CS200358B1 - Method of determination of chemical element content in the atmosphere - Google Patents
Method of determination of chemical element content in the atmosphere Download PDFInfo
- Publication number
- CS200358B1 CS200358B1 CS116778A CS116778A CS200358B1 CS 200358 B1 CS200358 B1 CS 200358B1 CS 116778 A CS116778 A CS 116778A CS 116778 A CS116778 A CS 116778A CS 200358 B1 CS200358 B1 CS 200358B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- determination
- atmosphere
- element content
- lead
- chemical element
- Prior art date
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
(54) Spdaob stanovenia obsahu chemických prvkov v ovzduší(54) Spdaob determination of the content of chemical elements in the atmosphere
Vynález aa týká apdaobu atanovenia obaahu chemických prvkov v ovzduší rédionuklidovou rontgenofluoreacenčnou analýzou.The invention aa relates to apdaob and the determination of the circulation of chemical elements in the atmosphere by reductuclide X-ray fluorescence analysis.
Róntgenofluorescenčné analýza umožňuje v porovnaní s inými analytickými metodami nedestruktivně atanovenie analyzovanej zložky bez porušenia vzorky priamo na filtroch nasávacieho zariadenia po preaatí definovaného objemu vzduchu. Vzorka móže byť použitá ešte na atanovenie dalších zložiek, reap. odložená pre prípadnú neakoršiu kontrolu. Rádionuklidová rontgenofluorescenčná analýza používá rádionuklid ako zdroj žiarenia. Jeho výhoda voči rontgenovej trubici použitej ako zdroj spočívá v podstatné menšom rozmere, veTkej stabilitě, nezávislosti od vonkajších vplyvov ako aj v tom, že nevyžaduje zložité elektronické zariadenie na napéjanie a atabilizéciu.X-ray fluorescence analysis allows non-destructive analysis of the analyte without disturbing the sample directly on the filters of the suction device after washing a defined volume of air, compared to other analytical methods. The sample can still be used to test other components, reap. postponed for any possible inspection. Radionuclide X-ray fluorescence analysis uses radionuclide as a source of radiation. Its advantage over the X-ray tube used as a source lies in its substantially smaller size, great stability, independence from external influences, and the fact that it does not require complex electronic equipment for powering and stabilization.
VzhTadom na potřebu vysokej rozlišovacej schopnosti detektore, potrebnej na aeparéciu čiar stanovenéj zložky odostatných čiar spektra fluorescenčného žiarenia vyaielaného vzorkou, bolo třeba používať polovodičové detektory, efektívne iba v spojení a mnohokanálovým analyzátorom. Takéto zariadenia aú veTmi drahé, majú technicky náročnú obsluhu a vzhTadom na objem a váhu sú nepoužitelné pre přenosné zariadenie.Because of the need for the high resolution of the detector needed to aeparate the lines of the determined component of the remaining lines of the specimen fluorescence spectrum, it was necessary to use semiconductor detectors, effectively only in conjunction with a multi-channel analyzer. Such devices are very expensive, technically demanding to operate, and in terms of volume and weight are unusable for portable devices.
Tieto nevýhody odstraňuje spósob stanovenia obaahu chemických prvkov v ovzduší po paaatí vzduchu cez odběrový filter naaávacieho zariadenia, ktorého podstata spočívá v tom,These drawbacks are eliminated by the method of determining the circulation of chemical elements in the atmosphere after the air has been pumped through the sampling filter of the suction device,
200 358200 358
200 358200 358
Se zachytené nečistoty sa priamo na filtri podrobia nedeštruktívnej róntgenofluoreacenčnej analýze, pričom aeparácie a meranie analytických linii fluorescenčního žiarenia stanovované j zložky sa uakutoční hrotovým filtrom a acintilačným detektorom. V tomto pripade možno použiť miesto mnohokanálového jednokanálový analyzátor. Samotný acintilačný detektor bez hrotového filtre nemá pre požadované účely doatatočnú rozlišovaciu schopnost. Pomocou hrotového Mitra aa eliminujú rušivé vplyvy, vyakytujúce aa pri meraní určovaného róntgenofluoreacenčného žiarenia.The collected impurities are subjected to a non-destructive X-ray fluorescence analysis directly on the filter, whereby aeparation and measurement of the analytical fluorescence lines of the assayed component are performed with a tip filter and an acintillation detector. In this case, a single-channel analyzer may be used instead of a multi-channel analyzer. The acintillation detector without a spike filter alone does not have the required resolution for the desired purposes. Using the tip Mitra aa, they eliminate the disturbing effects of aa when measuring the x-ray fluorescence radiation to be determined.
SpOsob stanovenia podl*a vynálezu umožňuje vzhl’adom na výrazný cenový rozdiel medzi polovodičovým a acintilačným detektorom a medzi mnohokanálovým a jednokanálovým analyzátorom podstatné zlacnenie merania. Ďalšou výhodou je menšia technická náročnost na obsluhu a možnost terénneho merania, keSže zariadenie možno použiť ako přenosné.The method according to the invention makes it possible to considerably reduce the cost of measurement because of the significant price difference between a semiconductor and acintillation detector and between a multi-channel and a single-channel analyzer. Another advantage is the lower technical demands on operation and the possibility of field measurements, as the device can be used as portable.
Konkrétným prlkladom vo vynáleze obaiahnutého apOaobu je stanovenie olova ako odpadovém produktu pohonných látok spalovacích motorov v meatakom ovzduší. Na rozdiel od iných chemicko-analytických metod umožňuje táto metoda priame stanovenie olova na odběrových Mltroch naaávacieho zariadenia bez izolácie vzoriek z Mltrov a bez ich fialšej úpravy pre malýzu, ako je to napr. u atomovéj abaorpčnej spektrometrie a iných metod.A particular example of an apobase coated in the invention is the determination of lead as a waste product of internal combustion engine fuel in a meat atmosphere. In contrast to other chemical-analytical methods, this method allows direct determination of lead on the collection traps of the pick-up device without isolation of the samples from the Mltrs and without their violet treatment for malza, such as e.g. for atomic abaorption spectrometry and other methods.
Vsorka na membránovom Mltri však neobsahuje iba olovo, ale aúčaane aj iné prvky a pevné nečistoty, nachédzajúce aa v ovzduší. Z hlediska možných interferenci! v oblasti L-Muoreacenčného žiarenia olova /ktoré acintilačný detektor nie je schopný odlišit/ je nutné overiť ai přítomnost tých prvkov vo vzorke, ktoré by avojím charakteristickým, reep. fluoreacenčným žiarením mohli negativné ovplyvniť analytické informáciu o obsahu olova.However, the clamp on the membrane Mltri contains not only lead, but also other elements and solid impurities found in and in the atmosphere. In terms of possible interference! in the area of L-Muoreactive lead radiation (which the acintillation detector is not able to differentiate), it is necessary to verify the presence of those elements in the sample that would be a characteristic reep. they could negatively affect the analytical information on the lead content by fluorescence radiation.
V aledovanej energetickej oblasti negativné ovplyvní výeledok stanovenia predovšetkým přítomnost brómu, přidává aa do benzínu ako etylénbromid a dostává sa tak do automobilových aplodín, a tým aj do ovzdušia. Pri používaní acintílačnáho detektore, ktorý nerozliši jednotlivé energetické linie pochádzajúce od charakteristického žiarenia brómu a L-Muoreacenčného žiarenia olova, dochádza k akresleniu analytického signálu. Tento negativny faktor odatráni použitie hrotového filtru a obaahom germénia. Lineáray priebeh analytickej křivky umožňuje použitie jedného Standardu. Obaah olova aa vypočítá z nameranej hodnoty početnosti fluorescenčnébo žiareniaštandardov a vzoriek.In the monitored energy area, the result of the determination is negatively influenced mainly by the presence of bromine, it adds aa to the gasoline as ethylene bromide and thus reaches the automotive aplodines and thus into the atmosphere. When using an acintillation detector that does not distinguish individual energy lines from the characteristic bromine radiation and the L-Muoreacent lead radiation, the analytical signal is rendered. This negative factor obstructs the use of a spike filter and germinic circulation. The linear curve of the analysis curve allows the use of one Standard. The lead content aa calculates the fluorescence or irradiation counts of standards and samples from the measured value.
Metoda rádionuklidovej róntgenofluoreacenčnej analýzy umožňuje rýcble nedeštruktívne stanovenie olova priamo na odběrových Mltroch. Oatatné doaial používané fýzikálno-analytícké metody vyžadovali zložitú přípravu vzoriek na analýzu, a tým znemožnili ich použitie pre komplexné zhodnotenie kvalitatívnych a kvantitativných ukazovatelov čistoty ovzdušia. Dlhodobý - 24 hod. a viacej - odběr vzoriek neumožňoval sledovanie zmien obeahu olova v priamej závislosti od frekvencie dopravy počaa dňa, ale poskytoval iba priememú informáciu. Tieto nedostatky odatránila vypracovaná metoda rádionuklidovej rontgenofluorescenfcnej analýzy na stanovenie obaahu olova v ovzduší. Vo vynáleze obaiahnutý spdsob atanovenia je vhodný aj pre stanovenie iných prvkov v ovzduší ako kadmia, arzénu, ortuti a iných.The method of radionuclide X-ray fluorescence analysis allows the non-destructive determination of lead directly on the harvesting trays. Other physical and analytical methods used in the past required complex sample preparation for analysis, making it impossible to use them for a comprehensive assessment of qualitative and quantitative air quality indicators. Long term - 24 hours and more - sampling did not allow the monitoring of changes in lead circulation in direct dependence on the frequency of traffic from day to day, but provided only average information. These deficiencies were eliminated by the developed method of radionuclide X-ray fluorescence analysis for the determination of lead circulation in air. The method of the invention encompassed by the invention is also suitable for determining other airborne elements such as cadmium, arsenic, mercury and others.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS116778A CS200358B1 (en) | 1978-06-19 | 1978-06-19 | Method of determination of chemical element content in the atmosphere |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS116778A CS200358B1 (en) | 1978-06-19 | 1978-06-19 | Method of determination of chemical element content in the atmosphere |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS200358B1 true CS200358B1 (en) | 1980-09-15 |
Family
ID=5345356
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS116778A CS200358B1 (en) | 1978-06-19 | 1978-06-19 | Method of determination of chemical element content in the atmosphere |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS200358B1 (en) |
-
1978
- 1978-06-19 CS CS116778A patent/CS200358B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH05240808A (en) | Method for determining fluorescent x rays | |
| Klockenkämper et al. | Quantification in total reflection X-ray fluorescence analysis of microtome sections | |
| US4720842A (en) | Apparatus for detecting nickel/vanadium contained in oil | |
| CA1267734A (en) | Method and apparatus for analyzing sludgy materials | |
| CN113324957A (en) | Fluorescence immunoassay method | |
| US4561777A (en) | Apparatus and method for quantitative determination of materials contained in fluids | |
| US7539282B2 (en) | XRF analyzer | |
| US6248592B1 (en) | Method for measuring lead concentrations in blood | |
| CN111198264B (en) | A system for quantitatively detecting heavy metal cadmium and its preparation method | |
| CS200358B1 (en) | Method of determination of chemical element content in the atmosphere | |
| GB2163553A (en) | Method and apparatus for chemiluminescence analysis | |
| Fiorini et al. | In-situ, non-destructive identification of chemical elements by means of portable EDXRF spectrometer | |
| CN107271469A (en) | The heavy metal in water semi-quantitative analysis method analyzed based on X-ray fluorescence spectra | |
| Desilets et al. | On-the-fly determination of fluorescence lifetimes from two-point decay measurements | |
| Birks et al. | X-ray fluorescence analysis of the concentration and valence state of sulfur in pollution samples | |
| Tabacniks et al. | PIXE analysis for air pollution source apportionment in urban areas of Brazil | |
| Brätter et al. | The use of reference materials as standards in the simultaneous multielement analysis of biological materials using inductively coupled plasma spectrometry | |
| SU934330A1 (en) | Method of registering absorption characteristics at x-ray fluorescent analysis | |
| RU2491536C1 (en) | Method for unit-wise tribodiagnosis of aviation equipment from wear fragment parameters | |
| Leenanupan et al. | Energy dispersive X-ray fluorescence analysis of airborne particulate matter | |
| Broekaert | Application of hollow cathode excitation coupled to vidicon detection to the simultaneous multielement determination of toxic elements in airborne dust.‐A Unique sampling‐analysis procedure for lead and cadmium‐ | |
| US4495418A (en) | Method of standardizing IR breath alcohol device | |
| Jäger | Utilization of quasilinear fluorescence spectra in analysis of polynuclear aromatic hydrocarbons | |
| SU1040389A1 (en) | Substance chemical composition determination method | |
| SU446007A1 (en) | The method of phase analysis of substances |