CS205488B1 - Instrument for strain hardness exponent determination - Google Patents
Instrument for strain hardness exponent determination Download PDFInfo
- Publication number
- CS205488B1 CS205488B1 CS490979A CS490979A CS205488B1 CS 205488 B1 CS205488 B1 CS 205488B1 CS 490979 A CS490979 A CS 490979A CS 490979 A CS490979 A CS 490979A CS 205488 B1 CS205488 B1 CS 205488B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- exponent
- instrument
- deformation
- reinforcement
- test
- Prior art date
Links
- 230000002787 reinforcement Effects 0.000 claims description 9
- 241001080024 Telles Species 0.000 claims 1
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009950 felting Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
Vynález sa týká zariadenia pre určenie exponente spevnenia počas tahovéj skúšky normalizovaných skúšobných tyčí.The present invention relates to a device for determining the exponent of the reinforcement during the tensile test of standardized test bars.
V technologii tvárnenia má pre posúdenie vlastností spracovaného kovu prvořadý význam závislosť napátia od pretvorenia. Táto závislost sa u tvárných kovov najčastejšie aproximuje matematickým výrazem (3^ · c,<Pi kde - intenzita napátlaIn forming technology, the stress-strain dependence is of paramount importance for assessing the properties of the treated metal. This dependence is most often approximated by a mathematical expression in malleable metals (3 ^ · c, < Pi where - intensity searched
C - materiálová konštantaC - material constant
- intenzita pomernej logarltmickej deformácia n - exponent spevnenia- intensity of relative logarithmic deformation n - reinforcement exponent
V tomto výraze charakterizuje exponent sklon materiálu k deformačnému spevneniu, a je preto považovaný za důležitý paremeter skúáeného materiálu, ktorý sa Široko používá v oblasti teorie plasticity. Exponent spevnenia je východiskovým údajom pri výpočte velkosti tvárni acej sily.In this expression, the exponent characterizes the tendency of the material to strain hardening and is therefore considered to be an important parameter of the material under test, which is widely used in the field of plasticity theory. The reinforcement exponent is the starting point for calculating the size of the ductile force.
V súčasnosti ea exponent spevnenia zlstuje niekolkýni spůsobmi. Pri přerušovanéj tahovéj skúške ho možno určit zo změny velkosti tažnéj sily a geometrie rozmerov vzorky. Přerušovaní 0 tahovéj akúěky a opakované uplnanie vzorky však ekreeluje celkové výsledky merania. PretoNowadays ea exponent of reinforcement deceives in several ways. In the intermittent tensile test, it can be determined by varying the tensile force and the geometry of the sample dimensions. However, interruption of the 0 tensile sweep and re-filling of the sample ecreeles the overall measurement results. For that
205 488205 488
205 488 sa prosadila tiež metoda používanie skúšobných tyčí s odstupňovaným prierezom, kde aa exponent apevnenie určuje len zo změny geometrie rozmerov po plestlckej deformácli. Táto metoda vyžaduje zhotovenie zvláštnych skúšobných tyčí a zdržuje prácu laboretórie pri dodatočnom premerávení deformácli. Existujtí tiež trhacie stroje vysielajúce hodnotu zaťaženia a deformácie vo formě elektrických impulzov do samočinného počítače, ktorý vyhodnotí exponent apevnenia. Takéto zariadenie je však nákladné, a preto málo perspektivné pre prevádzkové merania.205 488 has also established a method of using test bars with graduated cross-section, where the aa exponent determines the fastening only from the change of the geometry of the dimensions after the felting deformation. This method requires the manufacture of special test rods and delays the work of the laboratory during additional measurement of deformation. There are also blasting machines transmitting the value of load and deformation in the form of electrical impulses to an automatic computer, which evaluates the exponent of the fastening. However, such a device is expensive and therefore not very promising for operational measurements.
Uvedené nedostatky odstraňuje zariadenie pre určenie exponente spevnenia podl*a přeloženého vynálezu, podstata ktorého spočívá v tom, že pozostáva z dvoch vzájomne posuvných telies unášených deformáeiou skúšobnej tyče, pričom jedno z telies je vyzbrojené kontaktní a druhé dorazmi, ktoré pri nastavených hodnotách predíženie mernej dížky skúšobnej tyče kontakty uzatvárejú.The above-mentioned drawbacks are eliminated by a device for determining the exponent of the reinforcement according to the present invention, which consists of two mutually displaceable bodies carried by deformation of the test rod, one of which is armed with contact and the other with stops which at the set values test rod contacts close.
Uzatvorením kontaktov sa uvedie v člnnoať světelné, zvukové alebo iné signálně zariadenie upozorňujúea obsluhujdceho, aby bez přerušenia ťahovej skúáky odčítal na stupnici trhačieho stroja okamžitú hodnotu ťežnej sily. Z takto získaných hodnfit sa dá 1’ahko vypočítat exponent spevnenia bez potřeby dodatečného premerávania deformácli ekúšobnej tyče. Zariadenie možno použiť pre skúšobné tyče normalizovaných tvarov a zistiť exponent spevnenia pri bežnej ťehovej skúške, pofiae ktorej sa určujú ostatně konvenčně mechanické parametre ekúmeného materiáluBy closing the contacts, a light, audible or other signaling device shall be provided in the boat to alert the operator to read the instantaneous tensile force value without interruption of the tensile tester. From the values thus obtained, it is easy to calculate the exponent of the reinforcement without the need to additionally measure the deformation of the test tube. The device can be used for test rods of standard shapes and to determine the exponent of the reinforcement in the normal tensile test, which is also used to determine conventionally mechanical parameters of the material to be comminuted.
Ďalšie výhody a znaky vynálezu eú zřejmé s neeledujúceho popisu a přiložených výkresov, kde značí:Other advantages and features of the invention will be apparent from the non-limiting description and accompanying drawings, in which:
obr. 1 pozdlžný rez zariadením obr. 2 priečny rez A-A zariadením.Fig. 1 shows a longitudinal section through the device of FIG. 2 is a cross-sectional view of the A-A device.
Zariadenie se dotýká skúšobnej tyče 1 dvomi hrotmi £, ktorých vzájomná vzdialenosť v počiatočnej polohe vymedzuje mernú dížku. Telesá hrotov 2 * 1 voči seb® posuvné ne čepe J.The device touches the test rod 1 with two prongs 6 whose mutual distance in the initial position defines a specific length. Tip bodies 2 * 1 relative to seb ® sliding pin J.
Na lavom teleee 2 izolované připevněné kontekty 6, ktoré uzatvárejú prúdový okruh zo zdroje elektrickéj energie J k žiarovke, zvončeku alebo lnému eignálnemu zarladeniu 8. Na pyavom teleee 4 ®ú vytvořené dorazy £, rozstup ktorých je vopred preene premeraný a uvedený v dokumentáell daného zariadenia. Pri predlžení ekúšobnej tyče 1 uzatvárejú dorazy £ periodicky kontakty £ a eignallzujú takto dosiahnútie požadovaných predlžení mernej dížky· Telesá 2 a J pritlačované k skúšobnej tyči JL pružným elementom, čo je zřejmé z obr. 2.Connections 6, which are insulated on the left-hand body 2, which close the current circuit from the electric power source J to a bulb, a bell or a filament-like electrical device 8. . With extended ekúšobnej bar 1 closed the contacts periodically stops £ £ eignallzujú and thus obtained the required elongation of the length of the measuring body 2 · J and pressed against the bending bar JL spring element, as shown in FIG. Second
Exponent spevnenia sa vypočítá z dvoch hodnfit ťažnej sily F^ a Fg zaznamenaných počaa signálu, ktorý vydává zariadenie pri dosiahnutí dvoch zvolených predlžení mernej dížky.The reinforcement exponent is calculated from two tensile strength values F 1 and F g recorded during the signal given by the device when the two selected length extensions are reached.
Fo kde 11 a N sú konštanty daného zariadenia odpovedajúee log jŽ-M n 1 dvom zvoleným predlženlam mernej dížky ekúšobnej tyče.11 wherein the F and N are constants of the apparatus odpovedajúee log SV-1 Mn predlženlam selected two of the measuring rod of length ekúšobnej.
NN
Vščší počet dorazov £, umožňujúcl ďalší záznam hodnfit ťažnej sily pri známej deformácli, slúži pre spresnenie a kontrolu výsledkov meranie.A plurality of stops 6, allowing further recording of the evaluation of the tensile force at a known deformation, serves to refine and control the measurement results.
Zariadenie podía vynálezu možno použiť tiež pre získanie křivky spevnenia, t.j. pre určeni· závislosti skutečného napátia od pomernej deformáele počaa homogénneho pretvorenia mernej dížky ekúšobnej tyče.The device according to the invention can also be used for obtaining a hardening curve, i. to determine the dependence of the actual stress on the relative deformation during the homogeneous deformation of the measuring stick length.
205 488205 488
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS490979A CS205488B1 (en) | 1979-07-13 | 1979-07-13 | Instrument for strain hardness exponent determination |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS490979A CS205488B1 (en) | 1979-07-13 | 1979-07-13 | Instrument for strain hardness exponent determination |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS205488B1 true CS205488B1 (en) | 1981-05-29 |
Family
ID=5392859
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS490979A CS205488B1 (en) | 1979-07-13 | 1979-07-13 | Instrument for strain hardness exponent determination |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS205488B1 (en) |
-
1979
- 1979-07-13 CS CS490979A patent/CS205488B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bahmani et al. | An extended edge-notched disc bend (ENDB) specimen for mixed-mode I+ II fracture assessments | |
| Deans et al. | A simple and sensitive method of monitoring crack and load in compact fracture mechanics specimens using strain gages | |
| DE10331125B3 (en) | Method for balancing and measuring in melts by means of optical fibers, and device therefor and their use | |
| DE2919625C2 (en) | Method and apparatus for rapidly predicting the degree of nodularity of nodular cast iron | |
| Nwoke et al. | Investigation of creep responses of selected engineering materials | |
| Hartweg et al. | Analysis of the crack location in notched steel bars with a multiple DC potential drop measurement | |
| KR100305723B1 (en) | Method for Automatic Life Assessment of Mechanical Equipments under Complex Loads Using Strain | |
| CS205488B1 (en) | Instrument for strain hardness exponent determination | |
| US4048556A (en) | Method for evaluating electrode consumption rate | |
| KR101113950B1 (en) | Fatigue life prediction method by measuring the surface temperature | |
| CN119223747A (en) | Cable insulation and outer sheath mechanical properties testing device, method, equipment and storage medium | |
| CN110967246A (en) | Data processing method and data processing system for split Hopkinson bar experiment | |
| Shin et al. | Evaluating fatigue crack propagation properties using a cylindrical rod specimen | |
| Crosley et al. | A compact specimen for plane strain crack arrest toughness testing | |
| US2492164A (en) | Elastic proving bar | |
| SU1784864A1 (en) | ||
| US3037291A (en) | Method and apparatus for measuring uniform elongation | |
| Haenny et al. | Toughness of Gray Cast Iron Evaluated Through the R-Curve Concept.(Retroactive Coverage) | |
| CN118395757B (en) | Test method for measuring I-type cohesive force constitutive relation | |
| RU2786093C1 (en) | Method for investigation of samples of high-strength steels for stresh corrosion cracking | |
| SU813193A1 (en) | Method of measuring metal strength under elevated temperatures | |
| RU2803500C1 (en) | Method for determining the strength of concrete | |
| US4995732A (en) | Method and apparatus for continuous measurement of the temperature of electroconductive melt and the thickness of refractory lining | |
| RU2775515C1 (en) | Method for determining the viscosity of metallic materials | |
| RU2431127C1 (en) | Stain gage |