CS199765B1 - Electrolyte for preparing aluminium by electrolysis of aluminium chloride - Google Patents

Electrolyte for preparing aluminium by electrolysis of aluminium chloride Download PDF

Info

Publication number
CS199765B1
CS199765B1 CS179977A CS179977A CS199765B1 CS 199765 B1 CS199765 B1 CS 199765B1 CS 179977 A CS179977 A CS 179977A CS 179977 A CS179977 A CS 179977A CS 199765 B1 CS199765 B1 CS 199765B1
Authority
CS
Czechoslovakia
Prior art keywords
electrolyte
chloride
electrolysis
aluminum
aluminium
Prior art date
Application number
CS179977A
Other languages
Czech (cs)
Inventor
Pavel Fellner
Kamil Matiasovsky
Milan Gabco
Gabriel Kunhalmi
Original Assignee
Pavel Fellner
Kamil Matiasovsky
Milan Gabco
Gabriel Kunhalmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pavel Fellner, Kamil Matiasovsky, Milan Gabco, Gabriel Kunhalmi filed Critical Pavel Fellner
Priority to CS179977A priority Critical patent/CS199765B1/en
Publication of CS199765B1 publication Critical patent/CS199765B1/en

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

(54) Elektrolyt aa přípravu hlinika elektrolýaea chloridu hllnitéha(54) Electrolyte and the preparation of aluminum electrolysis and lithium chloride electrolysis

Tynález rieái elektrolyt na přípravu hliníka elektrolýzou chloridu hlinitého.The present invention provides an electrolyte for the preparation of aluminum by electrolysis of aluminum chloride.

Technicky rozpracovaný je sposob výroby hliníka elektrolýzou chloridu hlinitého z taveniny chloridu lltuého, chloridu sodného, chloridu hlinitého. Tavenina obsahuje chlorid litný v množství 40 hmotnostných %, čo nielen zvyšuje oenu elektrolytu, ale kladie aj vyaoké nároky na čistotu použitých soli, najma pokial'ide o obsah vady a hydroxidov. Použitie taveniny na báze chloridu sodného a draselného, ktorá je podstatné ekonomicky výhodnějším, uarážalo na potiaže, nakoíko sa pri elektrolýze vylučoval aj draslík, ktorý reagoval s grafitovými elektrodami a rozrušoval ich. Okrem toho při elektrolýze tejto taveniny aa dosahovala nižšia prúdová účinnosť ako u vyššie oitováného procesu.Technically elaborated is the method of aluminum production by electrolysis of aluminum chloride from the melt of lithium chloride, sodium chloride, aluminum chloride. The melt contains 40% by weight of lithium chloride, which not only increases the electrolyte oen, but also places high demands on the purity of the salts used, especially as far as the content of defects and hydroxides is concerned. The use of a sodium and potassium chloride melt, which is substantially more economically advantageous, has faced difficulties as potassium, which reacted with the graphite electrodes and disrupted them, also precipitated during electrolysis. In addition, the electrolysis of this melt aa achieved a lower current efficiency than in the above-described process.

Uredeaé nevýhody odstraňuje elektrolyt na pripravu hliníka elektrolýzou chloridu hlinitého a obaahom 2 až 80 hmotnostných % chloridu hlinitého a 20 až 98 hmotnostných % základního elektrolytu ekvlmolárnej zo zmesi chloridu sodného a chloridu draselného kterého podstata spočívá v tom, že základný elektrolyt obsahuje 1 až 5 hmotnostných % fluoridu vépenátého.The aforementioned drawbacks eliminate the electrolyte for the preparation of aluminum by electrolysis of aluminum chloride and containing 2 to 80% by weight of aluminum chloride and 20 to 98% by weight of the base electrolyte equimolar from a mixture of sodium chloride and potassium chloride which is characterized in that the base electrolyte contains 1 to 5% Calcium fluoride.

Základný elektrolyt představuje teda přibližně ekvimolárnu zmes chloridu sodného a chloridu draselného, ku ktcxrej sa přidává 1 až 5 hmotnostných % fluoridu vápenatého.Thus, the base electrolyte is an approximately equimolar mixture of sodium chloride and potassium chloride to which 1 to 5% by weight of calcium fluoride is added.

tomto elektrolyte aa roapuSťa elektroaktívna látka, ohlorid hlinitý, v množstve 2 až 80of this electrolyte and of the electroactive substance, aluminum chloride, in an amount of 2 to 80

199 769199 769

199 7BS hmotnostných %. Fluorid vápenatý tvoří komplexně anióny a ojqrohlorldml, ktoré bez jeho přítomnosti pokrývájú hliníková katodu· Ciastočne ju tak izolujú a v důsledku toho je skutočná prúdová hustota na neizolovanýcbů miestach podstatné vyššia ako zdánlivá prúdová hustota počítaná na celú plochu hlinikovej katody. Draslík sa moče vylučovat v tejto tavenine len pri ektrémne vysokých hustotách prúdu a přísada fluoridu vápenatého do elektrolytu zabraňuje prúdu a přísada fluoridu vápenatého do elektrolytu zabraňuje jeho vylučovaniu. Tým sa dosahuje aj vysoká prúdová účinnost procesu, až 99,5 %»199 7BS% by weight. Calcium fluoride is complex to form anions and oxychloride, which, in the absence of its presence, cover the aluminum cathode. This partially insulates it and, as a result, the actual current density at uninsulated locations is substantially higher than the apparent current density calculated over the entire aluminum cathode area. Potassium is excreted in the melt only at electrically high current densities and the addition of calcium fluoride to the electrolyte prevents the current, and the addition of calcium fluoride to the electrolyte prevents its precipitation. This also achieves high process efficiency, up to 99.5% »

Elektrolytické vylučovanle hlinika z chloridových tavenin umožňuje v porovnaní a doteraz používaným sposobom výroby hlinika elektrolýzou kryolitovýoh tavenin úsporu elektriokej energie asi o JO %. Doteraz bolo rozpracované pre chloridová elektrolýzu len použitie elektrolytu obsahujúceho chlorid litný. Vynález umožňuje nahradit tento elektrolyt elektrolytom ekonomicky výhodnějším. Navrhovaný elektrolyt kladie tiež menšie nároky na čistotu elektrolytu, najma pokial ide o obsah oxyzlúčenin. Pri elektrolýze sa dosahuje vysoká prúdová účinnost až 99,5 %, pričom modzielektródová vzdialenost je len 1,5 až 2,5 om, čo má priaznivý vplyv na energetická účinnost oelého prooesu.Electrolytic precipitated aluminum from chloride melts allows the electrolysis energy to be saved by about 10% compared to the previously used method of aluminum production by electrolysis of cryolite melts. So far, only electrolytes containing lithium chloride have been developed for chloride electrolysis. The invention makes it possible to replace this electrolyte with a more economically advantageous electrolyte. The proposed electrolyte also imposes less demands on the purity of the electrolyte, especially as regards the content of oxy compounds. Electrolysis achieves a high current efficiency of up to 99.5%, while the modielectrode distance is only 1.5 to 2.5 µm, which has a beneficial effect on the energy efficiency of the hard process.

Přiklad 1Example 1

Pri použití elektrolytu obsahujúceho 45 hmotnostnýoh % chloridu draselného, 35 hmotnost nýoh % chloridu sodného, 5 hmotnostnýoh % fluoridu vápenátého a 15 hmotnostných % chloridu hlinitého pri teplote 700 °C, medzielektródovej vzdialenosti 2 cm a hustotě prúdu Ι.ΙΟ2* A o-2 sa dosiahla prúdová účinnost 96 %»When using an electrolyte containing 45% by weight of potassium chloride, 35% by weight of sodium chloride, 5% by weight of calcium fluoride and 15% by weight of aluminum chloride at 700 ° C, an inter-electrode distance of 2 cm and a current density Ι.Ι2* And o-2 achieves current efficiency of 96% »

Příklad 2Example 2

Pri použiti elektrolytu obsahujúceho 45 hmotnostnýoh % chloridu draselného, 35 hmotnostných % chloridu sodného, 1 hmotnostně % fluoridu vápenatého a 19 hmotnostnýoh % chloridu hlinitého pri teplote 700 °C, medzielektródovej vzdialenosti 2 cm a hustoto prúdu 1 · IO* A.m“2 sa dosiahla prúdová účinnosfi 85 %.With an electrolyte containing 45 hmotnostnýoh% potassium chloride, 35 wt% sodium chloride, 1% by weight of calcium fluoride and 19 hmotnostnýoh% aluminum chloride at a temperature of 700 ° C, an inter-electrode distance of 2 cm and a current density of 1 · IO * Am "2 to reach a current 85% efficiency.

Claims (1)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION Elektrolyt na přípravu hlinika elektrolýzou chloridu hlinitého s obeahom 2 až 80 hmotnostnýoh % chloridu hlinitého a 20 až 98 hmotnostnýoh % základného elektrolytu sestávajícího z ekvimolárnej zmesi chloridu sodného a chloridu draselného, vyznačujúoi sa tým, že základný elektrolyt obsahuje 1 až 5 hmotnostných % fluoridu vápenatého.An electrolyte for the preparation of aluminum by electrolysis of aluminum chloride containing 2 to 80% by weight of aluminum chloride and 20 to 98% by weight of a base electrolyte consisting of an equimolar mixture of sodium chloride and potassium chloride, characterized in that the base electrolyte contains 1 to 5% by weight calcium fluoride.
CS179977A 1977-03-18 1977-03-18 Electrolyte for preparing aluminium by electrolysis of aluminium chloride CS199765B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS179977A CS199765B1 (en) 1977-03-18 1977-03-18 Electrolyte for preparing aluminium by electrolysis of aluminium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS179977A CS199765B1 (en) 1977-03-18 1977-03-18 Electrolyte for preparing aluminium by electrolysis of aluminium chloride

Publications (1)

Publication Number Publication Date
CS199765B1 true CS199765B1 (en) 1980-08-29

Family

ID=5353272

Family Applications (1)

Application Number Title Priority Date Filing Date
CS179977A CS199765B1 (en) 1977-03-18 1977-03-18 Electrolyte for preparing aluminium by electrolysis of aluminium chloride

Country Status (1)

Country Link
CS (1) CS199765B1 (en)

Similar Documents

Publication Publication Date Title
RU2253703C2 (en) Electrochemical method of production of alkali metal from aqueous solution
US4122245A (en) AlCl3 /1-alkyl pyridinium chloride room temperature electrolytes
Haupin Electrochemistry of the Hall-Heroult process for aluminum smelting
SE8603981D0 (en) ELECTROCHEMICAL CELL
DE3160478D1 (en) Cathode for molten-salt electrolysis cell
US4650553A (en) Electrolytic recovery of lead from scrap
KR20170028424A (en) Producing lithium
US4919771A (en) Process for producing aluminum by molten salt electrolysis
GB2072932A (en) Zinc halogen battery electrolyte composition with bismuth additive
JPS55107792A (en) Electrode having mixed metal oxide catalyst
AU659247B2 (en) Cell for the electrolysis of alumina preferably at low temperatures
US4225401A (en) Method for generating hydrogen and oxygen
CS199765B1 (en) Electrolyte for preparing aluminium by electrolysis of aluminium chloride
JPS5443811A (en) Production of metallic lithium
EP0235444A3 (en) Metal halogen electrochemical cell
Rao Electrolytic production of magnesium: effect of current density
DE3664845D1 (en) Process for the stabilization of primary electrochemical generators with reactive zinc, aluminium or magnesium anodes, stabilized anode obtained by this process and generator containing such an anode
ES8104440A1 (en) Electrodeposition of Aluminium Using Molten Electrolyte
Dartnell et al. Electrochemistry of niobium in fused halides
Minh et al. The electrolysis of Al2S3 in AlCl3-MgCl2-NaCl-KCl melts
CA1199679A (en) High energy ambient temperature inorganic electrochemical power cell
Grjotheim et al. Influence of NaCl and LiF on the aluminium Electrolyte
SU1397543A1 (en) Method and electrolyzer for producing aluminium
SU1433081A1 (en) Method of electrolytic production of titanium and other metals
GB1168762A (en) Improvements in or relating to Electrolytic Reduction Cells.