS278382A CS224834B1 (en) | 1982-04-19 | 1982-04-19 | Method of surface hardening |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS224834B1 true CS224834B1 (en) | 1984-01-16 |
Family
ID=5365917
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS278382A CS224834B1 (en) | 1982-04-19 | 1982-04-19 | Method of surface hardening |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS224834B1 (en) |
-
1982
- 1982-04-19 CS CS278382A patent/CS224834B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Paczkowska et al. | The influence of various cooling rates during laser alloying on nodular iron surface layer | |
| Amezhnov et al. | Effect of non-metallic inclusion chemical and phase composition on corrosion resistance of carbon and low alloy steels in water media typical for oilfield pipeline operating conditions | |
| Fischer et al. | In-situ surface hardening of cast iron by surface layer metallurgy | |
| Mitelea et al. | Enhancement of cavitation erosion resistance of cast iron with TIG remelted surface | |
| Dojka et al. | Influence of Ti and REE on primary crystallization and wear resistance of chromium cast iron | |
| Kyryliv | Improvement of the wear resistance of medium-carbon steel by nanodispersion of surface layers | |
| Aguado et al. | The effect of the substitution of silicon by aluminum on the properties of lamellar graphite iron | |
| Pires et al. | Influence of pre-inoculation treatment on non-metallic micro-inclusion population and microstructure of spheroidal graphite irons | |
| CS224834B1 (en) | Method of surface hardening | |
| Zhou et al. | Study on the Decarburization Kinetics of Fe-C Alloy Strips in an Ar-H2-H2O Atmosphere | |
| Safonov | Special features of boronizing iron and steel using a continuous-wave CO2 laser | |
| Gecu | Microstructure, mechanical, and wear properties of Al-alloyed austempered ductile irons | |
| Stepanova et al. | Effect of Aluminum, Copper and Manganese on the Structure and Properties of Cast Irons | |
| Almanza et al. | Influence of cobalt in the tensile properties of ½ inch ductile iron Y-blocks | |
| Kostyleva et al. | Wear-resistant cast iron containing spheroidal graphite with a two-layer Ledeburitic–Martensitic shell | |
| Stepanova et al. | Peculiarities of copper precipitation in hypereutectoid steels | |
| Rundman et al. | On the Effects of Molybdenum on the Kinetics of Secondary Graphitization in Quenched and Tempered Ductile Irons.(Retroactive Coverage) | |
| Tokunaga et al. | Effect of nickel content on microstructural evolution in austempered solution-strengthened ferritic ductile cast iron | |
| Zhuchkov et al. | Prospects for using boron in metallurgy. Report 2 | |
| Stefan et al. | Application of thermal analysis in solidification pattern control of La-inoculated grey cast irons | |
| Franzen et al. | Application of Surface Layer Inoculation Processes to Solid Solution-Strengthened Ductile Cast Iron | |
| Çelikyürek | Salt Bath Nitriding of Fe3Al Based Intermetallic Compound | |
| Gunalan et al. | A holistic approach of developing new high strength cast iron for weight optimization | |
| Kim et al. | Empirical activation energies of MnO and SiO2 reduction in SiMn slags between 1500 and 1650 C | |
| Ovcharenko et al. | Influence of Nitrogen on Chromium Cast Iron Structure and Properties |