CS202121B1 - Magnetic field intensity sensor - Google Patents
Magnetic field intensity sensor Download PDFInfo
- Publication number
- CS202121B1 CS202121B1 CS457679A CS457679A CS202121B1 CS 202121 B1 CS202121 B1 CS 202121B1 CS 457679 A CS457679 A CS 457679A CS 457679 A CS457679 A CS 457679A CS 202121 B1 CS202121 B1 CS 202121B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- sensor
- measuring
- solution
- magnetic field
- bridge
- Prior art date
Links
Landscapes
- Peptides Or Proteins (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Sinímiač je určený pre meranie intenzity stacionárnych a kviazlstacionárnych magnetických polí, kde pracuje ako převodník intenzity na časový interval - petriódu a změnu poměru polperiód obdélníkových kmitov napatia na výstupných svorkách snímača. Snímač pozostáva z mostku, v jehož meracej větvi je zapojené snímacie vinutie feroindukčnej sondy a komparátoru zapojeného do diagonály tohoto mostíkia. Snímač je možné využit v letectvu, geologickom prieskume, báňskom meračstve, silnoprúdej elektrotechnike a pri moraní neelektrických veličin — najma polohy a uhla natočením Obecne je možné využitie snímače tam, kde vektor intelnzity magnetického póla obsahuje užitečná informáciu.The transducer is intended for measuring the intensity of stationary and quasi-stationary magnetic fields, where it works as a converter of intensity to a time interval - a period and a change in the ratio of half-periods of rectangular oscillations of the napatium at the output terminals of the sensor. The sensor consists of a bridge, in the measuring branch of which the sensing winding of the ferroinduction probe is connected, and a comparator connected to the diagonal of this bridge. The sensor can be used in aviation, geological survey, mine surveying, high-current electrical engineering and when measuring non-electrical quantities — taking position and angle by rotation.
Description
Predmetom vynálezu je spósob výroby formovaných bielkovinových koncentrátov pórovitej štruktúry.It is an object of the invention to provide a process for the production of formed protein concentrates of the porous structure.
Pri doterajšej výrobě formovaných bielkovinových koncentrátov pórovitej štruktúry sa používá termoplastická extrúzia, pri ktorej pósobením tepla a tlaku sa bielkoviny plastifikujú a po extrúzii pri znížení tlaku nadobúdajú pórovitá štruktúru. Uvedený spósob výroby je náročný na technologické zariadenia, vyžaduje používanie vysokých teplot a tlaku. Extrudované bielkoviny spravidla nie sú formované do vlákien.In the prior art production of molded protein concentrates of the porous structure, a thermoplastic extrusion is used in which, by the action of heat and pressure, the proteins are plasticized and, after extrusion under reduced pressure, a porous structure is obtained. This method of production is demanding on technological equipment, requiring the use of high temperatures and pressures. As a rule, extruded proteins are not formed into fibers.
Uvedené nevýhody odstraňuje spósob výroby podlá vynálezu, ktorého podstata spočívá v tom, že bielkoviny sa rozpustia vo vodnom roztoku uhličitanu sodného, alebo draselného resp. zmesi uhličitanu sodného a draselného a roztok sa vstrekuje do vody okyselenej kyselinou solnou, alebo inými kyselinami.These disadvantages are overcome by the process according to the invention, which consists in dissolving the proteins in an aqueous solution of sodium or potassium carbonate, respectively. of sodium carbonate and potassium carbonate and the solution is injected into water acidified with hydrochloric acid or other acids.
Výhodou sposobu výroby podlá vynálezu je, že nevyžaduje použitie vysokých teplót a tlaku a spósob výroby umožňuje vytváranie bielkovinových vlákien o róznych hrůbkách a pórovitej štruktúre.An advantage of the production method according to the invention is that it does not require the use of high temperatures and pressures and the production method allows the formation of protein fibers of different depths and porous structure.
Příklad 1Example 1
Do navážky 1000 kg kazeínu o sušině 50 % sa přidá 12,5 kg uhličitanu sodného s voda12.5 kg of sodium carbonate with water are added to a 1000 kg casein of 50% dry matter
202 121202 121
202 121 tak, aby výsledná sušina zmesi bola 20 %. Po rozpuštění kazeínu sa roztok tryskou vstre kuje do vody okyselenej kyselinou solnou na hodnotu p^j 4,6.202 121 so that the resulting dry weight of the mixture was 20%. After dissolution of the casein, the solution is injected into water acidified with hydrochloric acid to a pH of 4.6.
Příklad 2Example 2
Zmes mliečnych bielkovín o 40 % sušině sa rozpustí prídavkom vodného roztoku uhličitanu draselného tak, aby sušina roztoku bola 23 % a aktívna kyslosť pH 7,0, Zmes bielko vín sa vstrekuje do vody okyselenej kyselinou míiečnou na hodnotu pjj 4,8,The 40% dry milk protein mixture is dissolved by the addition of an aqueous potassium carbonate solution so that the dry matter solution is 23% and the active acidity p H 7.0.
Příklad 3Example 3
Sojové bielkoviny po predchádzajúcom rozpuštění vo vodnom roztoku uhličitanu sodného o pH 6,5 a o 26 % sušině roztoku sa vstrekujú do vody okyselenej kyselinou solnou o aktívnej kyslosti blízkéj izoelektrickému bodu sójových bielkovín.Soy proteins, previously dissolved in an aqueous solution of sodium carbonate op H 6.5 and 26% dry solution, are injected into water acidified with hydrochloric acid of active acidity close to the isoelectric point of soy protein.
Příklad 4Example 4
Zmes mliečnych bielkovín o 40 % sušině sa rozpustí prídavkom roztoku zmesi uhličitanu sodného a draselného tak, aby sušina roztoku bola aktívna 23 % a aktívna kyslosť Pjj 7,0. Zmes bielkovín sa vstrekuje do vody okyselenej kyselinou solnou na hodnotu PH 4,8.The milk protein mixture of 40% dry matter is dissolved by adding a solution of sodium carbonate and potassium so that the dry matter of the solution is active at 23% and active acidity P ij 7.0. The mixture of proteins was injected into water, made acidic with hydrochloric acid to L H, 4.8.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS457679A CS202121B1 (en) | 1979-06-29 | 1979-06-29 | Magnetic field intensity sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS457679A CS202121B1 (en) | 1979-06-29 | 1979-06-29 | Magnetic field intensity sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS202121B1 true CS202121B1 (en) | 1980-12-31 |
Family
ID=5388846
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS457679A CS202121B1 (en) | 1979-06-29 | 1979-06-29 | Magnetic field intensity sensor |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS202121B1 (en) |
-
1979
- 1979-06-29 CS CS457679A patent/CS202121B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SE8103435L (en) | INDUSTRIAL PROCESS CONTROL SYSTEM WITH A RESONANCE SENSOR | |
| BE851306A (en) | NEW DERIVATIVES OF 3-QUINOLEINE CARBOXYLIC ACID | |
| KR900014889A (en) | Relative displacement measuring device | |
| ATE73238T1 (en) | FOSTER PROBE. | |
| GB1381307A (en) | Method for the measurement of direct currents with floating input and direct time indication | |
| FR2242661B1 (en) | ||
| CS202121B1 (en) | Magnetic field intensity sensor | |
| US3461382A (en) | Pulse dependent feedback system for measuring changes in a physical phenomenon | |
| EP0243975A3 (en) | Electrochemical temperature sensor | |
| CN101013097A (en) | Original position soil salt content sensing transducer | |
| SU496459A1 (en) | Contactless eddy current sensor | |
| AT338545B (en) | ARRANGEMENT FOR THE NON-CONTACT MEASUREMENT OF TENSIONAL STRESSES IN A CONTINUOUS TRAIL OF MATERIAL | |
| SU496579A1 (en) | Contact displacement sensor | |
| Cooke et al. | Continuous automatic river water quality monitoring-experience on the river Trent | |
| SU589538A1 (en) | Galvanomagnetic device for measuring mechanical displacements | |
| SU593131A1 (en) | Magnetic induction sensor | |
| SU465658A1 (en) | The device for maintaining the desired position of the control rods | |
| SU529409A1 (en) | Method for measuring active loss in nonlinear hysteresis materials | |
| SU464862A1 (en) | System phase indicator | |
| SU389389A1 (en) | DEVICE FOR UNDERSTANDING HEAT GASKETS | |
| EP0246781A3 (en) | Magnetic field direction indicating devices | |
| SU387994A1 (en) | METHOD OF OBTAINING HYTERO-CYCLIC TIOGLYCLE ACIDS | |
| SU1188524A1 (en) | Method of measuring shaft turning angle | |
| SU430289A1 (en) | SHIPPED RESISTANCE THERMOMETER | |
| SU437033A1 (en) | Device for determining the magnetic energy of the sample |