CS201642B1 - Cell of the capacitous type - Google Patents

Cell of the capacitous type Download PDF

Info

Publication number
CS201642B1
CS201642B1 CS866777A CS866777A CS201642B1 CS 201642 B1 CS201642 B1 CS 201642B1 CS 866777 A CS866777 A CS 866777A CS 866777 A CS866777 A CS 866777A CS 201642 B1 CS201642 B1 CS 201642B1
Authority
CS
Czechoslovakia
Prior art keywords
electrode
cell
measured
wall
medium
Prior art date
Application number
CS866777A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Alfonz Lezovic
Lubomir Lihotsky
Original Assignee
Alfonz Lezovic
Lubomir Lihotsky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfonz Lezovic, Lubomir Lihotsky filed Critical Alfonz Lezovic
Priority to CS866777A priority Critical patent/CS201642B1/en
Publication of CS201642B1 publication Critical patent/CS201642B1/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Článok kapacítného typu aa týká merania vysokofrekvenčněj vodivosti kvapalín, dielektrioke j konštanty látok a dielektriokýoh etrát látok. Tohto sa dá s výhodou použit’ na etanovenie určitej zložky meraného mádla, ktorej obsah v médiu je úměrný buá vodivos ti, dielektriokej konátaňte alebo dielektriokým stratám.The capacitive type cell aa relates to the measurement of the high-frequency conductivity of liquids, the dielectric constant of substances and the dielectric oxide of substances. This can advantageously be used to identify a particular component of the measured handle whose content in the medium is proportional to either the conductivity, the dielectric contact or the dielectric losses.

Doteraz používané články sa vyznačujú tým, že majú najmenej dve elektrody, pričom všetky sú galvanioky oddělené elektroizolačným materiálom od meraného média. Podlá charakteru média a spóaobu merania móžeme týmito článkami merať buď aktlvnu zložků impedanoie, připadne admitanoie alebo reaktivnu (imaginárau) zložků impedanoie (susoeptanoiu), poťažne efektívnu kapacitu. Výsledná impedanoia týohto člénkov, ak sa meria pri konštant nom napátl je:The cells used hitherto are characterized by having at least two electrodes, all of which are electroplated by electrically insulating material from the measured medium. Depending on the nature of the medium and the method of measurement, these cells can be used to measure either the active components of the impedanoia, possibly admitanoia, or the reactive (imaginary) components of the impedanoia (susoeptanoia), or the effective capacity. The resulting impedance of these members, when measured at constant voltage, is:

Rere

CU Re K /1/CU Re K / 2 /

2 2 1 +CU He K2 2 1 CU He K

CUC kde Re je nlzkofrekvenčný odpor elektrolytu CO je kruhová frekvenciaCUC where Re is the low frequency resistance of the CO electrolyte is a circular frequency

K je kapaoita článku C je kapaoita stien článku i = Ti . „ 2 Z2 + Re Co KK is the cell capacity C is the cell wall capacity i = Ti. 2 Z2 + Re Co K

Pre oelkovú admitaneiu Y platí:For adelectomy Y:

2 Re CO CRe CO C

CUC + Ue2OQ3CK /c + K/ + Re2 CO2 /C + K/2 + Re2CU2 /G + K/ /2/CUC + Ue 2 OQ 3 CK / C + K / + Re 2 CO 2 / C + K / 2 + Re 2 CU 2 / G + K / / 2 /

Z rovnío 1 a 2 vyplývá, že najlepšie podmienky pre meranie dosiahneme, ak bude poměrIt follows from equations 1 and 2 that the best measurement conditions are obtained if the ratio is

C , go možno najvyšší. Pri merani vysokovodivýoh systémov /nad 10 J S, S = Siemens/,C, go maybe the highest. When measuring high conducting systems (over 10 J S, S = Siemens),

K · frekvenoiou nad 100 MHz hodnota aktívneho odporu sa blíži k nule. Hodnota reaktívneho odporu je závislá na dielektriokej konštante meraného média, protože poměr C sa nedá K nezávisle zvyšovat’. Je potřebné použit’ elektroizolačný materiál s malou hrúbkou steny a vyaokou dielektrickou konštantou, malým prierezom článku a velkou vzdialenosťou medzi elektrodami, člm sa konštrukčne tieto člénky vel’mi komplikujú a vzhladom na vysokú použIvanů frekvenoiu sa už vlastně jedná o indukčno-kapaoitné články.With a frequency above 100 MHz the active resistance value is close to zero. The reactive resistance value depends on the dielectric constant of the measured medium, since the ratio C cannot be independently increased by K '. It is necessary to use an electrical insulating material with a low wall thickness and a high dielectric constant, a small cell cross-section and a large gap between the electrodes.

Podlá tohoto vynálezu článok kapacitného typu pozostáva najmenej z dvoch elektrod umiestnených na dutom tvarovanom profile z elektricky nevodivého materiálu, s výhodou rúrkovitého tvaru, ktorého podstata spočívá v tom, že na stene tvarovaného profilu je / 2 uohytená aspoň jedna elektroda s povrchom 0,01 až 10 om o polarizačněj kapacitě 0,1 až 100/XF v priamom styku s meraným médiom a na opačnej stene je aspoň jedna ďalšia elektro da, v porovnaní s predchádzajúoou elektrodou, od meraného média izolovaná a výsledná kapacita článku Ko je 0,005 až 0,5 pP.According to the invention, the capacitive type cell consists of at least two electrodes disposed on the hollow shaped profile of an electrically non-conductive material, preferably tubular in shape, characterized in that at least one electrode having a surface area of 0.01 to With a polarization capacity of 0.1 to 100 / XF in direct contact with the medium to be measured and on the opposite wall, at least one additional electrode is isolated from the medium to be measured and the resulting cell capacity is 0.005 to 0.5. pp.

Pri tomto umiestnenl elektrod je polarizačná kapaoita elektrody ponorenej v meranom médiu velká, rovná přibližné 10 J K na 1 cm povrohu. Kapacitná reaktanoia tejto elektrody je už pri poměrně nlžkyoh frekvenciáoh proti odporu média zanedbatelná. Napr.With this electrode placement, the polarization capaoity of the electrode immersed in the measured medium is large, equal to approximately 10 J K per cm surface. The capacitance of this electrode is negligible even at relatively low frequencies against the medium resistance. E.g.

642 pre f s 1 MHz povrch 1 om2 Op 4 1θ“^ F, kapaoitná reaktanoia je 0,0159^.642 for fs 1 MHz surface 1 om 2 Op 4 1θ “^ F, the capacitance is 0.0159 ^.

Cp = polarizaSná kapaoitaCp = polarization capaoity

Pre doteraz používaný typ bezelektródováho kapacítnáho Slánku s dvOml izolovanými elektrodami S2 je kapaoita C etien Slánku:For the type of electrode-free capacitive salt used so far with 2Oml insulated electrodes S 2 , the cell capacity C of the salt is:

Cel * Ce2 Csl * Cs2 'el C el * C e2 C sl * C s2 'el

Pri At Csl = Cs2 Je CI = 2 aI C s1 = C s2 J e C 1 = 2 aI Ί = F2 F = F 2 £ . F Kapaoita Koz je Koz = *£. F Kapaoita Ko z is Ko z = * d * Celd * C el x i x and u Mí, m . ňl f u Mí, m. ňl f d D Κοχ Κο χ 2 4 £o . F, 2 4 £ o. F, °el ° el kapaoita steny - elektroda Kapaoita wall - electrode S1 S 1 Cs2 C s2 kapaoita steny - elektroda Kapaoita wall - electrode S2 S 2 £o £ o dielektrická konstanta vákua n 8,86 . dielectric constant of vacuum n 8.86. io12 io 12 d D vzdialenosť elektrod /m/ electrode distance / m / KOj Koj kapaoita prázdného Slánku /1/ kapaoita of the empty Salt cellar / 1 / F1 * F 1 * F2 povrch elektrodF 2 electrode surface S1 - S2 v m2 S 1 - S 2 in m 2 C_ C_ je priamoúmerný, vzdialenosti elektrod, is directly proportional to the electrode spacing, kapaóite steny Slánku kapaóite walls of Salt Ko Ko che elektrody s menším povrohom. che electrodes with smaller surface area.

Pre hezelektródový kapaoitný Slánek podTa vynálezu a jednou elektrodou &2 umiestnenou v moranom mádlu, ktorej povrch je 10 až 10Ó0 krát menáí ako povrch izolovaná elektrody S, platí: CpX£> C*, c«i · c« CII e ·· · B & Cslj C.l + CpFor hezelektródový kapaoitný Slánek sub-topic of the invention and the one electrode and 2 located Moran handle, the surface of which is 10 to 10Ó0 times the likes of the surface of the isolated electrode S, the following applies: C p X £> C *, C 'i · c' C II E · · B and C SLJ .l C + C p

Ko^-J. B &P ·'·· Fg >Ko ^ -J. B & P · '·· Fg >

SAKOJACKET

IX £c ‘ F2 al CIIX £ c ' F 2 and C 1

KOj CIICJ C II

Ko 'aZ polarizaSná kapaoita ponorenej elektrody /S2/ kapaolta steny Slánku - elektroda /3izolovaná celková kapaoita steny Slánku /1/ kapaoita prázdného Slánku /1/ oelková kapaoita steny Slánku /11/ kapaoita prázdného SláhkU /11/ kapaoita steny Slánku - elektróda /S2/ izolovanáCoZaZ submerged electrode capaita / S 2 / salt wall capa - electrode / 3insulated total cell wall capaita / 1 / empty cell capaoita / 1 / salt wall capaita / 11 / empty salt capaoita / 11 / cell wall capaita - S 2 / insulated

Rere

Rere

OJOJ

Re2K 2 Re2!^Re 2 K 2 Re 2 ! ^

CUC 1 + Re^^K2 CUC 1 + Re ^^ K 2

II /3/II / 3 /

201 642201 642

ZRe = Celková itapedanoia Slánku pri nízkofrekvénčnom odpore Re ροδί taná z rovnice /3/, ZRe —0 Celková impedenoia článku pri nízkofrekvénčnom odpore Re rovnom O, počítaná z rovnice /4/.Z Re = Total salt itapedanoia at low-frequency resistance Re ροδί melted from equation / 3 /, Z Re —0 Total impedence of the cell at low-frequency resistance Re by O, calculated from equation / 4 /.

Poměr Co je pre článok podlía vynálezu pri týoh istýóh parametrech minimálně dvojnásobIf Λ ný, čo je zřejmé 1 z nasledujúoej tabulky:The Co ratio for the cell according to the invention is at least twice as high for the same parameters, as can be seen from 1 in the following table:

Závislost’Δ Z rozdielu oelkovej impedanoie článku na nízkofrekvénčnom odpore rovnom Re a pri nízkofrekvénčnom odpore Re rovnom 0,Dependence '' From the cell impedance of the cell to a low-frequency resistance equal to Re and a low-frequency resistance equal to Re, 0,

ΔΖ = ZRe “ReΔΖ = Z Re “Re

I XXI XX

Re CL Re CL Δ~ζ/£ = ro/fL Δζ/£ > 8o/fl Δ ~ ζ / £ = ro / fL Δζ / £> 8o / fl Δζ/£= ιοζΩ Δζ / £ = ιοζΩ Δ Z/£ = 80/C1 Δ Z / £ = 80 / C1 1 1 2 2 3 3 4 4 5 5 0 0 0 0 0 0 0 0 0 0 10 10 - - 0,1 0.1 0,1 0.1 20 20 0,2 0.2 0,4 0.4 0,6 0.6 0,6 0.6 30 30 0,6 0.6 0,8 0.8 1,3 1.3 1,3 1.3 40 40 1,0 1.0 1,4 1.4 2,2 2.2 2,2 2.2 50 50 1,7 1.7 2,2 2.2 3,5 3.5 3,5 3.5 60 60 2,5 2.5 3,2 3.2 5,0 5.0 5,0 5.0 70 70 3,3 3.3 4,4 4.4 6,8 6.8 6,8 6.8 80 80 4,4 4.4 5,7 5.7 8,8 8.8 8,8 8.8 90 90 5,5 5.5 7,2 7.2 11,1 11.1 11,1 11.1 100 100 6,9 6.9 8,8 8.8 13,7 13.7 13,7 13.7 110 110 8,3 8.3 10,7 10.7 16,5 16.5 16,5 16.5 120 120 9,9 9.9 12,7 12.7 19,5 19.5 19,5 19.5 130 130 11,6 11.6 14,9 14.9 22,8 22.8 22,8 22.8 14O 14O 13,5 13.5 17,3 17.3 26,3 26.3 26,4 26.4 150 150 15,4 15.4 19,8 19.8 30,0 30.0 30,1 30.1 lóo Loo 17,6 17.6 22,5 22.5 34,0 34.0 34,1 34.1 170 170 19,8 19.8 25,4 25.4 38,2 38.2 38,3 38.3 180 180 22,2 22.2 28,4 28.4 42,6 42.6 42,7 42.7 190 190 24,7 24.7 31,6 31.6 47,2 47.2 47,3 47.3 200 200 28,3 28.3 35,0 35.0 52,3 52.3 52,4 52.4 210 210 31,2 31.2 38,5 38.5 56,9 56.9 57,0 57.0 220 220 34,2 34.2 41,8 41.8 62,0 62.0 62,1 62.1 230 230 37,2 37.2 45,9 45.9 67,3 67.3 67,5 67.5 240 240 40,4 40.4 49,9 49.9 72,8 72.8 73,0 73.0

201 024201 024

1 1 2 2 3 3 4 4 5 5 250 250 43,9 43.9 54,0 54.0 78,4 78.4 78,6 78.6 260 260 47,1 47.1 58,2 58.2 84,2 84.2 84,4 84.4 270 270 50,8 50.8 62,6 62.6 90,1 90.1 90,3 90.3 280 280 54,5 54.5 67,0 67.0 96,2 96.2 96,4 96.4 29O 29o 58,4 58.4 r 72,4 r 72.4 102,4 102.4 102,7 102.7 300 300 62,3 62.3 76,5 76.5 108,8 108.8 109,1 109.1 ÁZjS ÁZjS ZReI Zol Zol 55 Z ReI Z ol Z ol 55 717,28 _Ω_ 717,28 _Ω_ ΔΖΙΙ = ZReII “ ZoII ΔΖ ΙΙ = Z ReII “ Z oII ZoII s 359.44ΪΪ Z oII s 359.44ΪΪ

V tabulke je znázorněná závislost’ Δ Z na Re pre článok doteraz používaný IÚZ^ a pre článok podlá vynálezu II ΔΖ·^} vypočítaný z rovnice /3/ Δ Z = ZRe - ZRe θThe table shows the dependence of Δ Z on Re for the cell used up to now by the IUS and for the cell according to the invention II ΔΖ · ^} calculated from equation / 3 / Δ Z = Z Re - Z Re θ

Hodnoty Δ Z aú počítané pre obidva články pre £ = 10 a £=80 /merané médium/. Parametre článku I. sklená trubka 0 3,0 oo, £=5,0, hrúbka steny v mieste elektrody 0,05 om,The values Δ Z are calculated for both cells for £ = 10 and £ = 80 (measured medium). Cell parameters I. glass tube 0 3.0 oo, £ = 5.0, wall thickness at the electrode site 0.05 µm,

Sirka elektrody 9,0 om, dížka elektrody 5,5 om, povroh á 50 om2j Rozměry a povroh druhej elektrody S2 sú tle iaté, vzdlalenosť medzi nimi je 11 om, odporová konštantá článku d = 1,5, uvažovaná meraoia frekvenoia: 1 MHz.Electrode width 9.0 om, electrode length 5.5 om, surface 50 om 2 j Dimensions and surface of the second electrode S 2 are thicker, distance between them is 11 om, cell resistance constant d = 1.5, considered frequency : 1 MHz.

F £ poměrná dielektrloká konstanta /ermltivita/F £ relative dielectric constant (ermltivity)

Parametre článku podl’a tohoto vynálezu aú tle isté, len povroh druhej neizolovanej , 2 elektrody ponořenéj v meranom médiu je zmenSený na 1 om . Potom pre článok póvodného typu je 222 pP, Ko^. = 0,4 pF a CI _The parameters of the cell according to the invention are the same, only the surface of the second uninsulated 2 electrode immersed in the measured medium is reduced to 1 µm. Then, for the cell of the original type, 222 pP, K0. = 0.4 pF and C1

Ko.j.Ko.j.

Pre náS článok bude Ci;j. = 443 pF, Ko^. = 0,008 pF, ®®tt —— s 55 600j číže proti póvodnému sa zvýšil přibližné 100 krát.For us the article will be C i; j . = 443 pF, KD. = 0.008 pF, ®tt —— with 55,600 liters of baseline versus baseline increased approximately 100-fold.

K°II K ° II

Z tabulky vidno, že pre námi navrhovaný článok je príraatok ΔZjj. na Jednotku Re vkčší a prakticky v rozmedzí Re s 0 až 300-fL ndzávialý na £ meraného média.It can be seen from the table that the proposed article is the addition of ΔZjj. per unit of Re greater and practically in the range of Re with 0 to 300-µL depending on the medium to be measured.

Umiestnenie a počet elektrod možno volit* podlá oharakteru meraného média a zvoleného spósobu merania. Udávaná kapacita z hladíska konštrukčného móže byť aj súčtom kapaoity niekolkýoh elektrod.The position and number of electrodes can be selected according to the nature of the medium to be measured and the method of measurement chosen. The stated capacity in terms of design can also be the sum of the capaoity of several electrodes.

Na přiloženýoh obrázkooh 1 až 4 sú smázomené jednotlivé typy článkov, pričom podlá konstrukčněj úpravy ioh móže byť daleko viao.Individual types of cells are deleted in the attached figures 1 to 4, and according to the constructional arrangement ioh can be much more.

Článok tohoto typu znázorněný na obrázku 1 sa dá í výhodou použit* pre meranie vodivosti najmd vysoko vodivých aystémov, kde pri vysokom pomere f C i je pri meraoej frekvenci!The cell of this type shown in Figure 1 can be advantageously used for measuring the conductivity of the most highly conductive aystems, where at a high ratio fC i at a measured frequency!

\K/ menšej ako 10? Hz, pri odpore Re 10 až 1 000-fL /tento je možné meniť vzdialenosťou medzi ponořenou alebo ponořenými, od izolovanéj alebo izolovanýoh elektrod/, závislost’ oelkovej impedanole článku takmer priamková a málo závislá na £ meraného systému.\ K / less than 10? Hz, with a resistance of Re 10 to 1000-fL (this can be varied by the distance between the submerged or submerged, from the insulated or insulated electrodes), the dependence of the impedance of the cell nearly linear and little dependent on the measured system.

Ak sa umieatní ponořená elektroda tak, aby ležala vo vnútri, připadne na okraji izo5If the submerged electrode is positioned so that it lies inside,

01 04:01 04:

lovanej elektrody, znázorněnéj na obr. 2, 3 a 4, potom kapacita tohto kondenzátorů je pre vzdueh rovná kapacitě medzi izolovanou a ponořenou elektrodou /Ko/.The electrode shown in FIG. 2, 3 and 4, the capacitance of the capacitors is equal to the capacitance between the insulated and the submerged electrode (Ko).

Pre frekvencie CO pod 103, odpor pod 103JTL C ss 100 až 1 OOO pF, z rovnice /2/ vyplývá, že admitancia Y tohto Slánku ša rovná:For CO frequencies below 10 3 , resistance below 10 3 JTL C ss of 100 to 1000 pF, equation (2) shows that the admittance Y of this Clause is equal to:

Y á ícaJC.Y á ícaJC.

Kapacita steny C bude v tomto případe priamoúmemá výáke meraného média a v uvažovanom rozmedzí nezávislá na jeho nlzkofrekvenSnom odpore Re.In this case, the capacity of the wall C will be directly proportional to the height of the medium to be measured and, in the range considered, independent of its low-frequency resistance Re.

Tohto sa dá β výhodou použit* na meranie hladiny vodivých kvapaliu, kde pri použiti bezelektródového Slánku s dvojioou izolovaných elektrod táto závislost’ nie je priamková.This can be advantageously used to measure the level of conductive liquid, where the dependence is not linear when using an electrode-free cell with a double-biased electrode.

Claims (1)

Článok kapacitného typu najmenej s dvoma elektrodami, umiestnenými na dutom tvarovanom profile, z elektricky nevodivého materiálu, s výhodou rúrkovitého tvaru, vyznačujúci sa tým, že na stene tvarovaného profilu je uchytená najmenej jedna elektroda /Sg/ s povrohom 0,01 až 10 om o polarizačněj kapacitě 0,1 až 100v priamom styku s meraným médiom a na opaSnej stene je najmenej jedna áalšia elektroda /sj/ v porovnáni s před chádzajúoou elektrodou /S2/ od meraného média izolovaná a výsledná kapacita Slánku Ko je 0,005 až 0,5 pF.Capacitive type cell with at least two electrodes disposed on a hollow shaped profile, of an electrically non-conductive material, preferably tubular, characterized in that at least one electrode (Sg) having a surface area of 0.01 to 10 µm is attached to the wall of the shaped profile. With a polarization capacity of 0.1 to 100 in direct contact with the measured medium and on the opposite wall, at least one other electrode ( s j) is isolated from the measured medium in comparison with the previous electrode (S 2 ) and the resulting capacity of the Ko is 0.005 to 0.5. pF.
CS866777A 1977-12-22 1977-12-22 Cell of the capacitous type CS201642B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS866777A CS201642B1 (en) 1977-12-22 1977-12-22 Cell of the capacitous type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS866777A CS201642B1 (en) 1977-12-22 1977-12-22 Cell of the capacitous type

Publications (1)

Publication Number Publication Date
CS201642B1 true CS201642B1 (en) 1980-11-28

Family

ID=5437541

Family Applications (1)

Application Number Title Priority Date Filing Date
CS866777A CS201642B1 (en) 1977-12-22 1977-12-22 Cell of the capacitous type

Country Status (1)

Country Link
CS (1) CS201642B1 (en)

Similar Documents

Publication Publication Date Title
Bisquert Influence of the boundaries in the impedance of porous film electrodes
Gnahm et al. The interface between Au (1 1 1) and an ionic liquid
Schwan Alternating current electrode polarization
Bullard et al. Operating principles of the ultracapacitor
Taylor et al. AC admittance of the metal/insulator/electrolyte interface
Fromm et al. Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejunum, in vitro
Gardner et al. Measurement of membrane conductivities using an open-ended coaxial probe
Dinh et al. The effect of film thickness and growth method on polyaniline film properties
Abe et al. Dielectric constants and electrical conductivities of sodium dodecyl sulfate in aqueous solutions
Bohnke et al. Impedance analysis of amorphous WO3 thin films in hydrated LiClO4-propylene carbonate electrolytes
Fotland et al. Electrical conductivity of asphaltenes in organic solvents
Fleig et al. Rough electrodes in solid and liquid electrochemistry: impact of morphology on the impedance
US8317882B2 (en) Method of manufacturing a planar electrode with large surface area
CS201642B1 (en) Cell of the capacitous type
Więcek et al. Electrochemical study of molybdenum oxide film electrodes
Careem et al. Lattice and carrier contributions to the dielectric polarization of stearic acid multilayer films
Van der Touw et al. Plane-parallel condenser with variable electrode spacing for determination of electric permittivity of highly conducting liquids below 1 MHz. Part 1.—Theoretical considerations
Stott et al. Comparison of the use of internal and external electrodes for the measurement of the capacitance and conductance of fluids in pipes
Irhzo et al. The role of alloyed tungsten on the conductivity of stainless steel passive layers
Geringer et al. Assessing the tribocorrosion behaviour of Cu and Al by electrochemical impedance spectroscopy
KR102397328B1 (en) Film-type non-contact capacitive leak detecting apparatus
Charlson et al. Electrical properties of glow-discharge polymers, parylenes, and composite films
Kuwabara et al. All-solid-state electrochromic device. 1. Electrophoretic deposition film of proton conductive solid electrolyte
Zheng et al. Resistance distribution in electrochemical capacitors with spiral-wound structure
US4922375A (en) Electrical capacitor