CS221002B1 - Method of making the water solutions of nitrates and/or magnesium chlorides - Google Patents

Method of making the water solutions of nitrates and/or magnesium chlorides Download PDF

Info

Publication number
CS221002B1
CS221002B1 CS667781A CS667781A CS221002B1 CS 221002 B1 CS221002 B1 CS 221002B1 CS 667781 A CS667781 A CS 667781A CS 667781 A CS667781 A CS 667781A CS 221002 B1 CS221002 B1 CS 221002B1
Authority
CS
Czechoslovakia
Prior art keywords
magnesium
calcium
carbon dioxide
reaction mixture
nitrate
Prior art date
Application number
CS667781A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Jan Teren
Eduard Hutar
Original Assignee
Jan Teren
Eduard Hutar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan Teren, Eduard Hutar filed Critical Jan Teren
Priority to CS667781A priority Critical patent/CS221002B1/en
Publication of CS221002B1 publication Critical patent/CS221002B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/38Magnesium nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)

Description

-Vynález, sa týká.sposobu výroby vodných roztokov dusičnanov a/alebo chloridov horečnatých z horečnatých surovin obsahujúcich uhličitanový, alebo hydrogenuhličitanový anión, kysličník, alebo hydroxid horečnatý, ktorého podstata spočívá v tom, že horečnatá surovina obsuhujúca uhličitanový a/alebo hydrogenuhličitanový anión, a/alebo kysličník a/alebo hydroxid horečnatý sa vo vodnom prostředí podrobí chemickej reakcii s dusičnanom a/alebo chloridom vápenatým, a to bez, alebo v přítomnosti kysličníka uhličitého a/alebo kyseliny uhličitej a/alebo v přítomnosti niektorej z jej vo vodě rozpustných solí, pričom volný kysličník uhličitý a připadne tiež kysličník uhličitý odpovedajúci konverzii hydrogenuhličitanov na normálně uhličitany sa připadne z reakčnej zmesi v ďalšom stupni výrobného procesu odstráni a reakciou vzniknutý dusičnan a/ /alebo chlorid horečnatý sa z reakčnej zmesi připadne ďalej oddělí vo formě vodného roztoku, alebo reakčná zmes sa spracuje na suspenzné hnojivo obsahujúce hořčík a vápník.

Vynález sa týká spósobu výroby vodných roztokov dusičnanov a/alebo chloridov horečnatých z horečnatých surovin obsahujúcich uhličitanový alebo hydrouhličitanový anion, kysličník alebo hydroxid horečnatý.

Hořčík patří medzi nevyhnutné zložky rastlinné] výživy a je podstatnou zložkou rastlinného zeleného farbiva chlorofylu.

Vplýva na premiesťovanie živin, predovšetkým fosforu zo starých listov a stoniek do rastúcich rastlín. Zjistil sa tiež priaznivý vplyv horčíka na priebeh oxido-redukčných procesov v rastlinách. Je aktivátorom biochemických reakcí vedúcich k tvorbě glycidov a procesov spojených s premenou fosforu v rastlinách. Potvrdilo sa tiež, že pri nedostatku horčíka sa hromadia v listoch rastlín monosacharidy.

Nateraz medzi najpoužívanejšie priemyselné hnojivá obsahujúce hořčík patria například Thomasova múčka (7 % MgO); Kamex (asi 3,5 % MgO viazaného vo formě MgSOá); Emgekali (asi 5 % vo formě MgSOd) kieserit (technický MgSCh); dolomitické vápence s obsahom asi 20 % MgCb; magnezitový úlet z kalcinačných pecí, obsahujúci asi 65 % MgO a špeclálne listové hnojivá, ktoré sa v súčasnosti pripravyjú do výroby a ktoré obsahujú hořčík viazaný na síranový anión.

Hořčík patří medzi tie rastlinné živiny, ktoré sú rastliny schopné velmi dobře sorbovať aj fcez listy. Ako uvádza JÚRGENS, G. [Der Erwerbs — Gártner č. 17 (26), apríl 1972]; WITTWER, S. H. („Foliar Application of Fertilizer“ — Department of Horticulture, Michigan State University, East Lansing, Michigah, USA) a HUDSKÁ, G. [Agrochemie 16 (5), 144 (1976)] doba polovičnej sorbcie horčíka listovou plochou je asi 2 až 5 hodin, kým například pre sorbciu vápnika, zinku a mangánu sa uvádza doba 1 až 2 dni a 50%-ná sorbcia draslíka po jeho foliarnej aplikácii sa dosahuje až počas ,10 až 24 dni.

Z uvedených dóvodoch sa v zahraničí a v posledných rokoch i u nás vyvíja viacero špeciálnych priemyselných hnojív obsahujúcich popři ostatných základných, sekundárných a mikroživinách tiež hořčík, určený predovšetkým pre mimokoreňovú výživu rastlín.

Popři sírane horečnatom, resp. sírane horečnato-draselnom sa ako vhodný zdroj horčíka uvádza tiež dusičnan horečnatý, najmá v zmesiach s močovinou a základným dusíkatým roztokom [Agrochémia 16, 12, 344-348 (1976)]. Ukázalo sa, že MgSCU a Mg(NO3)2

MgCCb + Ca(NO3)2 ----MgCO3 + CaCk ----MgCCb + CO2 + H2O ---MgO + 2CO2 + H2O ----Mg(OH + 2CO2 ----Mg(HCO3)2 + Ca(NO3)2 ----Mg(HCO3)2 + CaCl2 ---MgO + 2CO2 + Ca(NO3)2 + H2O--MgO + 2CO + CaCl2 + H2O ---Ca(HCO3)2 —---► sú vhodnými zdrojmi horčíka pre preventivné ale i kuratívne ošetrovanie pofnohospodárskych kuitúr.

Základem doposial' používaných spůsobov výroby Mg(N£>3)2 je rozklad — tzv. vylúhovanie horečnatej suroviny (obvykle kalcinovaného magnezitu) kyselinou dusičnou za vzniku tzv. hnedej suspenzie, filtráciou ktorej sa v ďalšej časti výrobného procesu získá čistý roztok dusičnanu horečnatého a vápenatého. NAJMR, S. uvádza („Výroba MgO nitrátovým zposobom s využitím vedlejších produktov a odpadlých látok“, Košice 1974), že proces vylúhovania možno viesf tak, aby filtrát pozostával prevažne z Mg(NO3)2 s malým obsahom Ca(NO3)2, pričom ich koncentrácia v roztoku je asi 40 percent [Mg(NO3)2 4- CaíNOáJz], obsah Fe sa pohybuje okolo 2.10_4% sa vyskytuje len v stopách.

Teraz sa zistilo, že vodné roztoky dusičnanov a/alebo chloridov horečnatých možno z horečnatých surovin připravit spósobom podfa vynálezu, ktorého podstata spočívá v tom, že horečnatá surovina obsahujúca uhličitanový a/alebo hydrogenúhllčitanový anión a/alebo kysličník a/alebó hydroxid horečnatý sa vo vodnom prostředí podrobí chemické j reakcii s dusičnanom a/aiebo chlorídom vápenatým, a to bez alebo v přítomnosti kysličníka uhličitého a/alebo kyseliny uhličitej a/alebo v přítomnosti niektorej z jej vo vodě rozpustných solí.

Volný kysličník uhličitý a připadne tiež kysličník uhličitý odpovedajúci konverzii hydrogenuhličitanov na normálně uhličitany sa připadne z reakčnej zmesi v ďalšom stupni v záujme prehlbeniá konverzie odstráni. Nejjednoduchšie možno kysličník uhličitý z reakčnej zmesi odstráníf jej zahratim a/alebo prevzdušnením. Podvojným rozkladom vzniknutý dusičnan a/alebo chlorid horečnatý vo formě vodného roztoku sa z reakčnej zmesi připadne v ďalšej fáze výrobného procesu odstráni, s výhodou sedimentáciou, filtráciou alebo odstředěním. V případe výroby horečnato-vápenatého suspenzního hnojivá možno reakčnú zmes bez separácie špracovať na produkt uvedeného typu stabilizáciou tuhého podielu obsahujúceho uhličitan vápenatý vzniknutý reakciou.

Ako už z uvedeného vyplývá, pri značnom zjednodušení možno spósob výroby dusičnanu a/alebo chloridu horečnatého podfa vynálezu znázornit týmito chemickými rovnicami:

Mg(NG3)'2 -I- CaCO3 (1)

MgCl2 + CaCO3 (2)

Mg(HCO3)2 (3)

Mg(HCO3)2 (4)

Mg(HCO3)2 (5)

Mg(NO3(2 + Ca(HCO3)2 (6)

MgCl2 + Ca(HCOrf)>2 (7)

Mg(NO3)2 + Ca(HCO3)2 (8)

MgClz + Ca(HCO3)2 (9)

CaCO3 + CO2 + H2O (10)

Priebeh reakcii v smere zlava doprava je podmienený značnými rozdielmi v rozpustnosti jednotlivých zložiek, pričom najmenšiu rozpustnost v študovanom systéme vykazujú CaCO3 a Ca(HCO3)2 [rozpustnosti CaCO3, Ca(HCO3j2 a Mg(HO3j2 vo vodě sú pri 25 °C 3 . ΙΟ“3 o/o caCOs; 0,43% Ca(HCO3)2 a 13,0% Mg(HCO3)2 pri 18 °C],

V porovnaní s dnes používanými výrobnými postupmi má spósob podl'a vynálezu celý rad výhod, z ktorých možno uviesť, že příprava Mg(NO3)2, resp. MgCh týmto spósobom sa uskutočňuje bez nárokov na spotřebu minerálnych kyselin HNO3 resp. HClj, ako horečnatá surovina možu byť použité v hojnom množstve v přírodě sa vyskytujíce minerály (magnezit, dolomit).

Vhodným zdrojom Ca(NO3]2 a CaClž možu byť rózne sekundárné produkty anorganických technologií, ktorých významnou súčasťou sú uvedené typy vápenatých solí (napr. tetrahydrát dusičnanu vápenatého vznikajúci ako vedlejší produkt pri výrobě granulovaného NPK-hnojiva vymrazovacou technológiou, alebo koncentrovaný vodný roztok CaCh odpadajúci pri výrobě extrakčnej H3PO4 procesom „IMI“ — po rozklade fosfátu kyselinou chlorovodíkovou a pod.J.

Zdrojom kysličníka uhličitého možu byť odplyny z viacerých procesov anorganickej alebo organickej chemickej technologie (výpierky CO2 v súvislosti s přípravou syntéznej zmesi pri výrobě amoniaku, dekarbonizačné procesy, procesy kvasnej chémie a pod.), alebo tiež plynné produkty rozmanitých spalovacích procesov a podobné. Procesom podfa vynálezu sa zhodnocujú pre výživu rastlín obe reakčné zložky, keďže popři vodorozpustnej horečnatej soli tvoriacej hlavný reakčný produkt je úplné zhodnotitefná tiež druhá zložka reakcie — CaCO3 resp. Ca(HCO3). Vzhíadom na koloidný charakter v reakčnej sústave tvoriacich sa uhličitanov vápenatých, vyznačujú sa tieto vysokou neutralizačnou schopnosťou, čo móže byť s výhodou využité pri zásobnom melioračnom hnojení pódy vápenatou zložkou. Vychádzajúc z koloidného charakteru tuhých čiastočiek obsiahnutých v rovnovážnej sústave, uhličitany vápenaté, ktoré tvoria ich podstatu, možu byť s výhodou použité na přípravu stabilných vápenatých suspenzných hnojív.

Za určitých okolností, najma pre hnojenie pódy horčíkom. pri súčasnej potrebe vápenia, možno reakčnú zmes použiť po úpravě jej fyzikálno-mechanických vlastností (stabilizácii dispergovaných tuhých častíc) a připadne i po úpravě jej chemického zloženia, priamo ako účinné suspenzné horečnato-vápenaté hnojivo. Výrobný proces v zmysle vynálezu je mimoriadne jednoduchý, nekladie vysoké nároky na strojno-technologické zariadenie ani z Wadiska vývoja špeciálnych zariadení ani atypického riešenia jednotlivých aparátov. Vyvinutý proces neuvažuje s používáním látok hořlavých, žieravých ani toxických, nekladie mimoriadne požiadavky na obsluhu a možno ho kontinualizovať.

Ďalej uvádzané příklady objasňujú, avšak neobmedzujú predmet vynálezu.

Prieklad 1 až 5

Spósob výroby vodného roztoku dusičnanu horečnatého reakciou kysličníka horečnatého s dusičnanom vápenatým v přítomnosti kysličníka uhličitého a vody podfa vynálezu v zmysle ideovej reakčnej schémy:

I. MgO + 2CO2 + Ca(NO3)2 + H2O —> —> Mg(NO3)2 + Ca(HCO3)2 resp.

t

II. Ca(HCO3)2---> CaCO3 + CO2 + H2O sme experimentálně ověřovali v sérii orientačných laboratórnych pokusov.

Počas urobených piatich pokusov sme pracovali s rovnakými návažkami týchto základných reakčných zložiek:

.v. /? ΐ!’; (

8,2 g kysličníka horečnatého (chemicky čistý)

47,8 g kryštalického dusičnanu vápenatého [Ca(NO3]2.4H2O] a

59,1 g prevarenej destilóvanej vody (laboratórnej teplotýj.

V 1. a 2. pokuse sme pri teplote miestnosti reakčnú zmes — suspenziu připravená zhomogenizovaním vyššie uvedených zložiek sýtili po dobu 50 minút za miešania

17,8 g plynného kysličníka uhličitého, připraveného sublimácion tuhého kysličníka uhličitého.

Počas 3. a 4 pokusu sme sýtenie suspenzie kysličníkom uhličitým, vzhíadom na zvýšené množstvo použitého tuhého resp. plynného CO2, predížili na 60 resp. 71 minút. V piatom pokuse sme pracovali s navážkou

35,6 g tuhého CO2, pričom suspenziu připravenu zmiešaním 59,1 gramu vody, 47,8 gramu Ca-(NO3)2.4H2O a 8,2 gramu MgO sme sýtili kysličníkom uhličitým za miešania po dobu 80 minút. Po uplynutí uvedenej doby (po ukončení sýtenia kysličníkom uhličitým) sme v případe pokusov 1 a 3 reakčnú zmes ihned' rozdělili filtráciou cez sklenenú filtračnú fritu „S-4“, u pokusov 2, 4 a 5 sme tak urobili až po hodinovom povarení reakčnej zmesi na vodnom kúpeli (95 až 100 °Cj.

Vážením sme stanovili množstvá získaných filtrátov a vlhkých filtračných koláčov pre jednotlivé pokusy a vo filtráte sme chelatometrickými titráciami stanovili obsah horčíka a vápnika. Získané výsledky sú súhrnne uvedené v tabufke 1.

210 0 2

Tabulka 1

Hmotnostně množstvá zložiek Příklad získaných separáciou reakčnej zmesi resp. (g)

Obsah sledovaných zložiek vo filtráte

pokus číslo filtračný koláč (vlhký) filtrát vápník (% Ca) hořčík (% Mg) 1 26,14 88,69 6,21 1,01 2 31,89 53,07 7,67 2,01 3 27,77 87,14 5,09 1,62 4 32,69 58,66 5,81 2,75 5 37,65 57,46 4,93 3,09

Příklad 6 až 9

Spósob výroby chloridu horečnatého vo formě jeho vodného roztoku reakciou kysličníka horečnatého s chloridom vápenatým v přítomností kysličníka a vody, podfa vynálezu, v zmysle ideovej reakčnej schémy:

I. MgO + 2CO2 + CaCl2 + H2O —---—-——► MgCl2 + Ca(HCO3)2 resp.

t

II. Ca(HCO3]2 ----> CaCO3 + CO2 + H2O sme experimentálně ověřovali v sérii nasledujúcich laboratórnych pokusov.

Vo všetkých pokusoch tejto série (příklady 6 až 9) sme pracovali s rovnakými navážkami týchto základných reakčných zložiek:

12,7 g kysličník horečnatý (chemicky čistý)

35,0 g bezvodý chlorid vápenatý

75,7 g prevarená destilovaná voda (labor. teploty).

V príkladoch 6 a 7 sme reakčnú zmes— — suspenziu pripravenú zhomogenízovaním vyššie uvedených zložiek sýtili prí teplote miestnosti po dobu 60 minút 41,6 g plynného kysličníka uhličitého, získaného odpařením tuhého CO2. Počas pokusov 8 a 9 sa postupovalo obdobným spósobpm pričpm reakčnú zmes sme po dobu 75 resp. 80 minút sýtili 55,5 g plynného CO2.

Po ukončení sýtenia reakčnej zmesi kysličníkom uhličitým sme u pokusov 6 a .8 reakčnú zmes ihned rozdělili filtrácipu cez sklenenú fritu „S-4“ a v případe pokusov 7 a 9 sme tak urobili až po 1 hodinovotn ppvarení reakčnej zmesi na vodnom kúpeli.

Vážením sme stanovili množstvá získaných filťrátov ako aj vlhkých koláčov a v čirých filtrátech sme chelatometricky stanovili obsah horčíka a vápnika.

Dosiahnuté výsledky sú zhrnuté v tabui'ke 2.

Tabulka 2

Příklad Hmotnostně množstva zložiek resp. získaných separáciou reakčnej zmesi Obsah sledovaných zložiek pokus (g)

číslo filtračný koláč

The invention relates to a process for the production of aqueous solutions of nitrates and / or magnesium chlorides from magnesium raw materials containing a carbonate or bicarbonate anion, an oxide or magnesium hydroxide, characterized in that the magnesium feedstock containing carbonate and / or bicarbonate anion, / or the oxygen and / or magnesium hydroxide is chemically reacted with nitrate and / or calcium chloride in the aqueous medium, without or in the presence of carbon dioxide and / or carbonic acid and / or in the presence of one of its water-soluble salts, wherein the free carbon dioxide and optionally also the carbon dioxide corresponding to the conversion of the bicarbonate to the normal carbonate is removed from the reaction mixture at a further stage in the production process and the nitrate and / or magnesium chloride formed therefrom is further separated from the reaction mixture in in the form of an aqueous solution, or the reaction mixture is worked up into a suspension fertilizer containing magnesium and calcium.

The invention relates to a process for the manufacture of aqueous solutions of nitrates and / or magnesium chlorides from magnesium raw materials containing a carbonate or bicarbonate anion, oxide or magnesium hydroxide.

Magnesium is one of the essential ingredients of plant nutrition and is an essential component of the plant green colorant chlorophyll.

It affects the transfer of nutrients, especially phosphorus from old leaves and stems into growing plants. The beneficial effect of magnesium on the course of oxidation reduction processes in plants was also found. It is an activator of biochemical reactions leading to the formation of carbohydrates and processes associated with phosphorus conversion in plants. It has also been confirmed that in the absence of magnesium, monosaccharides accumulate in plant leaves.

To date, the most commonly used fertilizers containing magnesium include, for example, Thomas meal (7% MgO); Camex (about 3.5% MgO bound as MgSO4); Emgekali (about 5% in the form of MgSO4) kieserite (technical MgSO4); dolomitic limestones containing about 20% MgCl2; magnesite drift from calcining furnaces, containing about 65% MgO and special foliar fertilizers that are currently being prepared for production and which contain magnesium bound to the sulphate anion.

Magnesium is one of the plant nutrients that plants are able to absorb sorbent leaves very well. As stated by JURGENS, G. (Der Erwerbs - Gártner No. 17 (26), April 1972); WITTWER, SH ("Foliar Application of Fertilizer" - Department of Horticulture, Michigan State University, East Lansing, Michigah, USA) and HUDSKÁ, G. [Agrochemistry 16 (5), 144 (1976)] about 2 to 5 hours, while for example, for the sorption of calcium, zinc and manganese, a period of 1 to 2 days is reported, and 50% sorption of potassium after its foliar application is only achieved for 10 to 24 days.

For these reasons, a number of special industrial fertilizers have been developed abroad and in the last few years also in our country containing magnesium along with other basic, secondary and micronutrients, intended especially for extra-root plant nutrition.

In addition to magnesium sulphate, respectively. magnesium potassium sulphate also mentions magnesium nitrate as a suitable source of magnesium, in particular in mixtures with urea and a nitrogenous basic solution [Agrochemistry 16, 12, 344-348 (1976)]. MgSO4 and Mg (NO3) 2 were shown

MgCCb + Ca (NO3) 2 and MgCO3 + CaCl ---- ---- MgCCb + CO2 + H2O --- MgO + 2CO 2 + H 2 O ---- Mg (OH + 2CO2 ---- Mg (HCO3) 2 + Ca (NO3) 2 ---- Mg (HCO3) 2 + CaCl2 --- MgO + 2CO2 + Ca (NO3) 2 + H2O - MgO + 2CO + CaCl2 + H2O --- Ca (HCO3) 2 —- --► are suitable sources of magnesium for preventive and curative treatment of agricultural cultivars.

The methods of Mg (N? 3) 2 production hitherto used are based on decomposition - the so-called leaching of the magnesium raw material (usually calcined magnesite) with nitric acid to form a so-called brown slurry, by filtration to obtain a pure magnesium nitrate solution. calcium. NAJMR, S. states ("Production of MgO by a nitrate process using by-products and waste products", Košice 1974) that the leaching process can be conducted so that the filtrate consists predominantly of Mg (NO 3) 2 with a low Ca (NO 3) 2 content, whereas their concentration in the solution is about 40 percent [Mg (NO 3) 2 4 - Ca 2 NO 2] 2, the Fe content is about 2.10 -4 % occurs only in traces.

It has now been found that aqueous solutions of nitrates and / or magnesium chlorides can be prepared from magnesium raw materials by the method of the invention, characterized in that the magnesium feedstock containing a carbonate and / or hydrogen carbonate anion and / or oxygen and / or magnesium hydroxide is aqueous. it is subjected to a chemical reaction with nitrate and / or calcium chloride, in the presence or absence of carbon dioxide and / or carbonic acid and / or one of its water-soluble salts.

Free carbon dioxide and optionally carbon dioxide corresponding to the conversion of bicarbonates to normal carbonates are removed from the reaction mixture in the next step in order to deepen the conversion. Most simply, the carbon dioxide can be removed from the reaction mixture by heating and / or aerating. The nitrate and / or magnesium chloride formed by the decomposition in the form of an aqueous solution is removed from the reaction mixture in a further stage of the production process, preferably by sedimentation, filtration or centrifugation. In the case of the production of magnesium-calcium suspension fertilizer, the reaction mixture can be worked up without separation into a product of the above type by stabilizing the solids containing the calcium carbonate formed by the reaction.

As is clear from the foregoing, the process for producing the nitrate and / or magnesium chloride of the present invention can be illustrated by the following chemical equations:

Mg (NG3) '2-I-CaCO3 (1)

MgCl 2 + CaCO 3 (2)

Mg (HCO 3) 2 (3)

Mg (HCO 3) 2 (4)

Mg (HCO 3) 2 (5)

Mg (NO 3 (2 + Ca (HCO 3 ) 2) (6)

MgCl 2 + Ca (HCOrf)> 2 (6)

Mg (NO 3) 2 + Ca (HCO 3) 2 (8)

MgCl 2 + Ca (HCO 3) 2 (9)

CaCO3 + CO2 + H2O

The progress of the reaction in the direction from left to right is conditional substantial difference in the solubility of the individual components, with the smallest solubility studied, the system exhibit CaCO3 and Ca (HCO3) 2 [solubility of CaCO3, Ca (HCO3j2 and Mg (HO 3 j2 water being at 25 ° C for 3 . ΙΟ "3 o / o CaCO 0.43% Ca (HCO 3) 2 and 13.0% Mg (HCO3) 2 at 18 ° C]

Compared with the production methods used today, the process according to the invention has a number of advantages, from which it can be stated that the preparation of Mg (NO3) 2, respectively. MgCl in this way is carried out without the requirement of consumption of mineral acids HNO3 resp. HCl, as a magnesium raw material, can be used in abundance of naturally occurring minerals (magnesite, dolomite).

Suitable sources of Ca (NO3) 2 and CaCl2 may be various secondary products of inorganic technologies, of which the aforementioned types of calcium salts (e.g. calcium nitrate tetrahydrate formed as a byproduct in the production of granular NPK fertilizer by freeze technology) or concentrated aqueous CaCl3 in the production of extraction H3PO4 by the "IMI" process - after decomposition of phosphate with hydrochloric acid and the like J.

The source of carbon dioxide can be degasses from several processes of inorganic or organic chemical technology (CO2 scrubbing in connection with the preparation of the synthesis mixture in ammonia production, decarbonisation processes, fermentation chemistry processes, etc.) or also gaseous products of various combustion processes and the like. In the process according to the invention, both reactants are evaluated for plant nutrition, since, in addition to the water-soluble magnesium salt constituting the main reaction product, the second reaction component - CaCO3 resp. Ca (HCO 3 ). Due to the colloidal nature of the calcium carbonate-forming reaction system, they are characterized by a high neutralization capacity, which can be advantageously used in the stock fertilization of the soil by the calcium component. Starting from the colloidal nature of the solid particles contained in the equilibrium system, the calcium carbonates constituting them can advantageously be used for the preparation of stable calcium suspension fertilizers.

In certain circumstances, especially for fertilizing the soil with magnesium. With the simultaneous need for liming, the reaction mixture can be used as an effective suspension magnesium-calcium fertilizer after adjusting its physico-mechanical properties (stabilization of the dispersed solid particles) and, optionally, after adjusting its chemical composition. The manufacturing process according to the invention is extremely simple, does not impose high demands on the machine-technology equipment either from the Wadiska development of special equipment or atypical solution of individual devices. The developed process does not consider the use of flammable, corrosive or toxic substances, does not impose any special requirements on operation and can be continualised.

The following examples illustrate but do not limit the invention.

Example 1 to 5

Process for producing an aqueous magnesium nitrate solution by reacting magnesium oxide with calcium nitrate in the presence of carbon dioxide and water according to the invention according to the ideological reaction scheme:

I. MgO + 2CO2 + Ca (NO3) 2 + H2O ->-> Mg (NO 3 ) 2 + Ca (HCO 3 ) 2 resp.

t

II. Ca (HCO3) 2 ---> CaCO3 + CO 2 + H2O was experimentally verified in a series of indicative laboratory experiments.

During the five experiments we worked with the same weights of the following basic reactants:

.in. /? ΐ! '; (

8.2 g of magnesium oxide (chemically pure)

47.8 g of crystalline calcium nitrate [Ca (NO3) 2.4H2O] a

59.1 g of boiled distilled water (room temperature).

In the first and second experiments at room temperature, the reaction mixture - suspension prepared by homogenizing the above-mentioned components was saturated with stirring for 50 minutes

17.8 g of carbon dioxide gas, prepared by sublimation of solid carbon dioxide.

During the 3 rd and 4 th trials, we were saturated with carbon dioxide, due to the increased amount of solids used, respectively. CO2, increased to 60 resp. 71 minutes. In the fifth experiment, we worked with the load

35.6 g of solid CO2, the suspension prepared by mixing 59.1 grams of water, 47.8 grams of Ca- (NO3) 2.4H2O and 8.2 grams of MgO, was saturated with carbon dioxide under stirring for 80 minutes. At the end of this time (after the carbonation), in the case of experiments 1 and 3, the reaction mixture was immediately separated by filtration through a glass filter frit "S-4", in experiments 2, 4 and 5 we did so after one hour of boiling. in a water bath (95-100 ° C).

We determined the amounts of filtrates and wet filter cakes obtained for each experiment by weighing, and we determined the magnesium and calcium contents in the filtrate by chelatometric titrations. The results obtained are summarized in Table 1.

210 0 2

Table 1

Mass quantities of ingredients (G)

Content of monitored components in the filtrate

attempt number filter cake (wet) filtrate Calcium (% Ca) magnesium (% Mg) 1 26.14 88.69 6.21 1.01 2 31.89 53.07 7.67 2.01 3 27.77 87.14 5.09 1.62 4 32.69 58.66 5.81 2.75 5 37.65 57.46 4.93 3.09

Examples 6 to 9

Process for producing magnesium chloride in the form of an aqueous solution thereof by reacting magnesium oxide with calcium chloride in the presence of oxide and water according to the invention according to the ideological reaction scheme:

I. MgO + 2CO2 + CaCl2 + H2O —---—-—— ► MgCl2 + Ca (HCO3) 2 resp.

t

II. Ca (HCO3) 2 ----> CaCO3 + CO2 + H2O was experimentally verified in a series of laboratory experiments.

In all experiments of this series (Examples 6 to 9) we worked with the same weights of the following basic reactants:

12.7 g magnesium oxide (chemically pure)

35.0 g anhydrous calcium chloride

75.7 g boiled distilled water (room temperature).

In Examples 6 and 7, the reaction slurry prepared by homogenizing the above constituents was saturated at room temperature for 60 minutes with 41.6 g of carbon dioxide gas obtained by evaporating solid CO 2. Experiments 8 and 9 were followed in a similar manner, with a reaction time of 75 and 75, respectively. 80 minutes saturated with 55.5 g of CO2 gas.

After the carbonation of the reaction mixture was complete, in experiments 6 and 8, the reaction mixture was immediately distributed through the "S-4" sintered glass frit and in the case of experiments 7 and 9, this was done only after 1 hour of shaping the reaction mixture on a water bath.

We determined the amounts of the filtrates and wet cakes obtained by weighing, and the clear filtrates were chelatometrically determined for magnesium and calcium.

The results obtained are summarized in Table 2.

Table 2

Example The mass of the components respectively. obtained by separation of reaction mixture Content of monitored components experiment (g)

filter cake number

Claims (2)

vp filtráte vápník hořčík (% Ca) (°/o Mg)in filtrate calcium magnesium (% Ca) (° / o Mg) 4,54 2,064.54 2.06 3,45 3,743.45 3.74 2,73 3,422.73 3.42 2,69 4,972.69 4.97 VYNALEZUVYNALEZU Spósob výroby vodných roztokov dusičnanov a/alebo chloridov horečnatých z horečnatých surovin obsahujúcich uhličitanový, alebo hydrogenuhličitanový anión, kysličník, aiebo hydroxid horečnatý, vyznačený tým, že horečnatá surovina obsahujúca uhličitanový a/alebo hydrogenuhličitanový anión, a/alebo kysličník a/alebo hydroxid horečnatý sa vo vodnom prostředí podrobí chemickej reakcií s dusičnanom a/alebo chloridom vápenatým, a to bez, alebo v přítomnosti kysličníka uhličitého a/alebo kyseliny uhličítej a/alebo v přítomnosti niektorej z jej vo vodě rozpustných solí, pričom volný kysličník uhličitý a připadne tiež kysličník uhličitý odpovedajúci konverzi! hydrogenuhličitanov na normálně uhličitany sa připadne z reakčnej zmesi v dalšom stupni výrohného procesu odstráni a reakciou vzniknutý dusičnan a/alebo chlorid horečnatý sa z reakč221002 nej zmesi připadne ďalej oddělí vo formě vodného roztoku, alebo reakčná zmes sa spracuje na suspenzné hnojivo obsahujúce hořčík a vápnik.A process for the manufacture of aqueous solutions of nitrates and / or magnesium chlorides from magnesium raw materials containing a carbonate or bicarbonate anion, oxide or magnesium hydroxide, characterized in that the magnesium raw material containing a carbonate and / or bicarbonate anion, and / or magnesium and / or magnesium hydroxide in an aqueous medium undergo chemical reactions with nitrate and / or calcium chloride, in the presence or absence of carbon dioxide and / or carbonic acid and / or in the presence of one of its water-soluble salts, with free carbon dioxide and optionally carbon dioxide matching conversion! bicarbonates to normal carbonates are removed from the reaction mixture at a further stage in the production process and the nitrate and / or magnesium chloride formed in the reaction is further separated from the reaction mixture as an aqueous solution, or the reaction mixture is worked up into a suspension fertilizer containing magnesium and calcium.
CS667781A 1981-09-10 1981-09-10 Method of making the water solutions of nitrates and/or magnesium chlorides CS221002B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS667781A CS221002B1 (en) 1981-09-10 1981-09-10 Method of making the water solutions of nitrates and/or magnesium chlorides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS667781A CS221002B1 (en) 1981-09-10 1981-09-10 Method of making the water solutions of nitrates and/or magnesium chlorides

Publications (1)

Publication Number Publication Date
CS221002B1 true CS221002B1 (en) 1983-04-29

Family

ID=5414382

Family Applications (1)

Application Number Title Priority Date Filing Date
CS667781A CS221002B1 (en) 1981-09-10 1981-09-10 Method of making the water solutions of nitrates and/or magnesium chlorides

Country Status (1)

Country Link
CS (1) CS221002B1 (en)

Similar Documents

Publication Publication Date Title
RU2478087C2 (en) Lime-containing nitrogen-sulphur fertiliser and method for production thereof
EP2051953B1 (en) Granulated fertilizer containing water soluble forms of nitrogen, magnesium and sulphur, and method of its preparation
US7041268B2 (en) Process for recovery of sulphate of potash
ZA200701885B (en) Method of calcium nitrate production
US6419887B1 (en) Process for the treatment of residual liquors from the ammoniation and carbonation of alkali metal salts
CN1686816B (en) Method for multipurpose use of material of acid split phosphate ore and associated production of high purified microsphere nano calcium carbonate
AU2010264080A2 (en) Process for production of commercial quality potassium nitrate from polyhalite
US4106922A (en) Alkaline decomposition process for producing calcined phosphate fertilizer
CS221002B1 (en) Method of making the water solutions of nitrates and/or magnesium chlorides
EP3495323A1 (en) A process for obtaining a soluble phosphate fraction from phosphate containing ash
US4536376A (en) Method of producing potassium magnesium phosphate
Alaoui-Belghiti et al. Valorisation of phosphogypsum waste as K2SO4 fertiliser and portlandite Ca (OH) 2
Bouargane et al. Process of preparing chloride-free KNS compound fertilizers from phosphogypsum waste using a quaternary phase diagram
WO2019082207A1 (en) Energy efficient synthesis of sulphate of potash using ammonia as a catalyst
Alimov et al. The insoluble part of phosphorus fertilizers, obtained by processing of phosphorites of central kyzylkum with partially ammoniated extraction phosphoric acid
US3669641A (en) Production of complex nitrophosphate fertilisers
KR102487238B1 (en) Method for preparing langbeinite-potassium magnesium sulfate fertilizer and aluminum sulfate, and langbeinite-potassium magnesium sulfate fertilizer and and aluminum sulfate prepared using the same
CS217690B1 (en) Method of making the magnesium sulphate
CN1054593C (en) Combinating process for producing ammonium-potassium sulfate and nitrogen-phosphorus-potassium composite fertilizer
RU2753109C1 (en) Method for processing synnyrite
RU2716048C1 (en) Method of processing salt solution wastes containing a mixture of sulphates and nitrates of ammonium and sodium
CS231758B1 (en) Preparation method of magnesium sulphate
Namazov et al. NS-FERTILIZERS BASED ON AMMONIUM NITRATE MELT AND PHOSPHOGYPSUM
RU2478599C1 (en) Method of producing compound nitrogen-phosphorus-sulphate fertiliser from phosphogypsum (versions)
CS232216B1 (en) Preparation of water solutions or suspensions with magnesium cation