CS198544B1 - Dosimeter of neutron radiation - Google Patents
Dosimeter of neutron radiation Download PDFInfo
- Publication number
- CS198544B1 CS198544B1 CS743077A CS743077A CS198544B1 CS 198544 B1 CS198544 B1 CS 198544B1 CS 743077 A CS743077 A CS 743077A CS 743077 A CS743077 A CS 743077A CS 198544 B1 CS198544 B1 CS 198544B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- neutron
- neutron radiation
- dosimeter
- radiation
- neutrons
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- GSUVLAOQQLOGOJ-UHFFFAOYSA-N [S].[Ge] Chemical compound [S].[Ge] GSUVLAOQQLOGOJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
Description
Vynález ea týká dozimetra neutronového žiarenia s použitím polovodičových látok neueporiadaných átruktúr na detekciu neutronového žiarenia.The present invention relates to a neutron radiation dosimeter using semiconductor substances of disordered neutron detection structures.
V súčaenej době sa v dozimetrii neutronového žiarenia používajú metody založené na principe detekcie sekundárných častíc, resp. žiarenia, ktoré vznikajú pri interakci! neutrónov s inými časticami hmoty, ich jadrom. Tento spSsob indikuje neutronový tok v danom okamžiku a vyžaduje poměrně nákladné technické vybavenie. Zatiať sa nepoužívajú detektory neutronového žiarenia na báze polovodičových látok s neusporiadanou štruktúrou. Najpokrokovejšie detektory, ktoré sa používajú v detekcii neutronového žiarenia na principe indikácie odrazených jadier, ktoré vznikajú pri zrážke s neutrónom. Odrazené jádro je obyčejné nabitou časticou, a ak nie je jeho energia příliš malá, dá sa registroval napr. ionizačnou komorkou.At the present time, neutron radiation dosimetry uses methods based on the principle of secondary particle detection, resp. radiation generated by interaction! neutrons with other particles of matter, their nucleus. This method indicates the neutron flux at a given time and requires relatively expensive technical equipment. Meanwhile, semiconductor neutron radiation detectors with a disordered structure are not used. The most advanced detectors that are used in the detection of neutron radiation based on the indication of reflected nuclei that arise in the collision with neutron. The reflected core is an ordinary charged particle, and if its energy is not too low, it can be registered e.g. ionization chamber.
Obdobná metoda je metoda detekcie rozštiepených jadier netrónmi a tiež metoda desintegrácie spftsobenej neutrónmi. Nevýhodou týchto metod je, že detektor si nepamatá počet neutrónov ním rozptýlených, čo znamená, že indikácia sa musí diať súčasne s ozařováním, čo vyžaduje zavádzanie a spojenie prístrojov s miestom vystaveným neutronovému žiareniu, čo je značné komplikované.A similar method is the method of detecting split nuclei by netrons and also the method of neutron-induced disintegration. The disadvantage of these methods is that the detector does not remember the number of neutrons dispersed by it, which means that the indication must be performed simultaneously with the radiation, requiring the introduction and connection of the instruments to the site exposed to neutron radiation, which is considerably complicated.
Uvedené nedostatky odstraňuje dozimeter neutronového žiarenia podťa vynálezu, ktorého podstata spočívá v tom, že je vytvořený z amorfných polovodičov typu GeS, germánium síra,The aforementioned drawbacks are overcome by the neutron radiation dosimeter of the present invention, which is based on amorphous GeS semiconductors, germanium sulfur,
198 544198 544
198 544 pozostávajúcl z 5-20% germánia a 80-95% síry.198,544 consisting of 5-20% germanium and 80-95% sulfur.
Pokrok dozimetra neutronového žlarenia podlá vynálezu je predovšetkým v tom, že použitím detektorov vyrobených z polovodičových látok s neusporiadanou štruktúrou sa rozširujú možnosti detekoie neutronového žlarenia, hlavně do oblasti vyšších tokov neutr ono v, sú schopné zapamatal si množstvo intsgrujúoich neutrónov, časový integrátor, počtu neutrónov, nevyžadujú náročnú meraoiu aparatúru. Vzorku ako detektor je možné umiestnil do íubovoíného priestoru a je možné ju zhotovil v rÓznych tvarooh a veřkoetiaoh závisiaoioh od požiddaviek. Nevyžaduje náročné vyhodnooovaole přístroje, pričom rozlišovaola schopnosl je velmi vysoká.The progress of the neutron radiation dosimeter according to the invention is in particular that the use of detectors made of a disordered structure of semiconductor substances extends the possibilities of detecting neutron radiation, mainly to the higher neutron flux range, being able to memorize a number of integrating neutrons, time integrator, neutron count , do not require demanding measuring equipment. The sample as a detector can be placed in any space and can be made in a variety of shapes and sizes depending on the requirements. It does not require demanding evaluation of the device and the resolution is very high.
Pri konštrukoii nového typu detektore neutronového žlarenia sa používajú polovodičové látky, ktoré prudkým ochladením z kvapalného stavu pri vyšších teplotách zamrznú a nestačia vytvořil· usporiadalnú štruktúru. Takto neusporiadaná struktura je charakterizovaná poriadkom na blízku vzdialenosl řádová dvoj, trojnásohok mriežkovej konšťanty, avšak usporiadanosl na velkú vzdialenosl neexistuje. Vytvořené sú takzvané kryětáliky, ktoré tvoria usporiadaný systém. Prí ožiarování takto vytvořené látky neutrónmi, nastáva naruáanlé týohto kryštálikov a hovoříme, že sa. látka homogenizuje t.J. stává sa čo raz viac heusporiadanejšou. Změnou struktury sa msnia aj jednotlivé elektrioké a optické parametre látky, medzi iným aj optický index lomu. Jédná sa teda o Změnu indexu lomu látky ako d3eisdok pSsobenia neutrónov na polovodičové látky s neusporiadanou štruktúrou.In the construction of a new type of neutron radiation detector, semiconductor materials are used which freeze from the liquid state at high temperatures by freezing and do not form an orderly structure. Such a disordered structure is characterized by an order of near-distance two-fold, triple-lattice lattice constant, but a long-distance arrangement does not exist. So-called crystals are formed which form an ordered system. When irradiating the thus formed substance with neutrons, these crystals are disturbed and we are talking about sa. the substance homogenizes t.J. it becomes more heusier once. By changing the structure, the individual electrical and optical parameters of the substance also change, including the optical refractive index. Thus, this is a change in the refractive index of a substance as a result of neutron exposure to semiconductor substances with a disordered structure.
Příklad próvedeniaExample of implementation
Pri výrobě detektore je vhodný typ neuaporiadanej štruktúry na báze GeS. Najvhodnejší poměr z hlediska zmien indexu lomu sa javí typ GeSg, pozostávajúcl z 10,1 % G a z 88,9 % S. Uvedená zmes sa roztaví, nalsje do formy, zhomogenizuJe sa v oelom objeme a prudko sa ochladí. Po stuhnutí sa atomy nemajú čas dostal do termodynamickéj rovnováhy a vytvárajú neusporiadanú štruktúru, ktorá interakoiou s neutrónmi javí změnu indexu lomu.In the production of the detector, the type of unorganized GeS-based structure is suitable. The most suitable ratio in terms of refractive index variation appears to be GeSg type, consisting of 10.1% G and 88.9% S. Said mixture is melted, poured into a mold, homogenized in a small volume and quenched. After solidification, the atoms do not have time to thermodynamic equilibrium and create a disordered structure that, by interakia with neutrons, appears to change the refractive index.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS743077A CS198544B1 (en) | 1977-11-12 | 1977-11-12 | Dosimeter of neutron radiation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS743077A CS198544B1 (en) | 1977-11-12 | 1977-11-12 | Dosimeter of neutron radiation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS198544B1 true CS198544B1 (en) | 1980-06-30 |
Family
ID=5423409
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS743077A CS198544B1 (en) | 1977-11-12 | 1977-11-12 | Dosimeter of neutron radiation |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS198544B1 (en) |
-
1977
- 1977-11-12 CS CS743077A patent/CS198544B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3602713A (en) | Passive moisture meter | |
| Baicker et al. | Polarization of Neutrons from the Reactions Li7 (p, N) Be7 and D (d, N) He3 | |
| Feher et al. | Spin and magnetic moment of P 32 by the electron nuclear double-resonance technique | |
| CS198544B1 (en) | Dosimeter of neutron radiation | |
| Roth et al. | Irradiation of lithium aluminate and tritium extraction | |
| Kisieleski et al. | Preparation of radioactive glass beads | |
| Groetzinger et al. | Production of Neutrons by the Capture of Cosmic-Ray Mesons at Sea Level | |
| Abbas et al. | Use of miniature CdZnTe Xγ detector in nuclear safeguards: Characterisation of spent nuclear fuel and uranium enrichment determination | |
| Andrews et al. | Proposal for a national facility: the 8$\pi $ spectrometer | |
| Venturini et al. | Proton distribution and site energies in group IIIB metal hydrides | |
| Delsasso et al. | The Carbon Isotopes of Mass Ten and Eleven | |
| Nix et al. | Thermal neutron scattering studies in metals | |
| Rickards et al. | Measurement of (p, n) thresholds at tandem energies | |
| Gates | Containment of fragments from a runaway reactor | |
| Hawkins | The initial diameter of meteor trails | |
| Darrow et al. | Alpha particle loss diagnostics in TFTR and tokamak reactors | |
| Groetzinger et al. | Determination of the Number of Neutrons Associated with the Stoppage of Negative μ-Mesons in Lead | |
| US3225197A (en) | Fast neutron detection and flux density measurement | |
| Gieseke et al. | Analytic studies of aerosol behavior predictions for fast reactor safety | |
| Musset | 1.4 The Large Heavy Liquid Bubble Chamber" Gargamelle": Physical Aspects and Experimentation Gargamelle Construction Group | |
| Ahlstrom | Diagnostics of inertial confinement fusion experiments | |
| Hughes | The nuclear reactor as a research instrument | |
| Ragan III et al. | Measurement of an equation-of-state point for molybdenum at very high pressure | |
| Běhounek et al. | Personnel dosimetry of slow neutrons by solid-state nuclear track detector | |
| Thompson | RECENT RESEARCH ON TRANSPLUTONIUM ELEMENTS |