CS199373B1 - Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form - Google Patents
Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form Download PDFInfo
- Publication number
- CS199373B1 CS199373B1 CS258477A CS258477A CS199373B1 CS 199373 B1 CS199373 B1 CS 199373B1 CS 258477 A CS258477 A CS 258477A CS 258477 A CS258477 A CS 258477A CS 199373 B1 CS199373 B1 CS 199373B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- lithium
- water
- soluble form
- concentrates
- transforming
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 22
- 229910052744 lithium Inorganic materials 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 16
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims description 8
- 239000012141 concentrate Substances 0.000 title claims description 6
- 229910052751 metal Inorganic materials 0.000 title 1
- 239000002184 metal Substances 0.000 title 1
- 150000002739 metals Chemical class 0.000 title 1
- 230000001131 transforming effect Effects 0.000 title 1
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 11
- 239000000395 magnesium oxide Substances 0.000 description 8
- 239000010459 dolomite Substances 0.000 description 7
- 229910000514 dolomite Inorganic materials 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 6
- 239000001095 magnesium carbonate Substances 0.000 description 6
- 235000014380 magnesium carbonate Nutrition 0.000 description 6
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 6
- 235000019738 Limestone Nutrition 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229940072033 potash Drugs 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 235000015320 potassium carbonate Nutrition 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910020091 MgCa Inorganic materials 0.000 description 1
- 101100003996 Mus musculus Atrn gene Proteins 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000000184 acid digestion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910001760 lithium mineral Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
(54) Způsob převáděni lithia a ostatních alkalických kovů ze silikátových rud a koncentrátů do vodorozpustné formy(54) A method for converting lithium and other alkali metals from silicate ores and concentrates to a water-soluble form
Vynález se týká převádění lithia, draslíku, rubidia a cesia ze silikátových ruda koncentrátů typu spodumen, lapidolit, potalit, cinvalďit a j. do vodorozpustné formy kalcinaci s přísadami a následným louženim.The present invention relates to the conversion of lithium, potassium, rubidium and cesium from silicate ore concentrates of the spodumen, lapidolite, potalite, quartzite, etc. type into a water-soluble form by calcination with additives and subsequent leaching.
Lithium a Jeho sloučeniny hraji stále větěi úlohu v průmyslu. Většina lithných surovin, za kterých ee lithné sloučeniny získávají, jsou rudy silikátového typu. Pro převedení lithia do vodorozpustné formy je navržena řada technologických postupů. Mokré procesy, při kterých 8β používá kyselina sirové, jsou vhodné pro jednoduché rudy spodumenového typu. Metoda používající kyselinu sirovou k rozkladu lithnóho minerálu je však málo vhodná pro rudy obsahující víc železa než kysličníku lithného a to pro obtíže při děleni získaného roztoku.Lithium and its compounds play an increasingly important role in industry. Most of the lithium raw materials under which the lithium compounds are obtained are ores of the silicate type. A number of technological processes have been proposed for converting lithium into a water-soluble form. The wet processes in which 8β uses sulfuric acid are suitable for single spodumen ores. However, the method using sulfuric acid to decompose the lithium mineral is not suitable for ores containing more iron than lithium oxide because of the difficulty in separating the solution obtained.
Pro lithné rudy obsahující fluor je metoda rozkladu pomocí kyseliny sírové rovněž málo vhodná v důsledku korozních problémů.For fluorine-containing lithium ores, the sulfuric acid digestion method is also poorly suited to corrosion problems.
Proto Jsou více průmyslově rozšířeny suché způsoby rozkladu, kdy se.lithný ion vytěsňuje za silikátové mřížky a převádí tak do vodorozpustné formy pomocí iontů alkalických kovů, nebo pomoci iontů alkalických zemin.Therefore, dry decomposition processes are more industrially widespread in which the lithium ion is displaced beyond the silicate lattice and is thus converted into a water-soluble form by alkali metal ions or by alkaline earth ions.
Například při použiti síranu draselného se emisi 10 hmot. dilů lithné rudy s 3 až 5 hmot. díly síranu draselného. Při použiti vápence se smísí 10 hmot. dílů rudy s 30 až 35 hmot dily vápence. 3sou popsány způsoby rozkladu, při kterých ss 10 hmot. dilů rudy smlsl s 10 až 15 hmot, dily síranu a ky8ličniku vápenatého. Kalcinaci směsi na teploty 800 ažFor example, when using potassium sulfate, an emission of 10 wt. parts of lithium ore with 3 to 5 wt. parts of potassium sulfate. When limestone is used, 10 wt. parts of ore with 30 to 35 parts by weight of limestone. 3, decomposition methods are described in which a DC of 10 wt. parts of the ore were mixed with 10-15 wt. parts of sulfate and calcium oxide. Calcination of the mixture at temperatures of 800 to
199 373199 373
1100 °C ae převede lithium do vodorozpustné formy. Draselný proces vyžaduje pro Izolaci uhličitanu lithného drahou potaš, procee se síranem vápenatým rovněž vyžaduje potaš a způsob vápencový je nákladný energeticky, nebo? množství hmoty, která muel být zahřáto na teplotu nejméně 900 °C je troj- ež čtyřnásobek vleetnl rudni vsázky.1100 ° C and transforms the lithium into a water-soluble form. The potassium process requires potash for the isolation of lithium carbonate, the calcium sulfate process also requires potash, and the limestone process is costly in energy, or? the amount of mass which should have been heated to a temperature of at least 900 ° C is three to four times the towed ore charge.
Výše uvedené nevýhody se odstraní způsobem převáděni lithia do vodorozpuetné formy podle vynálezu. Jehož podstata spočívá v tom, že ruda či koncentrát obsahující lithium se smlsl 8 kysličníkem hořečnatým nebo s uhličitanem hořečnatým nabo s dolomitem v hmotnostním poměru 1 : 0,5 až 1 : 2,5, směs se rozemele a kalcinuje při teplotě 800 °C až 1100 °C, rychle so ochladí během 10 až 30 minut na teplotu nižší než 500 °C a pak ee louží. . biořačnaté ionty jsou e ohledem na prakticky totožný iontový poloměr stejně účinné jako ionty draselné. Teoretický předpoklad jejich záměny v silikátové mřížce byl potvrzen pokusy, při nichž sa ukázalo vysoká účinnost zejména siřenu, dusičnanu a chloridu hořečnatého.The above disadvantages are overcome by the process of converting lithium into the water-soluble form of the invention. Based on the fact that the lithium ore ore concentrate is mixed with magnesium oxide or magnesium carbonate or with dolomite in a weight ratio of 1: 0.5 to 1: 2.5, the mixture is ground and calcined at 800 ° C to 1100 ° C, rapidly cooled to less than 500 ° C over 10 to 30 minutes and then leached. . Barium ions are as effective as potassium ions with respect to virtually identical ionic radius. The theoretical presumption of their substitution in the silicate lattice has been confirmed by experiments in which the efficacy of sulfur, nitrate and magnesium chloride in particular has been shown to be high.
Způsobem podle vynálezu lze získat lithium ekonomicky s ohledem ne nižší cenu hořečnatých surovin. Oalši výhodou je úspora za palivo při kalcinaci a snazší izolace lithia z roztoků pro louženi. Tím je umožněno využívat i suroviny či koncentráty s nižším obsahem lithia.By the process according to the invention, lithium can be obtained economically with no lower cost of magnesium raw materials. Another advantage is fuel savings in calcination and easier isolation of lithium from leaching solutions. This makes it possible to use raw materials or concentrates with a lower lithium content.
Použiti rozpustných hořečnatých soli je však prakticky ztíženo podobným chemickým chováním obou prvhB,,takže jejich odděleni z roztoku je nákladné. Tuto nevýhodu lze podle vynálezu odstranit použitím nerozpustných hořečnatých aloučanin, zejména kysličníku hořečnatého MgO, uhličitanu hořečnatého MgCOg aebo podvojného, uhličitanu hořečnatpvópenatého MgCa(C03)2, jenž se v přírodě vyskytuje Jako minerál dolomit v průmyslově těžitelných ložiscích.However, the use of soluble magnesium salts is practically impeded by similar chemical behavior of the two elements, so that separation from the solution is expensive. This disadvantage can be eliminated by using the present invention insoluble magnesium aloučanin, in particular magnesium oxide MgO, magnesium carbonate double MgCOg aebo carbonate hořečnatpvópenatého MgCa (C0 3) 2, which occurs naturally as the mineral dolomite industrially exploitable bearings.
Přiklad hmotnostních dílů lithné rudy bylo smiěeno s rozkladnou komponentou, směs byla rozemleta v kulovém mlýnu a pak kalcinována na teplotu 920 °C po dobu 20 minut, pak byla během 10 až 20 minut ochlazena na teplotu v rozmezí 50 °C až 350 °C. Po úplném vychladnuti byl kalcinát vyloužan za tepla celkem 250 ml vody ve třech podílech a spojené výluhy byly filtrovány a odpařeny. Podle stanoveni obsahu lithia byl spočítán celkový výtěžekFor example, parts by weight of lithium ore were mixed with the decomposition component, the mixture was ground in a ball mill and then calcined at 920 ° C for 20 minutes, then cooled to between 50 ° C and 350 ° C over 10-20 minutes. After cooling completely, the calcined salt was taken up in a total of 250 ml of water in three portions and the combined extracts were filtered and evaporated. The total yield was calculated by determining the lithium content
Provedené pokusy ukazuji, že při použiti kysličníku hořečnatého, nabo uhličitanu hořečnatého, nebo dolomitu lze využit výhod rozkladu, jež má metoda výpalu lithné rudy 8 vápencem, zejména co se týká snadné izolace hydroxidu lithného LiOH a uhličitanu lithného Li2C03. Vzhledem k tomu, že tepelný rozklad uhličitanu hořečnatého a nebo dolomitu začíná aa nižší teploty a vyžaduje menši množství tepla než tepelný rozklad uhličitanu vápenatého, lze použitím dolomitu nebo uhličitanu hořečnatého nebo kysličníku hořečnatého jakoExperiments have shown that using magnesium oxide, magnesium carbonate or dolomite can take advantage of the decomposition benefits of the lithium ore 8 limestone firing method, particularly as regards the easy isolation of lithium hydroxide LiOH and lithium carbonate Li 2 CO 3 . Since thermal decomposition of magnesium carbonate and / or dolomite starts at a lower temperature and requires less heat than thermal decomposition of calcium carbonate, the use of dolomite or magnesium carbonate or magnesium oxide as
199 373 rozkladné složky snížit náklady na palivo ve srovnáni s použitím uhličitanu vápenatého pro stejný účel. Náhradou vápence dolomitem nebo magnezitem nebo kysličníkem hořečnatým lze dosáhnout i zvýšení průeady rudni komponenty peci při výpalu, jak vyplývá ze snížení hmotnosti potřebné rozkladné složky.199 373 decomposition components reduce fuel costs compared to using calcium carbonate for the same purpose. By replacing the limestone with dolomite or magnesite or magnesium oxide, an increase in the ore component of the furnace during firing can also be achieved, as a result of the reduction in the weight of the decomposition component.
V silikátových lithných surovinách se při postupu podle vynálezu uvolni do vodorozpuetnó formy i přítomný draslík, rubidium e cesium, které lze po odděleni lithia z roztoku získat pro dalši využiti. Pokud ja v lithné rudě přítomen fluor, je vázán v kalcinétu jako MgF2 a nesnižuje tudíž výtěžky lithia.In the silicate lithium raw materials, potassium, rubidium and cesium are also released into the water-soluble form in the process according to the invention, which can be obtained for further use after separation of the lithium from the solution. If fluorine is present in lithium ore, it is bound in the calcine as MgF 2 and thus does not reduce the yields of lithium.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS258477A CS199373B1 (en) | 1977-04-19 | 1977-04-19 | Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS258477A CS199373B1 (en) | 1977-04-19 | 1977-04-19 | Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS199373B1 true CS199373B1 (en) | 1980-07-31 |
Family
ID=5363381
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS258477A CS199373B1 (en) | 1977-04-19 | 1977-04-19 | Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS199373B1 (en) |
-
1977
- 1977-04-19 CS CS258477A patent/CS199373B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220169521A1 (en) | Processing of lithium containing material including hcl sparge | |
| AU2019310188B2 (en) | Caustic conversion process | |
| CA2822196C (en) | Dust-free grade lithium hydroxide monohydrate and its preparation method | |
| US10167531B2 (en) | Processing of lithium containing material | |
| CN110550644B (en) | Method for separating and extracting battery-grade lithium carbonate, rubidium and cesium salts from lepidolite | |
| CN104271781A (en) | Lithium-containing materials processing technology | |
| CN101892394A (en) | A method and device for extracting lithium from lepidolite | |
| CN107055575B (en) | A kind of production technology of LITHIUM BATTERY lithium hydroxide | |
| CN108517423B (en) | A method for extracting lithium and lithium salts by roasting in a lepidolite rotary kiln | |
| CZ2025144A3 (en) | A method and a system for the treatment of lithium ore | |
| CN116770098A (en) | Method for extracting lithium from clay-type lithium ore | |
| CN116240399B (en) | Method for selectively leaching lithium from clay-type lithium ore | |
| CN116497236A (en) | Method for extracting lithium from phospholith-aluminum stone raw material | |
| CN116497235A (en) | Method for extracting lithium from low-lithium clay | |
| CA3131219C (en) | Method to convert lithium in soluble form from lithium silicate minerals by the use of an intrinsic chemical heat system | |
| CS199373B1 (en) | Method of transforming lithium and other alkaline metals from silicate ores and concentrates in water-soluble form | |
| CN116143149A (en) | Method for preparing industrial grade lithium carbonate by using lithium-containing ore reclaimed material | |
| US2020854A (en) | Method of recovering lithium from its ores | |
| CN112408435A (en) | Lithium slag recycling treatment method | |
| US1959448A (en) | Process of extracting the impurities from mineral raw materials | |
| US2991159A (en) | Method for the production and recovery of sodium aluminum fluorides | |
| CN110904343A (en) | Method for extracting lithium by drying lepidolite by utilizing waste heat | |
| GB750336A (en) | Method of extracting lithium from its silico-aluminous ores | |
| GB836928A (en) | Improvements in or relating to the manufacture of alkali metal aluminium fluorides | |
| RU2080401C1 (en) | Method of extracting vanadium from converter slag |