CS201403B1 - Method for the direct separation of oxygen from air - Google Patents

Method for the direct separation of oxygen from air Download PDF

Info

Publication number
CS201403B1
CS201403B1 CS793077A CS793077A CS201403B1 CS 201403 B1 CS201403 B1 CS 201403B1 CS 793077 A CS793077 A CS 793077A CS 793077 A CS793077 A CS 793077A CS 201403 B1 CS201403 B1 CS 201403B1
Authority
CS
Czechoslovakia
Prior art keywords
oxygen
air
liquid
direct separation
magnetic
Prior art date
Application number
CS793077A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Miroslav Chmurny
Original Assignee
Miroslav Chmurny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miroslav Chmurny filed Critical Miroslav Chmurny
Priority to CS793077A priority Critical patent/CS201403B1/en
Publication of CS201403B1 publication Critical patent/CS201403B1/en

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

Vynález sa týká sposobu priameho oddelovania kyslíka zo vzduchu, pre získavanie kyslíka pre praktické využitie v metalurgickom, chemickom, strojárskom a iných odvetviach priemyslu a technickej praxe.The invention relates to a method for the direct separation of oxygen from the air for the recovery of oxygen for practical use in metallurgical, chemical, mechanical engineering and other industries and technical practice.

Doposial’ známy sposob získavania kyslíka zo vzduchu je založený na principe skvapalňovania vzduchu postupným expandným ochladzovaním vzduchu až do jeho skvapalnenia a po jeho skvapalnení sa kyslík získává frakčnou destiláciou využívajúcou rozdielnych teplot odparovania kyslíka 90,03 a dusíka 77,20 K. Oddelovanie a získavanie kyslíka uvedeným kryogenným sposobom má celú radu nevýhod. Potřebné sú nákladné investičně zariadenia na vybudovanie kyslíkárne. Spotřeba elektrickej energie na výrobu 1 m3 kyslíka dosahuje okolo 2,5 KWh. Vybudovanie rozvodu alebo rozvoz kyslíka na miesto spotřeby vyžaduje tiež ďalšie náklady.The hitherto known method of extracting oxygen from air is based on the principle of liquefying air by gradually expanding the air until it liquefies, and after liquefaction, oxygen is obtained by fractional distillation using different evaporation temperatures of 90.03 and nitrogen 77.20 K. Separation and recovery of oxygen said cryogenic method has a number of disadvantages. Expensive capital equipment is needed to build an oxygen plant. The electricity consumption for the production of 1 m 3 of oxygen is about 2.5 KWh. The construction of the distribution or distribution of oxygen to the place of consumption also requires additional costs.

Uvedené nedostatky sú odstránené uvedeným vynálezom, ktorého podstata spočívá v tom, že paramagnetické molekuly kyslíka prechádzajú cez kvapalný magnet a diamagnetické molekuly dusíka cez kvápalný magnetneprechád^ajú. Kvapalný magnet je magnetická kvap^tlína, ktorú tvoří jemne disperzný Fe3O4 grnijpsti 1 nm až 10 nm, zmiěšaný v silikónovom oleji (je možné použiť i ipé vhodné kvapaliny). Hmotnostný obsah Fe3o4 2014fl3 v silikónovom oleji móže dosáhovať až 35 %. Od jemnosti technologie, fyzikálno-chemických vlastností magnetického materiálu a rozpúšťadla, možno dosiahnúť magnetickej kvapaliny s róznymi charakteristikami, ako sú viskozita, priezračnosť, magnetické a iné fyzikálně vlastnosti, z ktorých hlavně viskozita a magnetické vlastnosti majú priamy vzťah na prepúšťanie O2 cez magnetická kvapalinu. Magnetická kvapalina umiestnená v homogénnom magnetickom poli vytvára kvapalný magnet.These drawbacks are overcome by the present invention, which is characterized in that paramagnetic oxygen molecules pass through a liquid magnet and diamagnetic nitrogen molecules pass through a liquefied magnet. The liquid magnet is a magnetic liquid consisting of a finely dispersed Fe 3 O 4 between 1 nm and 10 nm, mixed in silicone oil (suitable fluids may also be used). The Fe 3 O 4 2014f13 content in silicone oil can reach up to 35%. From the fineness of the technology, the physico-chemical properties of the magnetic material and the solvent, it is possible to achieve magnetic liquids with different characteristics such as viscosity, clarity, magnetic and other physical properties, of which mainly viscosity and magnetic properties are directly related to O2 permeation through the magnetic liquid. A magnetic liquid placed in a homogeneous magnetic field creates a liquid magnet.

Spósob priameho oddelovania a získavania kyslíka zo vzduchu podlá uvedeného vynálezu má mnoho technických a ekonomických výhod. Vyžaduje viac ako 500 krát nižšie investičně náklady a viac ako 100 krát nižšiu spotřebu elektrickej energie na jednotku získaného kyslíka. Odstránenie nákladov na rozvoz alebo rozvod kyslíka a zabezpečená práca so zariadením sú tiež významným prednostným činitelom uvedeného vynálezu.The method of directly separating and recovering oxygen from the air of the present invention has many technical and economic advantages. It requires more than 500 times lower investment costs and more than 100 times lower electricity consumption per unit of extracted oxygen. The elimination of the oxygen distribution or distribution costs and the safe operation of the device are also a significant advantage of the present invention.

Velmi jemného disperzného Fe3O,i menších rozmerov ako 10 nm možno dosiahnúť najlepšie nasledujúcim sposobom:Very fine dispersion Fe 3 O, even smaller than 10 nm, can best be achieved by the following method:

V 1000 ml. vody rozpustit 36 g FeClg a v 1000 ml. vody rozpustit 20 g FeSO4 · 7 H2O. Oba roztoky přefiltrovat a zmiešať. Po ochladení pridať přefiltrovaný roztok 33 g NaOH rozpustného v 33 ml. vody. Ciernu zrazeninu dokonale premývať destilovanou vodou a potom ešte acetónom a totuólom, pridať 6 až 7 ml. kyseliny oleinovej ako stabilizátora a dokonale rozotrieť.In 1000 ml. water to dissolve 36 g FeClg and 1000 ml. dissolve 20 g of FeSO 4 · 7 H 2 O. Filter and mix both solutions. After cooling, add a filtered solution of 33 g of NaOH soluble in 33 ml. water. Wash the black precipitate thoroughly with distilled water and then with acetone and totuol, add 6 to 7 ml. oleinic acid as a stabilizer and thoroughly spread.

Příklad prevedenia zariadenia na priame oddeiovanie kyslíka zo vzduchu cez kvapalný magnet je znázorněný na priloženom výkrese, kde vzduch jemne regulovatelným predtlakom vchádza potrubím 1 do rozptylovača vzduchu 4, ktorý zabezpečuje rovnoměrné rozptýlenie vzduchu v magnetickej kvapaline v komoře 3, kyslík z komory 3 prechádza cez magnetickú kvapalinu v komoře 7, v ktorej pomocou vonkajšieho homogénneho magnetického pol'a 6 vzniká kvapalný magnet. Komora 3 je vo vrchnéj časti opatřená potrubím 2, ktorého plocha prierezu otvoru k poměru plochy prierezu otvoru 1 je 1 :0,8. Komora 7 je tak isto opatřená vo vrchnéj časti potrubím 5, ktorého plocha prierezu otvoťuk'poměru plochy prierezu otvoru potrubia 1 je 1 : 0,2. Takéto' přísné vymedzené poměry ploch prierezov otvorov potrubí zabezpečujú potřebné rovnovážné podmienky v oboch komorách 3 a 7¾ Molekulový dusík, ktorý cez kvapalný magnet nepredifundoval, odchádza potrubím 2 a molekulový kyslík, ktorý predifunoval cez kvapalný magnet, odchádza potrubím 5 a komprimuje sa na požadovaný tlak.An example of an embodiment of a device for direct separation of oxygen from air through a liquid magnet is shown in the accompanying drawing, where the air is gently regulated by pre-pressure through line 1 to an air diffuser 4 which ensures uniform air distribution in the magnetic liquid in chamber 3; liquid in the chamber 7, in which a liquid magnet is produced by the external homogeneous magnetic field 6. The chamber 3 is provided in the upper part with a conduit 2, whose cross-sectional area of the opening to the cross-sectional area of the opening 1 is 1: 0.8. The chamber 7 is also provided in the upper part with a conduit 5, the cross-sectional area of which is 1: 0.2. Such strictly defined cross-sectional area ratios of the conduit openings provide the necessary equilibrium conditions in both chambers 3 and 7¾ Molecular nitrogen which has not diffused through the liquid magnet exits through line 2 and the molecular oxygen that has pre-passed through the liquid magnet leaves line 5 and compresses to the desired pressure .

Claims (1)

PREDMETSUBJECT Sposob priameho oddelovania kyslíka zo vzduchu, vyznačujúci sa tým, že sa priamo ponechá predifundovať vzdušný kyslík cez tekutý magnet, ktorý je vytvořený z magnetickej kvapaliny umiestnenej vo vonkajšom magnetiekom poli, pričom je táto magnetickáMethod of direct separation of oxygen from air, characterized in that it is directly allowed to pre-diffuse the air oxygen through a liquid magnet, which is formed from a magnetic liquid placed in an external magnetic field, the magnetic field being VYNÁLEZU kvapalina tvořená jemne disperzným kysličníkom železnato-železitým o zrnitosti 1 až 10 nm, zmiešaným v silikónovom oleji, kde hmotnostný obsah kysličníka železnato-železitého v silikónovom oleji móže dosahovat až 35 % hmotnosti.SUMMARY OF THE INVENTION A liquid consisting of a finely dispersed ferric iron oxide having a grain size of 1 to 10 nm, mixed in silicone oil, wherein the weight content of ferric iron in the silicone oil can be up to 35% by weight.
CS793077A 1977-11-30 1977-11-30 Method for the direct separation of oxygen from air CS201403B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS793077A CS201403B1 (en) 1977-11-30 1977-11-30 Method for the direct separation of oxygen from air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS793077A CS201403B1 (en) 1977-11-30 1977-11-30 Method for the direct separation of oxygen from air

Publications (1)

Publication Number Publication Date
CS201403B1 true CS201403B1 (en) 1980-11-28

Family

ID=5429272

Family Applications (1)

Application Number Title Priority Date Filing Date
CS793077A CS201403B1 (en) 1977-11-30 1977-11-30 Method for the direct separation of oxygen from air

Country Status (1)

Country Link
CS (1) CS201403B1 (en)

Similar Documents

Publication Publication Date Title
Bacri et al. “Negative-viscosity” effect in a magnetic fluid
Tanaka et al. Phase transitions in ionic gels
Tanaka Viscoelastic phase separation
Basualto et al. Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants
Drost-Hansen Aqueous Interfaces—Methods of Study and Structural Properties. Part Two
Tobochnik et al. Monte Carlo study of melting in two dimensions
Singh et al. Solvent extraction in production and processing of uranium and thorium
Zhang et al. Synergistic improvement of the fine size coal dewatering performance by using binary surfactant mixtures
CS201403B1 (en) Method for the direct separation of oxygen from air
US4261711A (en) Magnetic separation apparatus
Yang et al. An innovative microextraction material for efficient and selective extraction of gold: Magnetic oil-based gel microspheres containing Aliquat 336
US3216800A (en) Methods for producing deuterium by distillation of hydrogen
Goldstein et al. Further studies of fluid nonlinearity: The orthogonal rheometer and the oscillating sphere
US1575587A (en) Separation of gaseous or liquid mixtures
US3719720A (en) Removing oligomers from styrene vapor
Khanramaki et al. Experimental study on the uranium (VI) extraction rate and droplet mass transfer coefficients from a sulfate leach liquor medium with Alamine 336 in a single drop column
DE3545746A1 (en) Process for intensifying hydrolysis reactions and apparatus for carrying out the process
Azizi Experimental investigation of terminal velocity and Sherwood number of rising droplet in an extraction column
Bhattacharjee Preferred patterns in convection in rotating binary mixtures
Gottlieb On the exceptional zeros of cross-products of derivatives of spherical Bessel functions
US293740A (en) Isaiah smith hyatt
Alben Possible phase diagrams for mixtures of ‘positive’and ‘negative’nematic liquid crystals
JPS588565B2 (en) Manufacturing method of magnetic fluid
Sriraman et al. The diamagnetic study of the nature of the association of acetic acid. II. The binary systems of acetic acid with Triethylamine, pyridine and Aniline
Kuentzler et al. Low temperature specific heat of (V1− xCrx) Be12 compounds