CS201403B1 - Method for the direct separation of oxygen from air - Google Patents
Method for the direct separation of oxygen from air Download PDFInfo
- Publication number
- CS201403B1 CS201403B1 CS793077A CS793077A CS201403B1 CS 201403 B1 CS201403 B1 CS 201403B1 CS 793077 A CS793077 A CS 793077A CS 793077 A CS793077 A CS 793077A CS 201403 B1 CS201403 B1 CS 201403B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- oxygen
- air
- liquid
- direct separation
- magnetic
- Prior art date
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Description
Vynález sa týká sposobu priameho oddelovania kyslíka zo vzduchu, pre získavanie kyslíka pre praktické využitie v metalurgickom, chemickom, strojárskom a iných odvetviach priemyslu a technickej praxe.The invention relates to a method for the direct separation of oxygen from the air for the recovery of oxygen for practical use in metallurgical, chemical, mechanical engineering and other industries and technical practice.
Doposial’ známy sposob získavania kyslíka zo vzduchu je založený na principe skvapalňovania vzduchu postupným expandným ochladzovaním vzduchu až do jeho skvapalnenia a po jeho skvapalnení sa kyslík získává frakčnou destiláciou využívajúcou rozdielnych teplot odparovania kyslíka 90,03 a dusíka 77,20 K. Oddelovanie a získavanie kyslíka uvedeným kryogenným sposobom má celú radu nevýhod. Potřebné sú nákladné investičně zariadenia na vybudovanie kyslíkárne. Spotřeba elektrickej energie na výrobu 1 m3 kyslíka dosahuje okolo 2,5 KWh. Vybudovanie rozvodu alebo rozvoz kyslíka na miesto spotřeby vyžaduje tiež ďalšie náklady.The hitherto known method of extracting oxygen from air is based on the principle of liquefying air by gradually expanding the air until it liquefies, and after liquefaction, oxygen is obtained by fractional distillation using different evaporation temperatures of 90.03 and nitrogen 77.20 K. Separation and recovery of oxygen said cryogenic method has a number of disadvantages. Expensive capital equipment is needed to build an oxygen plant. The electricity consumption for the production of 1 m 3 of oxygen is about 2.5 KWh. The construction of the distribution or distribution of oxygen to the place of consumption also requires additional costs.
Uvedené nedostatky sú odstránené uvedeným vynálezom, ktorého podstata spočívá v tom, že paramagnetické molekuly kyslíka prechádzajú cez kvapalný magnet a diamagnetické molekuly dusíka cez kvápalný magnetneprechád^ajú. Kvapalný magnet je magnetická kvap^tlína, ktorú tvoří jemne disperzný Fe3O4 grnijpsti 1 nm až 10 nm, zmiěšaný v silikónovom oleji (je možné použiť i ipé vhodné kvapaliny). Hmotnostný obsah Fe3o4 2014fl3 v silikónovom oleji móže dosáhovať až 35 %. Od jemnosti technologie, fyzikálno-chemických vlastností magnetického materiálu a rozpúšťadla, možno dosiahnúť magnetickej kvapaliny s róznymi charakteristikami, ako sú viskozita, priezračnosť, magnetické a iné fyzikálně vlastnosti, z ktorých hlavně viskozita a magnetické vlastnosti majú priamy vzťah na prepúšťanie O2 cez magnetická kvapalinu. Magnetická kvapalina umiestnená v homogénnom magnetickom poli vytvára kvapalný magnet.These drawbacks are overcome by the present invention, which is characterized in that paramagnetic oxygen molecules pass through a liquid magnet and diamagnetic nitrogen molecules pass through a liquefied magnet. The liquid magnet is a magnetic liquid consisting of a finely dispersed Fe 3 O 4 between 1 nm and 10 nm, mixed in silicone oil (suitable fluids may also be used). The Fe 3 O 4 2014f13 content in silicone oil can reach up to 35%. From the fineness of the technology, the physico-chemical properties of the magnetic material and the solvent, it is possible to achieve magnetic liquids with different characteristics such as viscosity, clarity, magnetic and other physical properties, of which mainly viscosity and magnetic properties are directly related to O2 permeation through the magnetic liquid. A magnetic liquid placed in a homogeneous magnetic field creates a liquid magnet.
Spósob priameho oddelovania a získavania kyslíka zo vzduchu podlá uvedeného vynálezu má mnoho technických a ekonomických výhod. Vyžaduje viac ako 500 krát nižšie investičně náklady a viac ako 100 krát nižšiu spotřebu elektrickej energie na jednotku získaného kyslíka. Odstránenie nákladov na rozvoz alebo rozvod kyslíka a zabezpečená práca so zariadením sú tiež významným prednostným činitelom uvedeného vynálezu.The method of directly separating and recovering oxygen from the air of the present invention has many technical and economic advantages. It requires more than 500 times lower investment costs and more than 100 times lower electricity consumption per unit of extracted oxygen. The elimination of the oxygen distribution or distribution costs and the safe operation of the device are also a significant advantage of the present invention.
Velmi jemného disperzného Fe3O,i menších rozmerov ako 10 nm možno dosiahnúť najlepšie nasledujúcim sposobom:Very fine dispersion Fe 3 O, even smaller than 10 nm, can best be achieved by the following method:
V 1000 ml. vody rozpustit 36 g FeClg a v 1000 ml. vody rozpustit 20 g FeSO4 · 7 H2O. Oba roztoky přefiltrovat a zmiešať. Po ochladení pridať přefiltrovaný roztok 33 g NaOH rozpustného v 33 ml. vody. Ciernu zrazeninu dokonale premývať destilovanou vodou a potom ešte acetónom a totuólom, pridať 6 až 7 ml. kyseliny oleinovej ako stabilizátora a dokonale rozotrieť.In 1000 ml. water to dissolve 36 g FeClg and 1000 ml. dissolve 20 g of FeSO 4 · 7 H 2 O. Filter and mix both solutions. After cooling, add a filtered solution of 33 g of NaOH soluble in 33 ml. water. Wash the black precipitate thoroughly with distilled water and then with acetone and totuol, add 6 to 7 ml. oleinic acid as a stabilizer and thoroughly spread.
Příklad prevedenia zariadenia na priame oddeiovanie kyslíka zo vzduchu cez kvapalný magnet je znázorněný na priloženom výkrese, kde vzduch jemne regulovatelným predtlakom vchádza potrubím 1 do rozptylovača vzduchu 4, ktorý zabezpečuje rovnoměrné rozptýlenie vzduchu v magnetickej kvapaline v komoře 3, kyslík z komory 3 prechádza cez magnetickú kvapalinu v komoře 7, v ktorej pomocou vonkajšieho homogénneho magnetického pol'a 6 vzniká kvapalný magnet. Komora 3 je vo vrchnéj časti opatřená potrubím 2, ktorého plocha prierezu otvoru k poměru plochy prierezu otvoru 1 je 1 :0,8. Komora 7 je tak isto opatřená vo vrchnéj časti potrubím 5, ktorého plocha prierezu otvoťuk'poměru plochy prierezu otvoru potrubia 1 je 1 : 0,2. Takéto' přísné vymedzené poměry ploch prierezov otvorov potrubí zabezpečujú potřebné rovnovážné podmienky v oboch komorách 3 a 7¾ Molekulový dusík, ktorý cez kvapalný magnet nepredifundoval, odchádza potrubím 2 a molekulový kyslík, ktorý predifunoval cez kvapalný magnet, odchádza potrubím 5 a komprimuje sa na požadovaný tlak.An example of an embodiment of a device for direct separation of oxygen from air through a liquid magnet is shown in the accompanying drawing, where the air is gently regulated by pre-pressure through line 1 to an air diffuser 4 which ensures uniform air distribution in the magnetic liquid in chamber 3; liquid in the chamber 7, in which a liquid magnet is produced by the external homogeneous magnetic field 6. The chamber 3 is provided in the upper part with a conduit 2, whose cross-sectional area of the opening to the cross-sectional area of the opening 1 is 1: 0.8. The chamber 7 is also provided in the upper part with a conduit 5, the cross-sectional area of which is 1: 0.2. Such strictly defined cross-sectional area ratios of the conduit openings provide the necessary equilibrium conditions in both chambers 3 and 7¾ Molecular nitrogen which has not diffused through the liquid magnet exits through line 2 and the molecular oxygen that has pre-passed through the liquid magnet leaves line 5 and compresses to the desired pressure .
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS793077A CS201403B1 (en) | 1977-11-30 | 1977-11-30 | Method for the direct separation of oxygen from air |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS793077A CS201403B1 (en) | 1977-11-30 | 1977-11-30 | Method for the direct separation of oxygen from air |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201403B1 true CS201403B1 (en) | 1980-11-28 |
Family
ID=5429272
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS793077A CS201403B1 (en) | 1977-11-30 | 1977-11-30 | Method for the direct separation of oxygen from air |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201403B1 (en) |
-
1977
- 1977-11-30 CS CS793077A patent/CS201403B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bacri et al. | “Negative-viscosity” effect in a magnetic fluid | |
| Tanaka et al. | Phase transitions in ionic gels | |
| Tanaka | Viscoelastic phase separation | |
| Basualto et al. | Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants | |
| Drost-Hansen | Aqueous Interfaces—Methods of Study and Structural Properties. Part Two | |
| Tobochnik et al. | Monte Carlo study of melting in two dimensions | |
| Singh et al. | Solvent extraction in production and processing of uranium and thorium | |
| Zhang et al. | Synergistic improvement of the fine size coal dewatering performance by using binary surfactant mixtures | |
| CS201403B1 (en) | Method for the direct separation of oxygen from air | |
| US4261711A (en) | Magnetic separation apparatus | |
| Yang et al. | An innovative microextraction material for efficient and selective extraction of gold: Magnetic oil-based gel microspheres containing Aliquat 336 | |
| US3216800A (en) | Methods for producing deuterium by distillation of hydrogen | |
| Goldstein et al. | Further studies of fluid nonlinearity: The orthogonal rheometer and the oscillating sphere | |
| US1575587A (en) | Separation of gaseous or liquid mixtures | |
| US3719720A (en) | Removing oligomers from styrene vapor | |
| Khanramaki et al. | Experimental study on the uranium (VI) extraction rate and droplet mass transfer coefficients from a sulfate leach liquor medium with Alamine 336 in a single drop column | |
| DE3545746A1 (en) | Process for intensifying hydrolysis reactions and apparatus for carrying out the process | |
| Azizi | Experimental investigation of terminal velocity and Sherwood number of rising droplet in an extraction column | |
| Bhattacharjee | Preferred patterns in convection in rotating binary mixtures | |
| Gottlieb | On the exceptional zeros of cross-products of derivatives of spherical Bessel functions | |
| US293740A (en) | Isaiah smith hyatt | |
| Alben | Possible phase diagrams for mixtures of ‘positive’and ‘negative’nematic liquid crystals | |
| JPS588565B2 (en) | Manufacturing method of magnetic fluid | |
| Sriraman et al. | The diamagnetic study of the nature of the association of acetic acid. II. The binary systems of acetic acid with Triethylamine, pyridine and Aniline | |
| Kuentzler et al. | Low temperature specific heat of (V1− xCrx) Be12 compounds |