CS209686B1 - Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose - Google Patents
Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose Download PDFInfo
- Publication number
- CS209686B1 CS209686B1 CS785603A CS560379A CS209686B1 CS 209686 B1 CS209686 B1 CS 209686B1 CS 785603 A CS785603 A CS 785603A CS 560379 A CS560379 A CS 560379A CS 209686 B1 CS209686 B1 CS 209686B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- cellulose
- substrates
- basidiomycetes
- ascomycetes
- exothermic reactions
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 8
- 229920002678 cellulose Polymers 0.000 title claims description 4
- 239000001913 cellulose Substances 0.000 title claims description 4
- 241000235349 Ascomycota Species 0.000 title claims description 3
- 241000221198 Basidiomycota Species 0.000 title claims description 3
- 238000006243 chemical reaction Methods 0.000 title claims description 3
- 235000001674 Agaricus brunnescens Nutrition 0.000 title 1
- 238000000855 fermentation Methods 0.000 claims description 12
- 230000004151 fermentation Effects 0.000 claims description 12
- 241000233866 Fungi Species 0.000 claims description 6
- 239000002699 waste material Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 4
- 239000002689 soil Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 3
- 241000222511 Coprinus Species 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Mushroom Cultivation (AREA)
Description
Predmetom vynálezu je spósob využitia exotermických reakcií pre úsporu energie, potrebnej na vykurovanie priestorov, určených k povrchovej kultivácii húb najma triedy Ascomycetes a Basidiomycetes na odpadných substrátoch s obsahem celulózy za účelom výroby nutričně účinných látok a bielkovín.SUMMARY OF THE INVENTION The present invention provides a method for utilizing the exothermic reactions required to heat the space required for heating the surface cultivation of fungi, in particular Ascomycetes and Basidiomycetes, on cellulose-containing waste substrates to produce nutritionally active substances and proteins.
Energetická potřeba na vykurovanie priestoru výrobní povrchovej kultívácie je daná tepelným režimom příslušného technologického výrobného postupu, ako aj využitím fermentačného priestoru výplňou fermentovaného substrátu.The energy requirement for heating the production surface cultivation space is determined by the thermal regime of the respective technological production process, as well as by the use of the fermentation space by the filling of the fermented substrate.
Doterajšie technologické postupy kultivácie celulózotvorriých a lignovorných húb na odpadných substrátoch sú z vačšej časti zamerané na výrobu plodníc, pri ktorých z hladiska nárokov na výměnu plynov medzi atmosférou výrobně a hubou nie je možné využil ani jednu třetinu objemu výrobného priestoru pre fermentačnú pódu. Tiež z dóvodov světelného režimu kultuvačného procesu nie je možné rozdělit fermentačnú pódu do viacerých nádob tak, aby plocha povrchu pódy vyjádřená vo štvorcových metroch dosahovala číselnou hodnotou jednu stotinu litrov objemu atmosféry výrobného priestoru .The current technological processes for the cultivation of cellulosic and lignovorous fungi on waste substrates are largely focused on the production of fetuses in which, in terms of the demands for gas exchange between the production atmosphere and the fungus, it is not possible to utilize one third of the production space for the fermentation stage. Also, due to the light mode of the culture process, it is not possible to divide the fermentation pod into multiple vessels so that the surface area of the pod, expressed in square meters, reaches a numerical value of one hundredth of a liter of the volume of the atmosphere of the production space.
Fermantačné procesy, zamerané na výrobu krmív povrchovou kultíváciou húb na odpadných celulózových substrátoch končia v stádiu maxiraálneho prerastania substrátu mycéliom a sú náročné na vysoké relatívnu vlhkost a teplotu. Například niektoré produkčně kmene hnojníka /Coprinus/ vyžadujú minimálně 95% relatívnu vlkosť, a teplotu atmosféry výrobně 30 až 40 °C.’ Na základe intenzívneho vyparovania vodných pár z fermentačného média a exotermických procesov v priebehu kultívácie dochádza k zasychaniu povrchu fermentačnej pódy aj za vyšších hodnot relatívnej vlhkosti, ako 95%.The fermentation processes directed to the production of feed by superficial cultivation of fungi on waste cellulosic substrates end up in the phase of maximum mycelial overgrowth of the substrate and are demanding on high relative humidity and temperature. For example, some of the production strains of Coprinus require at least 95% relative humidity and an ambient temperature of 30 to 40 ° C. Due to the intensive evaporation of water vapor from the fermentation medium and exothermic processes during cultivation, the surface of the fermentation pod dries even at higher relative humidity values, such as 95%.
Tento jav je výrazné nežíadúci z hladiska kultivačných procesov, lebo znamená předčasné ukončenie fermentačného procesu, ktoré spósobuje 2níženie výlažnosti produktov konečného výrobného záměru a tým aj ekvivalentně zvýšenie potřeby energie na jednotku výroby požadovanej produkcie.This phenomenon is highly undesirable from the viewpoint of cultivation processes, because it means premature termination of the fermentation process, which causes a reduction in the yield of the products of the final production plan and thus an equivalent increase in the energy requirement per unit of production of the desired production.
Spósob podlá vynálezu odstraňuje uvádzané nevýhody, hodnotené z hladiska potřeby energie na vyhrievanie výrobného priestoru povrchovej kultívácie.The method of the invention overcomes the aforementioned disadvantages, assessed in terms of the energy requirement for heating the surface cultivation space.
Rozdělením fermentačnej pódy na viacero častí do kovových nádob umiestnených nad sebou tak, aby bola umožněná nútená cirkulácia atmosféry kultivačného priestoru sa umožní zníženie tepelných rozdielov medzi fermentovaným substrátom a prostředím výrobně. Týmto spósobom sa podstatné zníži potřeba energie na udržiavanié kultivačnej teploty výrobného procesu.By dividing the fermentation pod into several portions into metal containers placed one above the other so as to allow forced circulation of the atmosphere of the culture space, it is possible to reduce the thermal differences between the fermented substrate and the production environment. In this way, the energy requirement to maintain the culture temperature of the production process is substantially reduced.
Objem fermentačnej- pódy sa rozdělí do kovových nádob s výhodné vysokou tepelnou vodivosfou,-ktoré sú umiestnené nad sebou tak, aby bola výška vrstvy a vzdialenosl medzi nádobami v pomere 3,33 : 1 a cirkulácia atmosféry výrobně sa zaistí ventilátorom s rainimálnym výkonom objemu výrobného priestoru za 1 minutu.The volume of the fermentation pod is divided into metal vessels with a preferably high thermal conductivity, which are placed one above the other so that the layer height and the distance between the vessels are in the ratio of 3.33: 1 and the circulation of the atmosphere is ensured by a ventilator. space in 1 minute.
Objem fermentačnej pódy sa rozdělí do kovových nádob tak, aby bola výška vrstvy fermentačnej pódy a vzdialenosť medzi nádobami umiestnenými nad sebou v pomere aThe volume of the fermentation broth is divided into metal vessels so that the height of the fermentation broth layer and the distance between the vessels placed one above the other are
2,5 : I a cirkulácia atmosféry výrobného priestoru sa zaístí ventilátorom s minimálnym výkonom objemu výrobně za 1 minutu.2.5: I and the circulation of the atmosphere of the production area is provided with a fan with a minimum capacity of the plant per minute.
Uvádzanie týchto príkladov nevyčerpává možnosti využitia priestoru výrobně povrcho4 vej kultivácie húb pre spracovanie odpadných substrátov s obsahom celulózy. Cirkulácia atmosféry výrobně, teplota a relativná vlhkosč sú dané podmienkami použitého produkČného kmeňa a zložením substrátu.The disclosure of these examples does not exhaust the possibilities of utilizing the area of surface production of fungus for the treatment of cellulose-containing waste substrates. The circulation of the atmosphere in the factory, the temperature and the relative humidity are determined by the conditions of the production strain used and the composition of the substrate.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS785603A CS209686B1 (en) | 1978-08-16 | 1978-08-16 | Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS785603A CS209686B1 (en) | 1978-08-16 | 1978-08-16 | Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS209686B1 true CS209686B1 (en) | 1981-12-31 |
Family
ID=5401206
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS785603A CS209686B1 (en) | 1978-08-16 | 1978-08-16 | Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS209686B1 (en) |
-
1978
- 1978-08-16 CS CS785603A patent/CS209686B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Robinson et al. | Bioreactor design for protein enrichment of agricultural residues by solid state fermentation | |
| Zadražil et al. | Solid state fermentation of lignocellulose containing plant residues with Sporotrichum pulverulentum Nov. and Dichomitus squalens (Karst.) Reid. | |
| Durand et al. | A new pilot reactor for solid‐state fermentation: Application to the protein enrichment of sugar beet pulp | |
| Lonsane et al. | Scale-up strategies for solid state fermentation systems | |
| Dominguez et al. | A novel application of solid state culture: production of lipases by Yarrowia lipolytica | |
| Singh nee’Nigam et al. | Solid-state fermentation technology for bioconversion of biomass and agricultural residues | |
| Casoni et al. | Pyrolysis of sunflower seed hulls for obtaining bio-oils | |
| Bück et al. | Model-based control of enzyme yield in solid-state fermentation | |
| MX2014015237A (en) | Method and apparatus for treatment of biomass substrates. | |
| Sánchez et al. | Production of bioethanol from biomass: An overview | |
| Ahmed et al. | Bioethanol production from pretreated Melaleuca leucadendron shedding bark–Simultaneous saccharification and fermentation at high solid loading | |
| Zhang et al. | Lignocellulose pretreatment using acid as catalyst | |
| Sekoai et al. | Parametric optimization of citric acid production from apple pomace and corn steep liquor by a wild type strain of Aspergillus niger: A Response surface methodology approach | |
| Hama et al. | Development of cell recycle technology incorporating nutrient supplementation for lignocellulosic ethanol fermentation using industrial yeast Saccharomyces cerevisiae | |
| Zhang et al. | Microbial lipid production from corn stover via Mortierella isabellina | |
| Rocha et al. | Solid-state cultivation of Aspergillus niger–Trichoderma reesei from sugarcane bagasse with vinasse in bench packed-bed column bioreactor | |
| CS209686B1 (en) | Method of exploitation of exothermic reactions by the surface cultivation of mushrooms part.ascomycetes and basidiomycetes on the refuse substrates with the contents of cellulose | |
| Skiba et al. | Enhancing the yield of bioethanol from the lignocellulose of oat hulls by optimizing the composition of the nutrient medium | |
| Zohri et al. | Reducing heavy metals content in sugarcane molasses and its effect on ethanol fermentation efficiency | |
| Dey et al. | Bioconversion of food waste into ethanol: a review | |
| Luna-García et al. | Production of unicellular biomass as a food ingredient from agro-industrial waste | |
| Patil | Bioethanol: Technologies, Trends, and Prospects | |
| Schirmer‐Michel et al. | Effect of oxygen transfer rates on alcohols production by Candida guilliermondii cultivated on soybean hull hydrolysate | |
| DE4406632C1 (en) | Solid bioreactor | |
| Rodriguez et al. | Optimization of solid‐state fermentation of citrus dried peel by aspergillus niger in a packed bed column |