CS209686B1 - Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose - Google Patents

Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose Download PDF

Info

Publication number
CS209686B1
CS209686B1 CS785603A CS560379A CS209686B1 CS 209686 B1 CS209686 B1 CS 209686B1 CS 785603 A CS785603 A CS 785603A CS 560379 A CS560379 A CS 560379A CS 209686 B1 CS209686 B1 CS 209686B1
Authority
CS
Czechoslovakia
Prior art keywords
cellulose
substrates
basidiomycetes
ascomycetes
exothermic reactions
Prior art date
Application number
CS785603A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Ondrej Macko
Anton Grom
Stefan Homolka
Original Assignee
Ondrej Macko
Anton Grom
Stefan Homolka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ondrej Macko, Anton Grom, Stefan Homolka filed Critical Ondrej Macko
Priority to CS785603A priority Critical patent/CS209686B1/en
Publication of CS209686B1 publication Critical patent/CS209686B1/en

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Mushroom Cultivation (AREA)

Description

Predmetom vynálezu je spósob využitia exotermických reakcií pre úsporu energie, potrebnej na vykurovanie priestorov, určených k povrchovej kultivácii húb najma triedy Ascomycetes a Basidiomycetes na odpadných substrátoch s obsahem celulózy za účelom výroby nutričně účinných látok a bielkovín.SUMMARY OF THE INVENTION The present invention provides a method for utilizing the exothermic reactions required to heat the space required for heating the surface cultivation of fungi, in particular Ascomycetes and Basidiomycetes, on cellulose-containing waste substrates to produce nutritionally active substances and proteins.

Energetická potřeba na vykurovanie priestoru výrobní povrchovej kultívácie je daná tepelným režimom příslušného technologického výrobného postupu, ako aj využitím fermentačného priestoru výplňou fermentovaného substrátu.The energy requirement for heating the production surface cultivation space is determined by the thermal regime of the respective technological production process, as well as by the use of the fermentation space by the filling of the fermented substrate.

Doterajšie technologické postupy kultivácie celulózotvorriých a lignovorných húb na odpadných substrátoch sú z vačšej časti zamerané na výrobu plodníc, pri ktorých z hladiska nárokov na výměnu plynov medzi atmosférou výrobně a hubou nie je možné využil ani jednu třetinu objemu výrobného priestoru pre fermentačnú pódu. Tiež z dóvodov světelného režimu kultuvačného procesu nie je možné rozdělit fermentačnú pódu do viacerých nádob tak, aby plocha povrchu pódy vyjádřená vo štvorcových metroch dosahovala číselnou hodnotou jednu stotinu litrov objemu atmosféry výrobného priestoru .The current technological processes for the cultivation of cellulosic and lignovorous fungi on waste substrates are largely focused on the production of fetuses in which, in terms of the demands for gas exchange between the production atmosphere and the fungus, it is not possible to utilize one third of the production space for the fermentation stage. Also, due to the light mode of the culture process, it is not possible to divide the fermentation pod into multiple vessels so that the surface area of the pod, expressed in square meters, reaches a numerical value of one hundredth of a liter of the volume of the atmosphere of the production space.

Fermantačné procesy, zamerané na výrobu krmív povrchovou kultíváciou húb na odpadných celulózových substrátoch končia v stádiu maxiraálneho prerastania substrátu mycéliom a sú náročné na vysoké relatívnu vlhkost a teplotu. Například niektoré produkčně kmene hnojníka /Coprinus/ vyžadujú minimálně 95% relatívnu vlkosť, a teplotu atmosféry výrobně 30 až 40 °C.’ Na základe intenzívneho vyparovania vodných pár z fermentačného média a exotermických procesov v priebehu kultívácie dochádza k zasychaniu povrchu fermentačnej pódy aj za vyšších hodnot relatívnej vlhkosti, ako 95%.The fermentation processes directed to the production of feed by superficial cultivation of fungi on waste cellulosic substrates end up in the phase of maximum mycelial overgrowth of the substrate and are demanding on high relative humidity and temperature. For example, some of the production strains of Coprinus require at least 95% relative humidity and an ambient temperature of 30 to 40 ° C. Due to the intensive evaporation of water vapor from the fermentation medium and exothermic processes during cultivation, the surface of the fermentation pod dries even at higher relative humidity values, such as 95%.

Tento jav je výrazné nežíadúci z hladiska kultivačných procesov, lebo znamená předčasné ukončenie fermentačného procesu, ktoré spósobuje 2níženie výlažnosti produktov konečného výrobného záměru a tým aj ekvivalentně zvýšenie potřeby energie na jednotku výroby požadovanej produkcie.This phenomenon is highly undesirable from the viewpoint of cultivation processes, because it means premature termination of the fermentation process, which causes a reduction in the yield of the products of the final production plan and thus an equivalent increase in the energy requirement per unit of production of the desired production.

Spósob podlá vynálezu odstraňuje uvádzané nevýhody, hodnotené z hladiska potřeby energie na vyhrievanie výrobného priestoru povrchovej kultívácie.The method of the invention overcomes the aforementioned disadvantages, assessed in terms of the energy requirement for heating the surface cultivation space.

Rozdělením fermentačnej pódy na viacero častí do kovových nádob umiestnených nad sebou tak, aby bola umožněná nútená cirkulácia atmosféry kultivačného priestoru sa umožní zníženie tepelných rozdielov medzi fermentovaným substrátom a prostředím výrobně. Týmto spósobom sa podstatné zníži potřeba energie na udržiavanié kultivačnej teploty výrobného procesu.By dividing the fermentation pod into several portions into metal containers placed one above the other so as to allow forced circulation of the atmosphere of the culture space, it is possible to reduce the thermal differences between the fermented substrate and the production environment. In this way, the energy requirement to maintain the culture temperature of the production process is substantially reduced.

Objem fermentačnej- pódy sa rozdělí do kovových nádob s výhodné vysokou tepelnou vodivosfou,-ktoré sú umiestnené nad sebou tak, aby bola výška vrstvy a vzdialenosl medzi nádobami v pomere 3,33 : 1 a cirkulácia atmosféry výrobně sa zaistí ventilátorom s rainimálnym výkonom objemu výrobného priestoru za 1 minutu.The volume of the fermentation pod is divided into metal vessels with a preferably high thermal conductivity, which are placed one above the other so that the layer height and the distance between the vessels are in the ratio of 3.33: 1 and the circulation of the atmosphere is ensured by a ventilator. space in 1 minute.

Objem fermentačnej pódy sa rozdělí do kovových nádob tak, aby bola výška vrstvy fermentačnej pódy a vzdialenosť medzi nádobami umiestnenými nad sebou v pomere aThe volume of the fermentation broth is divided into metal vessels so that the height of the fermentation broth layer and the distance between the vessels placed one above the other are

2,5 : I a cirkulácia atmosféry výrobného priestoru sa zaístí ventilátorom s minimálnym výkonom objemu výrobně za 1 minutu.2.5: I and the circulation of the atmosphere of the production area is provided with a fan with a minimum capacity of the plant per minute.

Uvádzanie týchto príkladov nevyčerpává možnosti využitia priestoru výrobně povrcho4 vej kultivácie húb pre spracovanie odpadných substrátov s obsahom celulózy. Cirkulácia atmosféry výrobně, teplota a relativná vlhkosč sú dané podmienkami použitého produkČného kmeňa a zložením substrátu.The disclosure of these examples does not exhaust the possibilities of utilizing the area of surface production of fungus for the treatment of cellulose-containing waste substrates. The circulation of the atmosphere in the factory, the temperature and the relative humidity are determined by the conditions of the production strain used and the composition of the substrate.

Claims (1)

Sposob využitia exotermických reakcií pri povrchovej kultivácii húb najma Ascomycetes a Basidiomycetes na odpadných substrátoch s obsahom celulózy, vyznačujúci sa tým, že objem pódy, určený na fermentačné spracovanie sa rozdělí na viacero častí do kovoVYNÁLEZU vých nádob umiestnených nad sebou tak, že je okolo nich umožněná nútená cirkulácia atmosféry prostredia fermentačnej jednotky a vyrovnávaju sa tepelné rozdiely medzi nádobami a atmosférou.Method for utilizing exothermic reactions in surface cultivation of fungi, in particular Ascomycetes and Basidiomycetes, on cellulose-containing waste substrates, characterized in that the volume of the soil to be fermented is divided into several portions into metal INVENTION containers placed one above the other Forcing the atmosphere of the fermentation unit to circulate and compensate for the thermal differences between the vessels and the atmosphere.
CS785603A 1978-08-16 1978-08-16 Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose CS209686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS785603A CS209686B1 (en) 1978-08-16 1978-08-16 Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS785603A CS209686B1 (en) 1978-08-16 1978-08-16 Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose

Publications (1)

Publication Number Publication Date
CS209686B1 true CS209686B1 (en) 1981-12-31

Family

ID=5401206

Family Applications (1)

Application Number Title Priority Date Filing Date
CS785603A CS209686B1 (en) 1978-08-16 1978-08-16 Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose

Country Status (1)

Country Link
CS (1) CS209686B1 (en)

Similar Documents

Publication Publication Date Title
Robinson et al. Bioreactor design for protein enrichment of agricultural residues by solid state fermentation
Zadražil et al. Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulverulentum Nov. and Dichomitus squalens (Karst.) Reid.
Durand et al. A new pilot reactor for solid‐state fermentation: Application to the protein enrichment of sugar beet pulp
Lonsane et al. Scale-up strategies for solid state fermentation systems
Dominguez et al. A novel application of solid state culture: production of lipases by Yarrowia lipolytica
Singh nee’Nigam et al. Solid-state fermentation technology for bioconversion of biomass and agricultural residues
Casoni et al. Pyrolysis of sunflower seed hulls for obtaining bio-oils
Bück et al. Model-based control of enzyme yield in solid-state fermentation
MX2014015237A (en) Method and apparatus for treatment of biomass substrates.
Sánchez et al. Production of bioethanol from biomass: An overview
Ahmed et al. Bioethanol production from pretreated Melaleuca leucadendron shedding bark–Simultaneous saccharification and fermentation at high solid loading
Zhang et al. Lignocellulose pretreatment using acid as catalyst
Sekoai et al. Parametric optimization of citric acid production from apple pomace and corn steep liquor by a wild type strain of Aspergillus niger: A Response surface methodology approach
Hama et al. Development of cell recycle technology incorporating nutrient supplementation for lignocellulosic ethanol fermentation using industrial yeast Saccharomyces cerevisiae
Zhang et al. Microbial lipid production from corn stover via Mortierella isabellina
Rocha et al. Solid-state cultivation of Aspergillus niger–Trichoderma reesei from sugarcane bagasse with vinasse in bench packed-bed column bioreactor
CS209686B1 (en) Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose
Skiba et al. Enhancing the yield of bioethanol from the lignocellulose of oat hulls by optimizing the composition of the nutrient medium
Zohri et al. Reducing heavy metals content in sugarcane molasses and its effect on ethanol fermentation efficiency
Dey et al. Bioconversion of food waste into ethanol: a review
Luna-García et al. Production of unicellular biomass as a food ingredient from agro-industrial waste
Patil Bioethanol: Technologies, Trends, and Prospects
Schirmer‐Michel et al. Effect of oxygen transfer rates on alcohols production by Candida guilliermondii cultivated on soybean hull hydrolysate
DE4406632C1 (en) Solid bioreactor
Rodriguez et al. Optimization of solid‐state fermentation of citrus dried peel by aspergillus niger in a packed bed column